
R

INSIDE

FPGA-Based
MPEG-4 Codec

Implementing
Matrix Inversions in
Fixed-Point Hardware

Designing with the
Virtex-4 XtremeDSP Slice

The Design and
Implementation of
a GPS Receiver Channel

INSIDE

FPGA-Based
MPEG-4 Codec

Implementing
Matrix Inversions in
Fixed-Point Hardware

Designing with the
Virtex-4 XtremeDSP Slice

The Design and
Implementation of
a GPS Receiver Channel

Issue 1
October 2005

Simplifying DSP
System Designs
Simplifying DSP
System Designs

DSPmagazineDSPmagazine
S O L U T I O N S F O R H I G H - P E R F O R M A N C E S I G N A L P R O C E S S I N G D E S I G N S

Enabling success from the center of technology™

1 800 332 8638

www.em.avnet.com

© Avnet, Inc. 2005. All rights reserved. AVNET is a registered trademark of Avnet, Inc.

Avnet Electronics Marketing has collaborated with National

Semiconductor® and Xilinx® to create a design guide that

matches National Semiconductor’s broad portfolio of power

solutions to the latest releases of FPGAs from Xilinx.

Featuring parametric tables, sample designs and step-by-step

directions, this guide is your fast, accurate source for choosing the

best National Semiconductor Power Supply Solution for your design.

It also provides an overview of the available design tools, including

application notes, development software and evaluation kits.

Go to em.avnet.com/powermgtguide

to request your copy today.

Support Across The Board.
™

Power Management Solutions for FPGAs

National Devices supported:

• Voltage Regulators

• Voltage Supervisors

• Voltage References

Xilinx Devices supported:

• Virtex™

• Virtex-E

• Virtex-II

• Virtex-II Pro

• Virtex-4FX, 4LX, 4SX

• Spartan™-II

• Spartan™-IIE

• Spartan-3, 3E, 3L

Welcome ...4

VIEWPOINT

Setting Industry Direction for High-Performance DSP ...5

MULTIMEDIA, VIDEO, and IMAGING

FPGA-Based MPEG-4 Codec...8

Rapid Development of Video/Imaging Systems ...10

Encoding High-Resolution Ogg/Theora Video with Reconfigurable FPGAs13

Implementing DSP Algorithms Using Spartan-3 FPGAs ..16

Using FPGAs in Wireless Base Station Designs ...20

Accelerated System Performance with APU-Enhanced Processing24

Alpha Blending Two Data Streams Using a DSP48 DDR Technique.............................28

DEFENSE SYSTEMS

Implementing Matrix Inversions in Fixed-Point Hardware..32

Integrating MATLAB Algorithms into FPGA Designs...37

Software-Defined Radio: The New Architectural Paradigm...40

Virtex-4 FPGAs for Software Defined Radio...44

DIGITAL COMMUNICATION

Real-Time Analysis of DSP Designs ..46

The Design and Implementation of a GPS Receiver Channel......................................50

GENERAL PURPOSE AND IMPLEMENTATION

Designing Control Circuits for High-Performance DSP Systems55

Signal Processing Capability with the NuHorizons Spartan-3.....................................59

Designing with the Virtex-4 XtremeDSP Slice..62

Synthesis Tool Strategies..66

CUSTOMER SUCCESS

A Weapon Detection System Built with Xilinx FPGAs ..68

EDUCATION

DSP Design Flow – Intermediate Level..72

PRODUCT BRIEFS

Virtex-4 SX 35 XtremeDSP Development Kit for Digital Communication Applications74

Virtex-II Pro XtremeDSP Development Kit for Digital Communication Applications76

Virtex-4 DSP Brochure ...79

C O N T E N T S

D S P M A G A Z I N E I S S U E 1 , O C T O B E R 2 0 0 5

F

High-Performance DSP –
Vision, Leadership, Commitment
FPGAs are increasingly being used for signal processing applications. They provide the necessary
performance and flexibility to tackle many of today’s most challenging DSP applications, from
MIMO digital communication systems to H.264 encoding to a high-definition broadcast system.

