
Gordon Brebner

Xilinx Labs

San José, USA

Domain-Specific Programming of
Very High Speed Packet Processing

Circuit design tools used

Can only implement simple functions

Computer science research perspective:

– Gates and wiring to be programmed

– Scarce resource to be managed

– Limited to niche applications

Programmable logic, 1989

1000

cells

Cell: 2-input gate

Local wiring between cells

Both programmable by writing to memory

Act of faith

© Copyright 2012 Xilinx2

Hardware design tools used

Can implement complex systems

Computer science research perspective:

– Software-style engineering

– Adaptable processing architectures

– Lower-power peer of CPU, GPU, NPU

Programmable logic, 2012

2m

cells

Cell: 6-input gate and 2 flip-flops

Embedded function blocks and memories

Local and longer wiring between components

All programmable by writing to memory

Need theory

© Copyright 2012 Xilinx3

Chip design experience

Hardware Description Language (HDL)

Cryptic results

– Behaviour and performance

Enhancements (for ‘hardware guys’):

– Libraries of blocks

• Allow re-use and sharing

• In HDL, or pre-synthesised

– High-level synthesis

• Usually superset of subset of C

• Translated into HDL

Abstraction is lacking

Programming programmable logic

Place & route
(slow)

© Copyright 2012 Xilinx4

The packet processing domain

The Line Card

Data
Framing

Represent

packet, and

compute

check code

Packet
Classification

Extract key

from packet,

then look key

up in table

Traffic
Management

Queue packet

in memory,

and schedule

departure

Packet
Editing

Modify fields

in packet, or

restructure

packet

© Copyright 2012 Xilinx5

Programming packet processing

Component
Speed
requirement

Programmability
requirement

Typical NPU
feature

Programmable
logic

Classification High Medium: parser only Specialised multi-

threaded processors

Programmable

classifier

Editing
(slow path)

Medium High General-purpose

processors + assists

Soft multicore,

plus accelerators

Editing
(fast path)

High Medium Highly multi-threaded

processors + assists

Programmable

parser/editor

Traffic
management

High Low: scheduler only Hardware accelerator Configurable traffic

manager

Basis for a domain-specific language?

© Copyright 2012 Xilinx6

Centred around Click (MIT 2001)

– Designed for building modular routers from components

– Has software implementation in C++

Systems have data flow model

– Elements process packets

– Connections to move packets between elements

Looked promising as a model for hardware systems

First Generation
Packet processing data paths 1/2G Xilinx Virtex-II Pro

© Copyright 2012 Xilinx7

Each box is an instance of a

pre-defined Click element

Connections between elements

form a data flow graph

Some characteristics:

• Fixed-function elements

• Fine-grain element functions

• Inter-element interaction:

• data flow for packets

• method calls otherwise

Lookup

Queue

Simple op

Input

Output

Click graphical description of IP router

© Copyright 2012 Xilinx8

Processed Click in its textual form

Generated Verilog description of design

Elements implemented in Verilog
– Finite State Machine

– Two predefined states

• Receive packet

• Transmit packet

– User defined states in between

• Packet handling

• Accessing memory

Connections between elements
– Three-way handshake protocol

– Bus widths up to 344 bits

Cliff: Click for FPGA

Rdy_send_in0

Rdy_recv_out0

Rdy_send_in1

Rdy_recv_out1

Enable, addr, data

Memory interface

Inter-element communication

rt[3] -> DropBroadcasts

-> cp1 :: PaintTee(1)

-> gio1 :: IPGWOptions(18.26.4.24)

-> FixIPSrc(18.26.4.24)

-> dt1 :: DecIPTTL

-> fr1 :: IPFragmenter(1500)

-> [0]arpq0

© Copyright 2012 Xilinx9

Cliff results for three benchmarks

Application Area
(slices)

Frequency
(MHz)

Throughput
(Gb/s)

