Solutions for the DSP Market

Presenter

Ken Chapman - Applications Specialist
Xilinx UK
Solutions for the DSP Market

Agenda

• Zooming in - The Xilinx Device Range.
• Concepts - Brief Overview of the Xilinx FPGA Architecture.
• Algorithms - What are the requirements of DSP?
• FPGA's vs DSP Requirements - A closer look at the XC4000E
• Tradition - The limit of DSP processors.
• Back to basics - building the right blocks.
• Solutions - Some case studies from Europe.

Xilinx Components Today...

- **LOW COST**
 - XC8100
 - XC7200A
 - XC7300

- **HIGH SPEED**
 - XC3000A
 - XC3100A

- **DESIGN METHODOLOGY**
 - XC5200
 - XC4000

- **DENSITY**
 - XC5200
 - XC4000E & XC4000EX
 - XC4000
 - XC3000A
 - XC2000
 - XC9500

RAM Based Multiplier for FPGAs

Xilinx High Density FPGAs

- **XC3100A FPGA Family**
 - Highest speed solutions

- **XC5200 FPGA Family**
 - Cost Optimized, high volume production solution

XC4000E & XC4000EX FPGA Families

- Highest speed, Performance Optimized

Speed
- System Performance to 100MHz
- High speed extension to XC3000A
- Full PCI Compliance

Density
- VersaRing™ I/O Flexibility
- Dedicated arithmetic logic
- System Perf. to 50MHz

Xilinx High Density FPGAs

- **XC3100A FPGA Family**
 - Highest speed solutions

- **XC5200 FPGA Family**
 - Cost Optimized, high volume production solution

Speed
- System Performance to 100MHz
- High speed extension to XC3000A
- Full PCI Compliance

Density
- VersaRing™ I/O Flexibility
- Dedicated arithmetic logic
- System Perf. to 50MHz
RAM Based Multiplier for FPGAs

FPGA Architecture

Configurable Logic Blocks

XILINX®
RAM Based Multiplier for FPGAs

Configurable Logic Block (CLB)

- Function Generators
 - Implement GATES of design
 - Can be used as ROM
 - Various RAM Options
 - Combine with Carry Logic to form many Arithmetic functions

<table>
<thead>
<tr>
<th>D</th>
<th>C</th>
<th>B</th>
<th>A</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Flip-Flops
- Optional use
- Clock enable available
- ZERO hold time

Carry Logic

Configurable I/O Block (IOB)

- Three-State Buffer
 - Optional
 - Bus signals
 - Open Collector

- Passive Pull-up & Pull-down
 - Optional
 - 50-100K Ohm

- Pad
 - Many package Types
 - Sink 12mA
 - TTL & CMOS
 - Slew rate Control
 - Soft start up
 - IEEE 1149.1 Boundary Scan

- Polarity control
 - on data and controls

- Flip-Flops
 - Optional use
 - Clock enable available
 - ZERO hold time

KC & PH (Xilinx) June 1996
Programmable Interconnect

- Resources to create arbitrary interconnection networks
- Hierarchy of interconnect resources
- Programmable switches
- Internal 3-state buffers for busses, mux's, and wide functions
- Dedicated global clock networks
- Global reset and tri-state networks

FEATURES

- **Master mode**
 - ‘Self Configuration’ from PROM
 - Parallel (shown) or serial modes
- **Peripheral mode**
 - Dynamic reprogramming via external system (microprocessor)

BENEFITS

- Field Upgrades via Software Changes
- Built-in System Test/Diagnostic Logic
- Adaptable System Design
 - Hardware changes & tuning possible during prototype AND OPERATION!
- Examples
 - Separate Read/Write Logic - Tape Drive
 - Evolving Communications Protocols
Algorithms:
What are the requirements for DSP?

There are really only 4 functions:
- DELAY
- ADDITION/SUBTRACTION
- MULTIPLICATION
- DATA STORAGE

Question becomes: How BIG and how FAST can these be implemented in an FPGA?

FPGA Architectural Requirements

<table>
<thead>
<tr>
<th>Operation</th>
<th>Preferred Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delays</td>
<td>Register Intensive Part. FIFO Capability.</td>
</tr>
<tr>
<td>Addition / Subtraction</td>
<td>Built-in Arithmetic Capability</td>
</tr>
<tr>
<td></td>
<td>- Improves speed & reduces logic area.</td>
</tr>
<tr>
<td>Multiplication</td>
<td>Fast Arithmetic Capability On-Board RAM/ROM</td>
</tr>
<tr>
<td>Data Storage</td>
<td>On-Board RAM/ROM</td>
</tr>
</tbody>
</table>
RAM Based Multiplier for FPGAs

XC4000E Architectural Features

Features:
- Register Intensive Parts
 - Clock Enable to ALL Flip-flops
 - Asynchronous Set/Preset to CLB Flip-flops.
- Fast Built-in Carry Logic
 - Fully Reconfigurable.
- Select-RAM
 - High Speed.
 - Synchronous & Asynchronous modes.
 - Single & Dual Port Operation
 - Configurable RAM Content.