Within such systems, FPGAs are ideally suited for high-performance signal-processing tasks
traditionally serviced by an ASIC or ASSP. But you can also use FPGAs to create high-performance
DSP engines that boost the performance of your programmable DSP system by performing
complementary co-processing functions.

This unique coupling of high performance and flexibility – through exploiting parallelism and
hardware reconfiguration – places Xilinx in an ideal position to set the industry direction in the
high-performance segment of the DSP market.

Our DSP vision is built on five key pillars:

• Customer and market focus – we will create products that meet the needs of our customers
and create products in those market segments that are the best fit for our FPGAs.

• Design methodology – as most DSP designers don’t speak VHDL or Verilog, we will
continue to evolve software technologies to support languages that they do speak –
like Simulink and MATLAB.

• Tailored system solutions – this includes algorithms, tools, services, and devices for
focus markets.

• Ecosystem – partnerships/alliances with industry leaders like Texas Instruments,
The MathWorks, and Xilinx Global Alliance members to deliver total DSP solutions.

• Awareness – educating you on how to quickly access FPGAs for signal processing
regardless of your background skill set.

This month we are also launching new DSP Roadmaps for the high-performance segment of the
DSP market. These roadmaps cover many areas, including digital communications, multimedia
video and imaging, defense systems, design tools and methodologies, development platforms, and
base IP solutions. The roadmaps demonstrate our continued investment and commitment in
solving your current and future signal-processing challenges.

Finally, we are proud to deliver to you the first edition of DSP Magazine. Packed with articles
demonstrating how you can create optimized DSP designs using FPGAs, this magazine is one of
many ways in which we will provide you the knowledge to finish your DSP designs faster. I would
like to dedicate this first Xilinx DSP Magazine to you, the customer.

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124-3400
Phone: 408-559-7778
FAX: 408-879-4780

© 2005 Xilinx, Inc. All rights reserved. XILINX,
the Xilinx Logo, and otherdesignated brands included here-
in are trademarks of Xilinx, Inc. PowerPC is a trademark of
IBM, Inc. All other trademarks are the property of their
respective owners.

The articles, information, and other materials included in
this issue are provided solely for the convenience of our
readers. Xilinx makes no warranties, express, implied,
statutory, or otherwise, and accepts no liability with respect
to any such articles, information, or other materials or their
use, and any use thereof is solely at the risk of the user.
Any person or entity using such information in any way
releases and waives any claim it might have against Xilinx
for any loss, damage, or expense caused thereby.

Omid Tahernia

Vice President
and General Manager
Xilinx DSP Division

EDITOR IN CHIEF Carlis Collins
carlis.collins@xilinx.com
408-879-4519

EXECUTIVE EDITOR Forrest Couch
forrest.couch@xilinx.com
408-879-5270

MANAGING EDITOR Charmaine Cooper Hussain

ONLINE EDITOR Tom Pyles
tom.pyles@xilinx.com
720-652-3883

ART DIRECTOR Scott Blair

ADVERTISING SALES Dan Teie
1-800-493-5551

DSPmagazineDSPmagazine

by Jack Elward
Senior Director, Program Management, DSP Division
Xilinx, Inc.
jack.elward@xilinx.com

Have you ever been on a long trip, in some-
what unfamiliar territory, and in search of
your next move? You would certainly wel-
come a map that shows what the road
holds in store ahead. Not only is it inform-
ative, it can also be reassuring. A good road
map will contain enough details about your
intended travel path so that you can confi-
dently charge forward or plan for back-ups
and alternatives. Of course, sometimes you
will want to contact your travel advisor for
more details.

Such is the intent of the DSP Roadmap
from Xilinx. In publishing the most com-
prehensive, detailed set of IP, product, and
tools plans ever attempted, we intend to
shine a floodlight on our next few years of
technical releases.