IPv4 router 4016 125 2

NAT 3248 125 2

DiffServ 9114 85 1.6

© Copyright 2012 Xilinx10

Lessons learnt

– Click elements very fine-grain

• Inefficient in hardware: 90% of resource used for interface

– Click elements had to be implemented in Verilog by hand

Conclusions

– Click not attractive as the domain-specific language choice

– Has potential for connecting coarser-grain elements

Result

– Click semantics generalised to add non-packet type connections

– Spun out as horizontal technology for general system building

• And used in next generation work

Status

© Copyright 2012 Xilinx11

Originated in a collaboration with Bell Labs

Packet processing tool suite

– Click used for system building

• Describe system in terms of connected components and subsystems

– Invented G

• New packet-centric and protocol-agnostic language for creating components

• Initial focus on packet editing functions

G compiled to synthesisable HDL

– Describing a customised pipeline architecture instance

Second Generation
Packet processing pipeline 10/20G Xilinx Virtex-4/5

© Copyright 2012 Xilinx12

• G is a declarative language

• Rules can have conditional guards

• Concurrent execution of rules is the default semantics

• G is not general purpose, but is Turing complete

• No implementation detail included: “what” not “how”

Summary of main G constructs

P
ayload

S
ource A

ddress

Type
C
ontrol

IP
 H
eader

Packet

D
estination A

ddress

N
ew
 A
ddress

Type
C
ontrol

IP
 H
eader

P
ayload

Packet

D
estination A

ddress

Test Values Change Values

S
ource A

ddress

Type
C
ontrol

IP
 H
eader

P
ayload

Packet

D
estination A

ddress

Type
C
ontrol

Insert New Fields
S
ource A

ddress

IP
 H
eader

P
ayload

Packet

D
estination A

ddress

Remove Fields

[packet.type == 0x8100] {

// conditional operations

}

set packet.SA = 0x010203040506 set TC.Type= 0x8100;

set TC.Control = 0x123456;

insert TC after TC1;

remove TC1;

remove TC2;

© Copyright 2012 Xilinx13

// Input and output packet format

format F_packet = (

: 16, // unused

type : 16, // type code

{ : (MPLS : F_MPLS_header, // >=1 label case

{ IPv4next : F_IPv4_header | // 1 label subcase

MPLSnext : F_MPLS_header // >1 label subcase

}

) |

IPv4 : F_IPv4_header // no label case

},

: * // rest of packet

);

// IPv4 header format

format F_IPv4_header = (

IPv4_VERSION : 4,

IPv4_IHL : 4,

IPv4_COS : 8,

IPv4_TOT_LEN : 16,

IPv4_ID : 16,

IPv4_FLAGS : 3,

IPv4_FRAG_OFFSET : 13,

IPv4_TTL : 8,

IPv4_PROTOCOL : 8,

IPv4_HDR_CHKS : 16,

IPv4_SA : 32,

IPv4_DA : 32

);

// MPLS header format

format F_MPLS_header = (

MPLS_LABEL : 20,

MPLS_COS : 3,

MPLS_S : 1,

MPLS_TTL : 8

);

Examples of G format declarations

Variable

format

choices

© Copyright 2012 Xilinx14

} | [MPLS_result.type == C_PUSH_3_TYPE_CODE] {

set shim1.MPLS_LABEL = MPLS_result.label3;

set shim1.MPLS_COS = MPLS.MPLS_COS;

set shim1.MPLS_S = 0;

set shim1.MPLS_TTL = oTTL;

set shim2.MPLS_LABEL = MPLS_result.label2;

set shim2.MPLS_COS = MPLS.MPLS_COS;

set shim2.MPLS_S = 0;

set shim2.MPLS_TTL = 255;

set shim3.MPLS_LABEL = MPLS_result.label1;

set shim3.MPLS_COS = MPLS.MPLS_COS;

set shim3.MPLS_S = 0;

set shim3.MPLS_TTL = 255;

insert shim1, shim2, shim3 after type;

} | [MPLS_result.type == C_SWAP_PUSH_TYPE_CODE] {

set MPLS.MPLS_LABEL = MPLS_result.label2;

set MPLS.MPLS_TTL = oTTL;

set shim1.MPLS_LABEL = MPLS_result.label1;

set shim1.MPLS_COS = MPLS.MPLS_COS;

set shim1.MPLS_S = 0;

set shim1.MPLS_TTL = 255;

insert shim1 after type;

} | [MPLS_result.type == C_POP_TYPE_CODE] {

remove MPLS;

[MPLS.MPLS_S == 0]

// Still have one or more MPLS labels

set MPLSnext.MPLS_TTL = oTTL;

| {

// Packet will be forwarded as IPv4 instead of MPLS

set type = C_IPv4_TYPE_CODE;

set IPv4next.IPv4_TTL = oTTL;

}

}

[type == C_MPLS_TYPE_CODE] {

// MPLS packet

// Forward packet if still alive

set oTTL = MPLS.MPLS_TTL - 1;