Advantage to DSP:
- Pipelining & Data Delays
 - East system level I/O
 - >2000 Flip-flops (XC4025E)
- Arithmetic Functions
 - Fast Addition / Subtraction
 - 16-bit Add = 17ns (-3)
 - Fast Comparators
 - Multipliers
- Data Storage & Delays
 - Coefficient Tables.
 - Cyclic Buffers.
 - FIFO’s.
 - Multipliers
- Sizable to Application

XC4000E Select-RAM™ Memory Advantages

Select the Size
- No wasted resources
- Scalable to needed size
- MEMGEN software
 - Automatically generates RAMs of specified size.

Select the Function
- Can be Single or Dual Port
- Synchronous or Asynchronous
- “Mix and match”

Select the Location
- Can be located anywhere on die
- Adjacent to critical circuits for speed

Select the Programming Method
- Via Bitstream on start-up
- During design operation
Tradition - The limit of DSP Processors

Very Good Devices
- Microprocessor Architecture.
- Special Multiply and Accumulate Instruction.
- On chip memory for program and data.
- Programmed by software.
- Instruction times down to 12ns (80MHz).

Limitations
- Fixed Architecture.
- Fixed bit sizes.
- SEQUENTIAL processing.

Typical DSP Device Architecture

Traditional Sequential Processing Limits System Performance

Where do FPGAs fit on this graph?
Traditional Sequential Processing Limits
System Performance

Sample Rate
MSamples/s

Number of Operations per Sample

Where do FPGAs fit on this graph?

DSP Algorithms are Parallel

FIR filter

\[D_{\text{out}} = \sum_{n=0}^{\infty} k_n t_n \]

Implementation Method Requirements Performance
Sequential (Traditional DSP) ONE full function multiplier LOW
Parallel (Distributed Arithmetic) Multiple Constant Coefficient multipliers HIGH
Building the right Blocks

DELAY

2-Bits per CLB

32-Bits per CLB

ADDITION/SUBTRACTION

MULTIPLIERS

These require a little more effort......

All Functions expand to SIZE REQUIRED at point in Algorithm

MULTIPLICATION - Typically 4 Methods

ADDER TREE

Fast (8-Bit - 65MHz)
Large (8-Bit - 68CLB)

LOOK-UP TABLE

A ROM is pre-programmed with all possible answers

SHIFT & ADD

Compact (8-Bit - 20CLB)
Slow (multi-cycle)
8MHz SYSTEM performance may be high!

LOGICAL TREE

A huge exercise in Boolean Algebra!
Each bit out is an equation of the inputs.

Can be Fast Complex & Very Large

RAM Based Multiplier for FPGAs

KC & PH (Xilinx) June 1996
Method 5 - The Hybrid Multiplier

Constant (k) Coefficient Multiplier (KCM)

Effectively performs a **HEXADECIMAL** multiplication

Implements: \(Y = k \times X \)

8-Bit Version
Compact 20 CLB - Same as **SHIFT & ADD**
Fast (66 MHz) - Same as **ADDER TREE**

Implementation of Look-Up Tables

Fixed Constant
(variable by configuration!)

Variable Constant !

What is required?

- Option to use ROM and yet still ‘tune’ value by ISP
- Ability to choose RAM if required
- Ability to build RAM of exact width required
- Ability to build RAM/ROM exactly where it is needed on the die
- Ability to build as many blocks of memory as required
- Ability to preset an initial value on configuration
Implementation of Look-Up Tables

Fixed Constant
(variable by configuration!)

Variable Constant!

What is required?
Option to use ROM and yet still ‘tune’ value by ISP
Ability to choose RAM if required
Ability to build RAM of exact width required
Ability to build RAM/ROM exactly where it is needed on the die
Ability to build as many blocks of memory as required
Ability to preset an initial value on configuration

Performance of KCM’s
Results for the fully available -3 speed grade (-2 speed offering ~14% improvement)

<table>
<thead>
<tr>
<th>Operand Size</th>
<th>Combinatorial Delay (ns)</th>
<th>CLB’s</th>
<th>Pipelined Performance (MHz)</th>
<th>No. of Stages</th>
<th>CLB’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>19</td>
<td>19</td>
<td>66.5</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>29</td>
<td>39</td>
<td>58.2</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>16</td>
<td>41</td>
<td>75</td>
<td>50.0</td>
<td>3</td>
<td>80</td>
</tr>
</tbody>
</table>

