The MAX3232 device consists of two line drivers, two line receivers, and a dual charge-pump circuit with ±15-kV ESD protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. The devices operate at data signaling rates up to 250 kbit/s and a maximum of 30-V/µs driver output slew rate.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>TA</th>
<th>PACKAGE†</th>
<th>ORDERABLE PART NUMBER</th>
<th>TOP-SIDE MARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C to 70°C</td>
<td>SOIC – D</td>
<td>Tube</td>
<td>MAX3232CD</td>
</tr>
<tr>
<td></td>
<td>SOIC – DW</td>
<td>Tube</td>
<td>MAX3232CDW</td>
</tr>
<tr>
<td></td>
<td>SSOP – DB</td>
<td>Tube</td>
<td>MAX3232CDBR</td>
</tr>
<tr>
<td></td>
<td>TSSOP – PW</td>
<td>Tube</td>
<td>MAX3232CPSWR</td>
</tr>
<tr>
<td>-40°C to 85°C</td>
<td>SOIC – D</td>
<td>Tube</td>
<td>MAX3232ID</td>
</tr>
<tr>
<td></td>
<td>SOIC – DW</td>
<td>Tube</td>
<td>MAX3232IDW</td>
</tr>
<tr>
<td></td>
<td>SSOP – DB</td>
<td>Tube</td>
<td>MAX3232IDBR</td>
</tr>
<tr>
<td></td>
<td>TSSOP – PW</td>
<td>Tube</td>
<td>MAX3232IPWR</td>
</tr>
</tbody>
</table>

† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Function Tables

EACH DRIVER

<table>
<thead>
<tr>
<th>INPUT DIN</th>
<th>OUTPUT DOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

H = high level, L = low level

EACH RECEIVER

<table>
<thead>
<tr>
<th>INPUT RIN</th>
<th>OUTPUT ROUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>Open</td>
<td>H</td>
</tr>
</tbody>
</table>