[oTTL > 0] forward /*F_packet*/ on packetout;

// Obtain routing operation from lookup on MPLS label

read MPLS_result from MPLS_lookup [MPLS.MPLS_LABEL];

[MPLS_result.type == C_SWAP_TYPE_CODE] {

set MPLS.MPLS_LABEL = MPLS_result.label1;

set MPLS.MPLS_TTL = oTTL;

} | [MPLS_result.type == C_PUSH_1_TYPE_CODE] {

set shim1.MPLS_LABEL = MPLS_result.label1;

set shim1.MPLS_COS = MPLS.MPLS_COS;

set shim1.MPLS_S = 0;

set shim1.MPLS_TTL = oTTL;

insert shim1 after type;

} | [MPLS_result.type == C_PUSH_2_TYPE_CODE] {

set shim1.MPLS_LABEL = MPLS_result.label2;

set shim1.MPLS_COS = MPLS.MPLS_COS;

set shim1.MPLS_S = 0;

set shim1.MPLS_TTL = oTTL;

set shim2.MPLS_LABEL = MPLS_result.label1;

set shim2.MPLS_COS = MPLS.MPLS_COS;

set shim2.MPLS_S = 0;

set shim2.MPLS_TTL = 255;

insert shim1, shim2 after type;

Example G handling rules: for MPLS

© Copyright 2012 Xilinx15

<interfaces>

<Packet name="packetin" technology="LocalLink" direction="input">

<data width = "32" minimumLength = "512" maximumLength="1024"/>

<speed value = "6" units = "Gbps"></speed>

</Packet>

<Packet name="packetout" technology="LocalLink" direction="output">

<data width = "32" minimumLength = "512" maximumLength="1024"></data>

<speed value = "6" units = "Gbps"></speed>

</Packet>

<Access name="MPLS_lookup" technology="sram" direction="output“

readable="true" writable="false">

<data width = "64"></data>

<address width = "20"></address>

<speed value = "133" units = "MHz"></speed>

</Access>

<Access name="IPv4_lookup" technology="sram" direction="output“

readable="true" writable="false">

<data width = "20"></data>

<address width = "32"></address>

<speed value = "133" units = "MHz"></speed>

</Access>

</interfaces>

Implementation detail is separate

© Copyright 2012 Xilinx16

Soft architecture generation from G

� Standard G compiler

generates a ‘best

effort’ pipeline

architecture (described

in HDL) that fits the

specific G program

� Can do automated
architecture solution

space exploration for

throughput, latency,
resource trade-offs

Slices (resource unit) vs. latency

Elipses denote
solutions with
same throughput

• The two main clusters are the lower latency, and lower resource, solutions

• The ‘best’ solutions are those at the lower-left part of each ellipse

© Copyright 2012 Xilinx17

Hardware in
the loop

Click/G-level
Simulation

Packet
Generator

Input packet set description

Equivalent?

Packet
Translator

RTL level
Simulation

Packet
Translator

Equivalent?

“Golden” output packet set description

Packet
Translator

Packet
Translator

Equivalent?

Multi-level packet-centric testing/debugging

© Copyright 2012 Xilinx18

Example ‘out of the box’ results

Data width Max. throughput

(Gbit/sec)

Latency

(nsec)

Virtex-5

slices

32-bit 6.05 63 762

64-bit 11.90 54 993

128-bit 23.42 49 1379

256-bit 45.06 51 1969

MPLS label switching router:
G code written, simulated, and analysed within two days

Smallest Virtex-5 device (LX30) has 4800 slices

© Copyright 2012 Xilinx19

Provided as a ‘boutique’ tool set to selected top tier customers
– Used on real product design projects

– Did not become official software product – too domain-specific

– Also made available for NetFPGA platform

G defined in 2005, and extended in 2007
– Compiler versions in 2005, 2007, and 2009

Fast G compiler, but then slow back-end FPGA implementation flow

G somewhat sub-domain-specific: emphasis on packet editing
– Did not have enough generality in packet parsing

H – extended version of G – was defined in 2006
– Architecture developed in 2008, but compiler never implemented