Figures are worst case and measured IN-SYSTEM

Defines the upper SYSTEM performance and size for Xilinx DSP Solutions
Performance of KCM’s

Results for the fully available -3 speed grade (-2 speed offering ~14% improvement)

<table>
<thead>
<tr>
<th>Operand Size</th>
<th>Combinatorial Delay (ns)</th>
<th>CLB’s</th>
<th>Pipelined Performance (MHz)</th>
<th>No. of Stages</th>
<th>CLB’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>19</td>
<td>19</td>
<td>66.5</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>29</td>
<td>39</td>
<td>58.2</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>16</td>
<td>41</td>
<td>75</td>
<td>50.0</td>
<td>3</td>
<td>80</td>
</tr>
</tbody>
</table>

Figures are worst case and measured IN-SYSTEM

Defines the upper SYSTEM performance and size for Xilinx DSP Solutions

8-Bit MACs/XC4025-3

Sample Rate

MSamples/s

10 20 30 40 50 60 70 80

Number of Operations per Sample

10 20 30 40 50 60 70 80

Defines the upper SYSTEM performance and size for Xilinx DSP Solutions

8-Bit MACs/XC4025-3 10-Bit MACs/XC4025-3

XILINX

KC & PH (Xilinx) June 1996

DATE 11/11/96

Page 16
Performance of KCM’s

Results for the fully available -3 speed grade (~2 speed offering ~14% improvement)

<table>
<thead>
<tr>
<th>Operand Size</th>
<th>Combinatorial Delay (ns)</th>
<th>CLB’s</th>
<th>Pipelined Performance (MHz)</th>
<th>No. of Stages</th>
<th>CLB’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>19</td>
<td>19</td>
<td>66.5</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>29</td>
<td>39</td>
<td>58.2</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>16</td>
<td>41</td>
<td>75</td>
<td>50.0</td>
<td>3</td>
<td>80</td>
</tr>
</tbody>
</table>

Figures are worst case and measured IN-SYSTEM

Defines the upper SYSTEM performance and size for Xilinx DSP Solutions

- 8-Bit MACs/XC4025-3
- 10-Bit MACs/XC4025-3
- 16-Bit MACs/XC4025-3

Real Solution 1 - 55MHz Low Pass Filters

XC4013-3

Application
- Front end filters for Measurement Equipment.

Requirement
- Each filter required 6 taps FIR (symmetrical) with 10-bit data and coefficients.
- Sample rate of 55 Msamples/second.
- Coefficients to be fixed after initial system tuning phase.

Solution
- Single device solution offering 30% of device for additional system logic.
- Full parallel Processing - Equivalent to over 600 MOPs processing.
- Implementation performed completely by customer.
Real Solution 2 - 2.2MHz Bit-Filter/Correlator

Application
- Base-Station Communications Bitstream processing.

Requirement
- A 96-Tap FIR filter structure (symmetrical) with 16-bit coefficients
- Coefficients liable to modification during life time of design.
- Sample rate of just below 2.2 Msamples/second.

Solution
- Single device solution offering 22% of device for additional system logic.
- Slowest speed grade available - Higher data rates instantly available.
- Distributed RAM and ROM employed for samples and coefficients.
- Mixed Sequential and Parallel technique - Equivalent to over 200 MOPs processing.
- Basic Implementation performed by Xilinx.
- 16x clock utilized to perform 3 sequential processes in parallel.

Real Solution 3 - Data Routing & Sequencing

Application
- Communications Noise Reduction System (Spread channel communications).

Requirement
- Record 256-bit packets on four 2 MBit/s channels.
- Segment into 2-bit elements.
- Route any element to any output at any.
- Total control from uP.

Solution
- Single device solution.
- 11 blocks of RAM - total of 5760 bits.
- Implementation performed by customer and Xilinx.
- System requirements were evolving by the DAY and a 4 week time-scale.
Solutions for the DSP Market

Summary

• Zooming in - Large Xilinx Device Range for many applications and methodologies.
• Concepts - Xilinx FPGA Architecture offers a completely flexible approach to design.
• FPGA’s vs DSP Requirements - XC4000E offers the density and performance for DSP.
• Algorithms - Consider the algorithm structure to optimize the logic design (cost).
• Tradition - Sequential processing and fixed architectures limit system performance.
• Back to basics - Mastering the basics and asking the right questions about the algorithm.
• Solutions - 2MHz or 55MHz, Multiplication or Data Manipulation, Flexible and Successful.

Try Xilinx

Solutions for the DSP Market

THANK YOU

Xilinx European Applications
email: eurodsp@xilinx.com
email: ukhelp@xilinx.com
tel: (44) 1932 820821