H = high level, L = low level, Open = input disconnected or connected driver off

logic diagram (positive logic)

```
\[
\begin{align*}
\text{DIN1} & \quad 11 \quad \rightarrow \quad 14 \quad \text{DOUT1} \\
\text{DIN2} & \quad 10 \quad \rightarrow \quad 7 \quad \text{DOUT2} \\
\text{ROUT1} & \quad 12 \quad \rightarrow \quad 13 \quad \text{RIN1} \\
\text{ROUT2} & \quad 9 \quad \rightarrow \quad 8 \quad \text{RIN2}
\end{align*}
\]```
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

- Supply voltage range, $V_{CC}$ (see Note 1) .............................................................................. $-0.3$ V to 6 V
- Positive output supply voltage range, $V+$ (see Note 1) .......................................................... $-0.3$ V to 7 V
- Negative output supply voltage range, $V-$ (see Note 1) .......................................................... $0.3$ V to $-7$ V
- Supply voltage difference, $V+$ $-$ $V-$ (see Note 1) ................................................................. $13$ V
- Input voltage range, $V_I$: Drivers ................................................................................... $-0.3$ V to 6 V
  Receivers .................................................................................................................. $-25$ V to 25 V
- Output voltage range, $V_O$: Drivers ............................................................................... $-13.2$ V to 13.2 V
  Receivers .................................................................................................................. $-0.3$ V to $V_{CC} + 0.3$ V
- Package thermal impedance, $\theta_{JA}$ (see Note 2): D package ........................................... 73°C/W
  DB package .............................................................................................................. 82°C/W
  DW package .............................................................................................................. 57°C/W
  PW package .............................................................................................................. 108°C/W
- Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds ........................................... 260°C
- Storage temperature range, $T_{stg}$ ....................................................................................... $-65$°C to 150°C

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltages are with respect to network GND.
2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3 and Figure 4)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>$V_{CC} = 3.3$ V</td>
<td>3</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$V_{CC} = 5$ V</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>$V_{IH}$ Driver high-level input voltage</td>
<td>DIN</td>
<td>$V_{CC} = 3.3$ V</td>
<td>2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{CC} = 5$ V</td>
<td>2.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$V_{IL}$ Driver low-level input voltage</td>
<td>DIN</td>
<td>0</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_I$ Driver input voltage</td>
<td>DIN</td>
<td>0</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Receiver input voltage</td>
<td>$T_A$ Operating free-air temperature</td>
<td>$-25$</td>
<td>25</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAX3232C</td>
<td>0</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAX3232I</td>
<td>-40</td>
<td>85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 3: Test conditions are $C_1$–$C_4 = 0.1$ μF at $V_{CC} = 3.3$ V $\pm 0.3$ V; $C_1 = 0.047$ μF; $C_2$–$C_4 = 0.33$ μF at $V_{CC} = 5$ V $\pm 0.5$ V.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 3 and Figure 4)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP‡</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{CC}$ Supply current</td>
<td>No load, $V_{CC} = 3.3$ V or 5 V</td>
<td>0.3</td>
<td>1</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

‡ All typical values are at $V_{CC} = 3.3$ V or $V_{CC} = 5$ V, and $T_A = 25$°C.

NOTE 3: Test conditions are $C_1$–$C_4 = 0.1$ μF at $V_{CC} = 3.3$ V $\pm 0.3$ V; $C_1 = 0.047$ μF; $C_2$–$C_4 = 0.33$ μF at $V_{CC} = 5$ V $\pm 0.5$ V.
### Driver Section

**Electrical Characteristics**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOH</td>
<td>DOUT at RL = 3 kΩ to GND, DIN = GND</td>
<td>5</td>
<td>5.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VOL</td>
<td>DOUT at RL = 3 kΩ to GND, DIN = VCC</td>
<td>-5</td>
<td>-5.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>IH</td>
<td>VI = VCC</td>
<td>±0.01</td>
<td>±1</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>IIL</td>
<td>VI at GND</td>
<td>±0.01</td>
<td>±1</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>IOS‡</td>
<td>VCC = 3.6 V, VO = 0 V</td>
<td>±35</td>
<td>±60</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>IOS‡</td>