– Ideas carried forward into next generation work

Status

© Copyright 2012 Xilinx20

Initial focus on Packet Parsing only

– Allow header-by-header analysis

– Extract header fields as keys for classification lookup

– Skip over outer headers to reach inner contents

Desire for soft programmability at run time

– Without resynthesising the hardware

Desire for unthreatening programming language

– Less declarative, more imperative

Third Generation
Programmable packet pipeline 100/200G Xilinx Virtex-6/7

© Copyright 2012 Xilinx21

PP (Packet Parsing) language overview

� Use one high-level program to
� Optimise hardware

implementation

� Enable run time modification
and on-the-fly updates

apply rules for header ;

header := next header ;

while true do {

input packet ;

header := first header ;

while not done do {

output packet and results ;

}

}

Parser directives
throughput, parse depth, initialisation

Type definitions
constants and common references

Header class definitions
header format,

header parsing rules,
key building rules

Five methods:
next_header
next_offset
key_builder

earliest, latest

PP description: PP execution model:

© Copyright 2012 Xilinx22

PP example class

class MPLS_TYPE {

struct{ label : 20,

cos : 3,

sBit : 1,

ttl : 8 }

method next_header =

if (sBit == 0){

MPLS_TYPE;

} else {

ETH_TYPE;

}

method next_offset = size();

method key_builder = {label}

method earliest = 1;

method latest = 3;

}

Structure indicates header format

Next header method indicates what

the next header to parse will be

Next offset method indicates where

the next header to parse will be found

Earliest and latest methods indicate

bounds on the header’s location in

the protocol stack

Key builder method constructs context

© Copyright 2012 Xilinx23

Header

Level

Parser

0

Header

Level

Parser

1

Header

Level

Parser

h

packet
data

next
header

next
offset

next
key

packet
data

packet
data

final
offset

final
header

final
key

Microarchitecture instance

PP compiled to programmable pipeline

© Copyright 2012 Xilinx24

Parsing requirements: multiple protocols possible per stage

– Operand setup

• Fields to extract: location and sizing

• Constants used: value and sizing

– Operations performed

• Operands used: selection between fields, constants, intermediate results

Tailored microcode stored locally in each stage

– One microcode entry per protocol that can be parsed in stage

– Microcode’s structure and size depend on parsing requirements

Micro-programmed features

Extract
Size

Extract
Offset

Compute
Operation

Compute
Input

Key Build
Operation

Key
Source

Source

Size

Constant

Fields to extract from data stream

Method operations to perform

Key building operations to perform

Constants to use

Protocol microcode entry

© Copyright 2012 Xilinx25

Trade-offs obtained by varying data path width

Throughput versus FPGA utilisation

0

100

200

300

400

500

600

700

0.00 5.00 10.00 15.00 20.00 25.00

T
h

ro
u

g
h

p
u

t
(G

b
/s

)

Device Utilisation (%)

ArpIcmp

JustEth

RtpIp4andIp6

TcpIp4andIp6

VlanAndMpls

© Copyright 2012 Xilinx26

PP work is basis for Xilinx 100G Packet Processing product

– First release in October 2012

Architecture being extended beyond parsing pipeline

– Incorporate lookup engines

– Incorporate custom engines (e.g. checksum) and user engines

PP language extension for second release

– Programmable packet editing – incorporate G and H material

– Integration of parsing, lookup, and editing

Status

© Copyright 2012 Xilinx27

Central challenge is very wide data paths

– 1K, 2K, 4K bits wide

– Multiple packets can reside in one word

Idealised world for multi-packet parallelism

– Fixed mapping of packets to data path words

• Just handle different segments of words in parallel

Real world issues:

– Packets have variable length

– Packets may have different stacks of headers

– Packet headers may have different formats

Fourth Generation
Parallel packet pipelines 400G/1T Xilinx “Virtex-8/9”

Packet 1

Packet 2

Packet 3

Packet 4

© Copyright 2012 Xilinx28

Invention of parallel packet extraction technology (2011)

Localise regions of highway to particular packet handlers

– Approximation to the idealised world of a segmented highway

– Scalable approach using fixed-width parallel pipelines

Bleeding-edge prototypes being used in “Virtex-8” planning

– Evaluate silicon architecture options

Target for PP without dramatic language changes

Status

© Copyright 2012 Xilinx29

Programmable logic has good impedance match with networking

– Delivers high flexibility and high performance packet processing

• Via soft parallel and pipelined architectures

High-level programming is promising for well-matched domains

– Four research generations show good results for packet processing

• Still converging on exact notion of what functions the domain requires

Hardware engineers have got the physical technology there over the
past 25+ years …

… and now is a good time for software engineers to take a serious
interest in harnessing the technology

Conclusion

© Copyright 2012 Xilinx30