DSP Strategic Pillars
The Xilinx® DSP initiative is based on five
strategic pillars:

• Market focus

• Design methodology

• Tailored solutions

• Ecosystem

• Awareness

These pillars are manifested in the DSP
Roadmap in the following important ways:

For market focus, we listen to cus-
tomers and their needs and select high-
growth markets where we can add the
most value through our products and serv-
ices. Xilinx target segments include digital
communications (both wired and wire-
less), aeronautics and defense, and MVI
(multimedia, video, and imaging). Other
DSP markets (such as test and measure-

ment, industrial, and telemetrics) are well
served by our current products and their
future roadmaps.

Design methodology refers to a growing
awareness that traditional users of FPGAs
(using VHDL and Verilog) represent only
about 10% of the DSP design community.
The vast majority of these designers are:

• More familiar with software design
tools such as C, C++, and MATLAB,

Setting Industry Direction
for High-Performance DSP
Setting Industry Direction
for High-Performance DSP

October 2005 DSP magazine 5

Xilinx launches new market-focused DSP Roadmaps.Xilinx launches new market-focused DSP Roadmaps.

Applications Expertise

DSP Services

Design/Verification Tools

Hardware Platforms

DSP Algorithms (IP)

ICs

• New DSP Division, Partnerships, Specialists

• Design Services, Education and Support

• System Generator for DSP, Third-Party EDA

• Development Platforms, Starter Kits

• RACH Rx, Searcher, MPEG4

• Optimized Next Generation
 Co-Processing Interfaces

Complete DSP Design Solutions

Figure 1 – Solutions spectum

and a methodology that assumes a
robust library of function calls and
hardware layer abstraction

• Schooled or experienced in using DSP
products from TI, ADI, and Freescale

• In search of higher bandwidth and per-
formance, which can be best delivered
through the parallelism of FPGAs

• Concerned with system-level integra-
tion, software compatibility and reuse,
and rapid prototyping

The tailored solutions strategic pillar is a
natural evolution of our traditional build-
ing blocks (such as FFT, FIR filters, and
other “base blocks”) for general DSP appli-
cations. There are three clear tines in this
fork: IP, tools, and FPGA devices.

In addressing the ecosystem, Xilinx is
acknowledging a successful strategy already
employed throughout our history. We start-
ed off as one of the first fabless semiconduc-
tor companies and forged strategic alliances
with companies like IBM and TI. Now, with
a broad set of IP and tools developed by and
offered from third-party vendors, we
demonstrate how important it is to go
beyond our internal development resources
to provide increasingly complete solutions.

Finally, awareness is crucial in affecting
the sea change that we desire in positioning
Xilinx as a major supplier of DSP solutions.
We are clearly positioned and recognized as
the world leader in programmable logic,
but traditional customer surveys of “DSP
supplier awareness” show that we have an
uphill climb in the field of entrenched DSP
providers such as TI. The roadmaps are a
primary vehicle in communicating the
expansion of expertise and product offer-
ings, which the recently formed DSP divi-
sion is capable of delivering.

The DSP Roadmaps cover a broad
range of products and services. Figure 1
shows the solution spectrum, ranging from
DSP devices to design tools and design
services. Tools are inclusive of IP, libraries,
boards, and kits.

IP and Solutions
Traditional offerings for DSP designers
have been horizontal in nature and apply to

processor and DSP48 blocks. These cores
include a floating point co-processor con-
nected to the PowerPC through a dedicat-
ed hardware port, and several cores
embracing the versatility and inherent per-
formance of the DSP48 slices in their cas-
caded configuration.

The IP offerings are tailored to meet the
needs of specific vertical markets.
Therefore, we have created roadmaps to
address the following areas: Digital

market segments. Elements such as FFTs,
FIR filters/compilers, encryption, and lin-
ear algebra are good examples. The DSP
Roadmaps continue to offer enhancements
to the functionality and performance,
along with forward migration into new
generations of FPGA families.

We are also introducing new building
blocks to work in conjunction with com-
plex, hard IP embedded into Xilinx FPGA
families, such as the PowerPC™ 405

6 DSP magazine October 2005

Figure 2 – Digital Communications DSP Roadmap

Figure 3 – Multimedia, Video, and Imaging Systems DSP Roadmap

October 2005 DSP magazine 7

Communication Systems; Multimedia,
Video, and Imaging (MVI) Systems; and
Defense Systems (represented in Figures
2, 3, and 4, respectively). Each of these
roadmaps contains specialized compo-
nents or solution platforms. This repre-
sents the collective expertise of developers,
application engineers, and field technical
experts in conjunction with invaluable
input from customers.