<td>VCC = 5.5 V, VO = 0 V</td>
<td>±35</td>
<td>±60</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>rO</td>
<td>VCC, V+, and V− = 0 V, VO = ±2 V</td>
<td>300</td>
<td>10M</td>
<td></td>
<td>Ω</td>
</tr>
</tbody>
</table>

†All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
‡Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

**NOTE 3:** Test conditions are C1–C4 = 0.1 µF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 µF, C2–C4 = 0.33 µF at VCC = 5 V ± 0.5 V.

**Switching Characteristics**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum data rate</td>
<td>CL = 1000 pF, One DOUT switching,</td>
<td>150</td>
<td>250</td>
<td></td>
<td>kbit/s</td>
</tr>
<tr>
<td></td>
<td>RL = 3 kΩ, See Figure 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tsk(p)</td>
<td>CL = 150 pF to 2500 pF</td>
<td>300</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SR(tr)</td>
<td>RL = 3 kΩ to 7 kΩ, See Figure 2</td>
<td>6</td>
<td>30</td>
<td></td>
<td>V/µs</td>
</tr>
<tr>
<td></td>
<td>CL = 150 pF to 1000 pF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CL = 150 pF to 2500 pF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
§Pulse skew is defined as |tPLH − tPHL| of each channel of the same device.

**NOTE 3:** Test conditions are C1–C4 = 0.1 µF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 µF, C2–C4 = 0.33 µF at VCC = 5 V ± 0.5 V.
RECEIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 3 and Figure 4)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP†</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{OH}$ High-level output voltage</td>
<td>$I_{OH} = -1$ mA</td>
<td>$V_{CC} - 0.6$ V</td>
<td>$V_{CC} - 0.1$ V</td>
<td>0.4 V</td>
<td></td>
</tr>
<tr>
<td>$V_{OL}$ Low-level output voltage</td>
<td>$I_{OL} = -1.6$ mA</td>
<td>$V_{CC} - 0.6$ V</td>
<td>$V_{CC} - 0.1$ V</td>
<td>0.4 V</td>
<td></td>
</tr>
<tr>
<td>$V_{\text{IT}+}$ Positive-going input threshold voltage</td>
<td>$V_{CC} = 3.3$ V</td>
<td>1.5 V</td>
<td>2.4 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{\text{IT}+}$ Negative-going input threshold voltage</td>
<td>$V_{CC} = 3.3$ V</td>
<td>0.6 V</td>
<td>1.2 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{\text{IT}+}$ Inductance (in $V_{\text{IT}+} - V_{\text{IT}+}$)</td>
<td></td>
<td>0.3 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r_i$ Input resistance</td>
<td>$V_I = \pm 3$ V to $\pm 25$ V</td>
<td>3 kΩ</td>
<td>5 kΩ</td>
<td>7 kΩ</td>
<td></td>
</tr>
</tbody>
</table>

† All typical values are at $V_{CC} = 3.3$ V or $V_{CC} = 5$ V, and $T_A = 25^\circ$C.

NOTE 3: Test conditions are $C_1 - C_4 = 0.1$ μF at $V_{CC} = 3.3$ V $\pm 0.3$ V; $C_1 = 0.047$ μF, $C_2 - C_4 = 0.33$ μF at $V_{CC} = 5$ V $\pm 0.5$ V.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 3 and Figure 3)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP†</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{PLH}$ Propagation delay time, low- to high-level output</td>
<td>$C_L = 150$ pF</td>
<td>300 ns</td>
<td>300 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{PHL}$ Propagation delay time, high- to low-level output</td>
<td></td>
<td>300 ns</td>
<td>300 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{\text{sk}(p)}$ Pulse skew†</td>
<td></td>
<td>300 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† All typical values are at $V_{CC} = 3.3$ V or $V_{CC} = 5$ V, and $T_A = 25^\circ$C.
‡ Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

NOTE 3: Test conditions are $C_1 - C_4 = 0.1$ μF at $V_{CC} = 3.3$ V $\pm 0.3$ V; $C_1 = 0.047$ μF, $C_2 - C_4 = 0.33$ μF at $V_{CC} = 5$ V $\pm 0.5$ V.

PARAMETER MEASUREMENT INFORMATION

![Test Circuit](image1)

NOTES: A. $C_L$ includes probe and jig capacitance.
B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50$ Ω, 50% duty cycle, $t_f \leq 10$ ns, $t_r \leq 10$ ns.

Figure 1. Driver Slew Rate
PARAMETER MEASUREMENT INFORMATION

NOTES:

A. \( C_L \) includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, \( Z_O = 50 \Omega \), 50% duty cycle, \( t_r \leq 10 \text{ ns}, t_f \leq 10 \text{ ns} \).

Figure 2. Driver Pulse Skew

NOTES:

A. \( C_L \) includes probe and jig capacitance.

B. The pulse generator has the following characteristics: \( Z_O = 50 \Omega \), 50% duty cycle, \( t_r \leq 10 \text{ ns}, t_f \leq 10 \text{ ns} \).

Figure 3. Receiver Propagation Delay Times
**APPLICATION INFORMATION**

![Circuit Diagram](image)

† C3 can be connected to VCC or GND.

<table>
<thead>
<tr>
<th>VCC vs CAPACITOR VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>VCC</strong></td>
</tr>
<tr>
<td>3.3 V ± 0.3 V</td>
</tr>
<tr>
<td>5 V ± 0.5 V</td>
</tr>
<tr>
<td>3 V to 5.5 V</td>
</tr>
</tbody>
</table>

Figure 4. Typical Operating Circuit and Capacitor Values
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated