Using FPGAs to Design Gigabit Serial Backplanes

April 17, 2002
Outline

• System Design Trends
• Serial Backplanes Architectures
• Building Serial Backplanes with FPGAs
Key System Design Trends

• Need for
 – Easy Scalability of Performance
 – Extremely High Availability
 – Flexible Architecture
 – Use of Standards
 • Rapid Time to Market
 • Reduces Costs
Merging Communications & Computers

- Communications Systems have serial backplanes
- Computers moving to serial backplanes

Database servers
Application servers
1U Web servers
Ethernet Switches

Internet

"Bladed Server", PICMG 2.16
Serial Standards

• Serial Standards
 – Fiber Channel 1 Gbps
 – Ethernet 1 Gbps
 – InfiniBand 2.5 Gbps

• Parallel Standards Going Serial
 – PCI => 3GIO
 – RapidIO => Serial RapidIO
 – ATA => Serial ATA

• Channel Bonded Serial Standards
 – XAUI 10 Gigabit Ethernet (4 x 3.125 Gbps)
Serial Connectivity = Higher Bandwidth & Fewer Pins

Example - PCI: 32-bit x 33MHz = 1 Gbps, Shared among 5 clients 250 total pins

Virtex-II Pro System: 2.5 Gbps x 4 x 5 = 50 Gbps 80 total pins

Each Client has 2.5 Gbps guaranteed to every other Client

50x higher bandwidth with less than 1/3 of the pins
Serial Link Rates

Link Rates (bits per sec.):
- 155M
- 3.125G
- 1.25G
- 622M
- 10G
- 40G
- 200G
- 1000G
- 4000G
- 7680G

Mainstream Deployment:
- OC-192
- Infiniband
- GigE
- OC-48
- OC-3
- OC-12
- FC
- FC-2x
- FC-10x
- 3GIO
- SxI-5
- Rapid IO
- OC-768
Serial Topologies

- Switched
- PICMG 2.16

- Full Mesh
- PICMG 2.2
- PICMG 3.x
Building Serial Backplanes with FPGAs

Gigabit Ethernet Phy x2

Gigabit Ethernet MAC x2

Switched

PICMG 2.16
Virtex-II Pro™ Platform FPGA

- Industry's Fastest FPGA Fabric
- Up to 4 IBM PowerPC™ Processors Immersed in FPGA Fabric
- Up to 16 Embedded Rocket I/O™ Multi-Gigabit Transceivers
- Up to 8 Digital Clock Managers
- On-Chip Termination with XCITE Technology
- Up to 216 Multipliers
Virtex-II Pro Rocket I/O™ Technology

Up to sixteen multi-gigabit serial transceivers
Support 622 Mbps to 3.125 Gbps full duplex operation
Flexible PCS/PMA feature set
Xilinx® Rocket I/O Serial Backplane Interface Technology

- Rocket I/O Serial Backplane Interface (RSBI) Technology
 - Simple solution for serial backplane applications
 - Consists of two parts
 - The RSBI/ “Aurora” link protocol
 - An RSBI Reference Design (IP core) implementing that protocol
RSBI/ “Aurora” Protocol

- An Efficient, Lightweight Protocol to Move Data Point to Point across Serial Link
- Used to transport higher-level protocols
 - Standard protocols like Ethernet
 - Proprietary, customer-defined, protocols
RSBI Core

- Implements RSBI/ “Aurora” Protocol
- Provides a simple interface for transferring packets across
 - A single gigabit serial link
 - Up to 16 bonded links
- Minimal Use of Resources (~350 slices)
- Frequency and Technology Independent
- Specifications and Source Code available from Xilinx
RSBI/ “Aurora” Features

• Uses 8B/10B and includes CRC protection
• Transmitter wraps user data in Rocket I/O “Aurora” protocol
 – Handles packet formation
 – Sends error notification to remote core
• Receiver recovers frames and realigns data
 – Strips packet/frame wrappers
 – Aligns data on double word boundary
 – Monitors error conditions
RSBI User Interface

User interface created so no knowledge of Rocket I/O block is necessary
RSBI Channel Bonding

• All lanes must have passed comma detect before channel bonding starts
• Uses same technique as 10 Gigabit Ethernet and Serial RapidIO
 – Sends semi-random IDLE pattern

Synchronization of individual channels into a single large data channel
RSBI/ “Aurora” Implementation Parameters

- Allows maximum frame size of 8K Unlimited bytes
- 32-bit internal interface
- Other frame sizes and internal interface widths planned in future releases
Error Detection in Hardware

• Errors can be either in Rocket I/O block or link(s)
• Five sources of link failure detected:
 – Link physical error threshold overflow
 – Channel misalignment
 – FIFO overflow
 • Receiver or transmitter
 – Transmitter sending an illegal K character
• Upon detection of link failure, core resets itself and forces link partner to reset
RSBI Transmission

• All data frames have a SOP/SOF and EOP/EOF to indicate the start and end of packet

• User must send at least 2 DWORDs (8 bytes)

• Core will add pad data to allow CRC functionality

• User cannot transmit data in increments less than input width

 — Data can now be transmitted in any increment
RSBI Reception

• Strips off SOP/SOF* and EOP/EOF** from frame
• Strips off pad data if necessary
• Signals any errors detected
• Checks CRC for correctness

*SOP/F = Starting of Packet/Frame
**EOP/F = End of Packet/Frame
Serial Backplane: Full Mesh

Design Approach Supporting
16 slot, 3.125 Gbps per link
Full Mesh Serial Backplane

- 2VP50
- X 15
- RSBI layer
- Rocket I/O Transceivers
Implementing RSBI in Virtex-II Pro Platform FPGA

Implementation in Virtex-II Pro FPGA

- **Features**
 - Up to 40 Gbps
 - 32-bit user interface
 - Low overhead

- **Utilization**
 - 350 Slices
Serial Backplane: Private Connection

Parallel Connection on line card

4 Transceivers Channel Bonded for “Private” board to board connection
Sample Serial Backplane Approaches

- XAUI Switch
- XAUI Core
- Rocket I/O Transceivers
- Backplane
- 2VP20
Implementing XAUI in Virtex-II Pro FPGA

- Implementation in V-II Pro
- Uses 4 Rocket I/O Transceivers
 - Channel bonding
 - 8B/10B encoding
- Utilization
 - 800 Slices
Signal Integrity Design Resources

http://www.xilinx.com/signalintegrity
Figure 4-5: Power Filtering Network for One Transceiver
Power Filtering Network Components

Capacitors
- \(C = 0.22\, \text{uF} \)
- Package: 0603 SMT
- Dielectric: X7R
- Tolerance: 10%
- WVDC: 10V
- Spacing: Within 1cm of pin

Ferrite Beads
- Murata BLM11A102S

Voltage Regulator
- Linear Technology LT1963

All parts specified in PCB Design Requirements

Voltage Regulator must use circuit specified by manufacturer
VTTX, VTRX

Top of board

Ferrite Bead

Capacitors
Reference Clock

• Must use EPSON EG-2121CA
 – 2.5V LVPECL output oscillator
 – Use according to manufacture specifications

• Resistor network for clock input:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>510 ohm</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>130 ohm</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>25 ohm</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>100 ohm</td>
<td></td>
</tr>
</tbody>
</table>
Implementation Resources

- Physical (PCB) Design Information
 - Signal Integrity Central on Xilinx Web Site (http://www.xilinx.com/signalintegrity)
 - Rocket I/O User Guide
 - Spice Suite

- RSBI Design Information (http://www.xilinx.com/rsbi)
 - Specification, Implementation notes
 - Source code (Verilog)
 - Test bench

- XAUI information (http://www.xilinx.com/connectivity)
 - In Networking/Datapath Products (10 Gigabit Ethernet)