In addition to developing building-
block IP, Xilinx is moving toward sets of
products intended to provide proof of con-
cept, and in some cases, reference quality
designs that can be adopted directly into
customer solutions. Examples in the digital
communications arena are in the 3GPP
and W-CDMA standards in radio-shelf
and base-band implementations. New areas
of rapidly growing interest are the WiMAX

standards and Picocell architectures.
Similar solutions are included in each of
the other market-focused roadmaps.

Tools
The Tools and Methodologies Roadmap
shown in Figure 5 illustrates our desire to
address the designer community in three
major tiers: traditional Xilinx hardware
(FPGA) designers, DSP development
engineers, and system designers. The
strategy is built on the Xilinx ISE™ soft-
ware tools suite, but incorporates System
Generator for DSP, our embedded devel-
opment tool suites, and other third-party
offerings. If you haven’t reviewed this area
recently, you will be quite surprised to see
the advances in capability and perform-
ance that have been introduced and are
coming over the next few releases.

Devices
The Spartan™ and Virtex™ FPGA fam-
ilies have continued to evolve and include
specific functions that optimize perform-
ance and power for specific application
areas. The multipliers, DSP48, and
embedded processors are examples of
content directly aimed at the DSP field.
The Virtex-4 generation identified sub-
families that allow focused concentrations
of features for cost-optimized delivery. In
the roadmap for future devices, you will
continue to see this focus played out with
additional specialized circuits and build-
ing blocks committed to silicon.

Conclusion
The DSP Roadmaps are not intended to
be a one-way communication. In pre-
senting our vision of the future, we
expect to initiate and share in a dialog
with others. We intend to engender dis-
cussion and commentary. This is a
healthy process of discovery that ulti-
mately leads to better products from
Xilinx that help you develop and deliver
better products to your customers. We
look forward to this dialog and learning
between Xilinx and the DSP world.

For more information about our new
products and DSP Roadmaps, visit DSP
Central at www.xilinx.com/dsp.

Figure 4 – Defense Systems DSP Roadmap

Figure 5 – DSP Tools and Methodolgies Roadmap

by Paul Schumacher
Senior Staff Research Engineer
Xilinx, Inc.
paul.schumacher@xilinx.com

Wilson Chung
Senior Staff Video and Imaging Engineer
Xilinx, Inc.
wilson.chung@xilinx.com

Have you ever wanted to include state-of-
the-art video compression in your FPGA
design but found it too complex an under-
taking? You no longer need to be a video
expert to include video compression in your
system. Newly released MPEG-4
encoder/decoder cores from Xilinx can help
solve your video compression needs.

Video and multimedia systems are
becoming increasingly complex, and the
availability of low-cost, reliable IP cores for
your system is crucial to getting your product
to market. In particular, video compression
algorithms and standards have become
extremely complicated circuits that can take
a long time to design and are quite often bot-
tlenecks in getting a system tested and
shipped. These MPEG-4 simple profile
encoder/decoder cores may just do the trick
for your next multimedia system.

Applications
MPEG-4 Part 2 is a recent international
video coding standard in a series of such
standards: H.261, MPEG-1, MPEG-2,
and H.263. It was approved by ISO/IEC as
International Standard 14 496-2 (MPEG-4
Part 2) in December 1999. The MPEG-4
Part 2 video codec provides an excellent
basis for a number of multimedia applica-
tions. The standard provides a set of pro-
files and levels to allow for a plethora of
different application requirements, such as
frame size and use of error-resilience tools.
Examples of these applications include

broadcasting, video editing, teleconferenc-
ing, security/surveillance, and consumer
electronics applications.

The video coding algorithm used in
MPEG-4 Part 2 is an evolution from previous
coding standards. The frame data is divided
into 16 x 16 macroblocks containing six 8 x 8
blocks for YCbCr 4:2:0 formatted data.
Motion estimation with half-pixel resolution
is used to efficiently code predicted blocks
from the previous frame, while the discrete
cosine transform (DCT) provides the residual
processing to create a more detailed view of
the current frame. Simple profile provides 12
bits of resolution for DCT coefficients with 8
bits per sample for the sampled and recon-
structed frame data. Coding efficiency of the
MPEG-4 simple profile is better than the pre-
vious generation in MPEG-2 across a range
of coding bit rates.

A typical multimedia system can use
MPEG-4 as the video compression compo-
nent within a larger system. An example of
this is an end-to-end video conferencing sys-

tem delivering compressed bitstreams between
two or more participants. Designations for
these sources can modify system requirements,
where a key speaker or presenter for a confer-
ence may require higher resolution video as
well as audio. This type of system can be
expanded to video surveillance and security
applications, where a display station user may
decide to keep a mosaic of all video cameras or
focus in on a single camera view for detailed
real-time analysis. These applications require
that the stream selection is performed at the
receiver and is capable of handling real-time
viewing specifications.

An FPGA provides an excellent program-
mable concurrent processing platform that
allows for support of varying system require-
ments while meeting the needs of system
throughput. The Xilinx® MPEG-4 decoder
core can be built with a scalable, multi-stream
interface customized for your application and
system requirements, while both the MPEG-4
encoder and decoder are also capable of servic-
ing a user-specified maximum frame size.

FPGA-Based MPEG-4 Codec

8 DSP magazine October 2005

Using FPGAs to implement complex video codecs goes beyond ASIC prototyping.

block
FIFO (2)

block
FIFO (2)bl

oc
k

F
IF

O
 (

2)

scalar
FIFObl

oc
k

F
IF

O
 (

3)

bl
oc

k
F

IF
O

 (
3)

bl
oc

k
F

IF
O

 (
2)

Texture
Update

Texture
Coding

Variable
Length
Coding

Bitstream
Packetization

Motion
Compensation

Shared Mem

Shared Mem

Memory
Controller

Copy
Controller

External
SRAM

Burst 64
Register File

Software
Orchestrator
(Rate Control

and Parameters)

Motion
Estimation

Input
Controller

MPEG-4 SP Encoder Core

Burst 64

Figure 1 – Block diagram of MPEG-4 Part 2 simple profile encoder core

Architecture
Figures 1 and 2 illustrate the block diagrams
for the MPEG-4 simple profile encoder and
decoder cores, respectively. Hardware-based,
pipelined architectures were used for these
implementations, with a host interface pro-
vided on the encoder for software-controlled
rate control. With an included memory con-
troller, the raw, captured sequence for the
encoder and the reconstructed frames for the
decoder are stored in an off-chip memory for
fast, low-latency access to the pixel data. A
simple FIFO interface is provided for com-
municating the compressed bitstreams, with
the decoder custom-built for a user-specified
number of bitstreams. A system interface is
also included to allow for maximum control-
lability and observability.

To create scalable multi-stream designs that
can meet the needs of different applications,
the package provided with the core contains a
number of user-specified, compile-time
parameters that allow you to customize the
encoder and decoder. To create a resource-effi-
cient design, you can also set the maximum
supported frame width and height. The com-
piled design would then include enough mem-
ory and registers to support any frame
dimensions less than or equal to these two
parameters. Other parameters give you com-
plete control over the scalability of the final
design and craft a system built exclusively for
your application.

Tables 1 and 2 list the FPGA resources for
the encoder and decoder cores based on differ-
ent parameter settings for maximum support-
ed frame size, as well as the number of input

enough horsepower to exceed the through-
put specifications of simple profile at level 5.
Meanwhile, the MPEG-4 decoder design
can sustain a throughput of approximately
168,000 macroblocks per second, provid-
ing adequate throughput to decode two
streams of progressive SDTV (720 x 480 at
60 fps) or 14 streams of CIF resolution.
This decoder throughput is more than four
times the required throughput for simple
profile at level 5.

Conclusion
MPEG-4 simple profile encoder and
decoder cores have been designed with
unique, scalable, multi-stream capabilities
to suit your specific system needs. A num-
ber of different applications can take
advantage of these cores in a multimedia
system, including video conferencing, secu-
rity, and surveillance, as well as any exciting
new consumer application that you have
yet to show the world.

High-throughput, pipelined architectures
were used for these video designs with
enough customizable parameters to create a
resource-efficient design exclusive to your
application. For more information, visit
www.xilinx.com/dsp.

The authors would like to acknowledge contribu-
tions from Robert Turney, Nick Fedele, Adrian
Chirila-Rus, Mark Paluszkiewicz, and Kees
Vissers at Xilinx, as well as members at IMEC.

bitstreams for the decoder. All of the encoder
designs in Table 1 utilize 16 embedded
XtremeDSP™ slices, while the decoders in
Table 2 utilize 32 embedded XtremeDSP
slices. These designs target Virtex™-4 parts,
which contain a number of 18 Kb block
SelectRAM™ memories as well as embed-
ded XtremeDSP slices. Other compatible
FPGA families include Virtex-II, Virtex-II
Pro, and Spartan™-3 devices.

Note that the decoder design can auto-
matically instantiate the number of input
FIFOs and supporting multiplexing/demul-
tiplexing circuitry based on the number of
bitstreams to support. The MPEG-4 encoder
is capable of a throughput of approximately
48,000 macroblocks per second, providing

October 2005 DSP magazine 9

System
Interface

FIFO

FIFO

FIFO

Parser/VLD

Parser
FSM

Pre-
Processor

Object
FIFO

IDCT

Motion
Comp.

FIFO

Buffer YUV

Object
FIFO

Object
FIFO

Object
FIFO

Texture
Update

Display
Controller

Memory
Controller

Memory
Controller

Texture/IDCT

Copy
Controller

External
SRAM

Reconstructed
Frame

External
SRAM
Display
Frame

MPEG-4 SP Decoder

Xilinx FPGA

Frame Size
Block RAMs FPGA Slices Minimum Clock Rate (MHz)

QCIF @ 15 fps 16 8,051 3.2
CIF @ 30 fps 21 8,309 25.6
4CIF @ 30 fps 30 9,000 100.7

Parameters
Resources

Frame Size Streams
Block RAMs FPGA Slices Minimum Clock Rate (MHz)

QCIF @ 15 fps
1 10 4,332 0.8
8 17 5,014 6.6

CIF @ 30 fps
1 16 4,558 6.6
8 23 5,305 52.8

4CIF @ 30 fps
1 26 5,004 26.4
8 33 5,764 211.2 *

Parameters Resources

Figure 2 – Block diagram of MPEG-4 Part 2 simple profile decoder core

Table 1 – Scalable MPEG-4 Part 2 simple profile encoder core resources

Table 2 – Scalable, multi-stream MPEG-4 Part 2 simple profile decoder core resources

* Note: Eight streams of 4CIF resolution currently require two instantiations of the decoders.

by Hong-Swee Lim
Senior Manager, DSP Product and Solutions Marketing
Xilinx, Inc.
hong-swee.lim@xilinx.com

Advances in media encoding schemes are
enabling a broad array of applications,
including digital video recorders
(DVRs), network surveillance cameras,
medical imaging, digital broadcasting,
and streaming set-top boxes. The prom-
ise of streaming media presents a series
of implementation challenges, especially
when processing complex compression
algorithms such as MPEG-4 and
MPEG-compressed video transcoding.
Given the high computational horse-
power required for encoding or decoding
such complex algorithms, achieving
optimal balance of power, performance,
and cost is a significant challenge for
streaming media devices.

By using FPGAs, you can differentiate
your standard-compliant systems from
your competitor’s products and achieve
the optimal balance for your application.
With the MPEG-4 compression scheme,
for example, it is possible to offload the
IDCT (inverse discrete cosine transform)

portion of the algorithm from an MPEG
processor to an FPGA to increase the pro-
cessing bandwidth. IDCT (and DCT at
the encoder) can be implemented
extremely efficiently using FPGAs, and
optimized IP cores are readily available to
include in MPEG-based designs.

By integrating various IP cores together
with the IDCT core, you can develop a
low-cost, single-chip solution that increas-
es processing bandwidth and gives higher
quality images than your competitor’s
ASSP-based solution.

To help you accelerate your system
design, Xilinx offers the Video Starter Kit
(VSK) 4VSX35. The VSK is an all-digital
platform for real-time video/image acqui-
sition, processing, and display. It integrates
the power of hardware-accelerated process-
ing as well as an embedded PowerPC™
core for the transmission of high-resolu-
tion digital video over lower bandwidths,
or for processing network protocol stack
and control functions.

Xilinx Video Starter Kit 4VSX35
The Xilinx® VSK 4VSX35 allows you to
jump-start your high-performance audio,
video, and imaging processing designs. At

the heart of the VSK are two highly pro-
grammable Xilinx FPGAs (XC2VP4 and
XC4VSX35), video encoder, video
decoder, AC97 CODEC, and a wide range
of video interfaces.

Figure 1 illustrates the VSK’s primary
components, peripherals, and available I/O.

The VSK comprises three major hard-
ware components: a Xilinx ML402-SX35
board; 752 x 480-pixel RGB progressive
scan CMOS image-sensor camera with a
frame rate as high as 60 frames per second
(fps); and video I/O daughtercard
(VIODC). The VIODC is connected to
the ML402-SX35 board through the Xilinx
Generic Interface (XGI), while the CMOS
camera is connected to the VIODC
through the serial LVDS interface.

The video encoder is a high-speed,
video digital-to-analog converter. It has
three separate 10-bit-wide input ports
that accept data in high- or standard-defi-
nition video formats. It also controls the
insertion of appropriate synchronization
signals; external horizontal, vertical, and
blanking signals; or EAV/SAV timing
codes for all standards.

The video decoder is a high-quality, sin-
gle-chip, multi-format video decoder that

Rapid Development of
Video/Imaging Systems
Rapid Development of
Video/Imaging Systems

10 DSP magazine October 2005

Build real-time video and imaging applications quickly and easily with the Xilinx Video Starter Kit.Build real-time video and imaging applications quickly and easily with the Xilinx Video Starter Kit.

automatically detects and converts PAL,
NTSC, and SECAM standards in the form
of composite, S-Video, and component
video into a digital ITU-R BT.656 format.
The advanced and highly flexible digital
output interface enables performance video
decoding and conversion in line-locked
clock-based systems. This makes the VSK
ideally suited for a broad range of applica-
tions with diverse video characteristics,
including broadcast sources, security and
surveillance cameras, and professional
video systems. Figure 2 shows a block dia-
gram of the Video Starter Kit.

With the video encoder, video decoder,
DVI receiver, DVI transmitter, and camera
supporting a two-wire serial I2C-compati-
ble interface, all of these devices can be
controlled through an I2C master core
located either in the XC4VSX35 or
XC2VP4 device.

The flexibility of the VSK architecture
makes it suitable as a development plat-
form for a variety of multimedia, video,
and imaging applications, which include:

• Medical imaging

• Home media gateways

• Multi-channel digital video recorders

• IP TV set-top boxes

• Video-on-demand servers

• Digital TV

• Digital camera and camcorders

• A/V broadcasts

• Network surveillance cameras

System Generator for DSP v8.1
Converting image processing algorithms to
FPGA implementations can be challeng-
ing, as the algorithms may be proven in
software but not directly linked to the actu-
al implementation. Additionally, it can be
difficult to subjectively verify the imple-
mentation.

Xilinx System Generator for DSP allows
for high-level mathematical verification
and converts the heart of the algorithm
into ready-to-use HDL, which bridges the
gap from the algorithm developer to the
FPGA engineer.

boundaries when determining implemen-
tation trade-offs.

To accelerate video/imaging system
development, Xilinx has developed new
System Generator blocks specifically for
the VSK, including:

• VIODC interface block

• Multi-port DDR memory
controller block

• System-level blocks

With these pre-tested
blocks, you can easily build
your video/imaging system
by just dragging and drop-
ping the blocks within
System Generator to con-
struct your system, saving
precious time from coding
these essential interfacing
blocks in HDL.

To be able to handle the
enormous video data stream

Using System Generator and the VSK
to develop and implement image-process-
ing algorithms allows for a thoroughly ver-
ified and easily executed design. The
high-level block diagram allows for easy
communication between team members,
resulting in less time spent crossing skill

October 2005 DSP magazine 11

Component
Video

Composite
Video

S-Video

HD-SDI

S-Video
Input

Component
Video

Composite
Video

S-Video

HD-SDI

S-Video
Output

Line Out/
Headphone

Mic In/
Line In

Serial

Camera

USB
Peripherals

USB Host

RJ45

Video I/O Daughtercard

ML402

Video
Decoder

Cable
Equalization

DVI
Receiver

Camera
Interface

Video
Encoder

Cable
Driver

DVI
Transmitter

AC97 Audio
CODEC

RS232

16x32
Character

LCD

FLASH DDR
SDRAM

USB
Controller

Ethernet
Interface

JTAG
Header

Xilinx FPGA
XC2VP4

Xilinx FPGA
XC4VSX35

Figure 1 - Video Starter Kit 4VSX35

Figure 2 - Block diagram of Video Starter Kit 4VSX35

12 DSP magazine October 2005

from the VSK to the PC, another innova-
tive high-speed hardware co-simulation
through an Ethernet interface was intro-
duced in System Generator for DSP 8.1.
This interface allows high throughput
with low latency, which proved to be
extremely useful when building
video/imaging systems in the System
Generator environment.

Network Surveillance Camera Application
FPGAs have historically been found in
high-end professional broadcast systems
and medical imaging equipment. Today
FPGAs are also finding their way into
high-volume products such as digital
video recorders and network surveillance
cameras because of their flexibility in han-
dling a broad range of media formats such
as MPEG-2, MPEG-4, H.264, and
Windows Media. Their extremely high-
performance DSP horsepower also makes
FPGAs suitable for other challenging
video and audio tasks.

Typically, a network surveillance cam-
era product comprises three parts: a cam-
era to convert the real-world image into a
video stream; a video decoder for streams
compressed into H.264, MPEG-2, or
another format; and a video/image proces-

sor for de-interlacing, scaling, and noise
reduction before packeting the digitized
video for transmission over the Internet.

FPGAs can have many areas of respon-
sibility within surveillance cameras, as
shown in Figure 3. Bridging between
standard chipsets as “glue logic” has
always been a strong application of
FPGAs, but many more image-processing
tasks (such as color-space conversion),
IDE (Integrated Drive Electronics) inter-
face, and support for network interfaces
(such as IEEE 1394) are now also com-
monly implemented in low-cost pro-
grammable devices.

With high-performance DSP capabili-
ty inside a network surveillance camera,
you can digitize and encode the video
stream to be sent over any computer net-
work. You can use a standard Web brows-
er to view live, full-motion video from
anywhere on a computer network, includ-
ing over the Internet. Installation is sim-
plified by using existing LAN wiring or
wireless LAN. Features such as intelligent
video, e-mail notification, FTP uploads,
and local hard-disk storage provide
enhanced differentiation and superior
capability over analog systems.

The hard-processor core is an IBM

PowerPC 405 immersed in a Xilinx
Virtex™-II Pro™ FPGA, delivering 600
DMIPS at 400 MHz running
MontaVista Linux or Wind River
Systems’s VxWorks real-time operating
system (RTOS), as well as a network pro-
tocol stack to implement these features.

Xilinx also offers the MicroBlaze™
32-bit RISC processor core, delivering up
to 138 DMIPS at 150 MHz and 166
DMIPS at 180 MHz when used in the
Virtex-II Pro and Virtex-4 devices,
respectively.

Conclusion
Bandwidth is precious; to make the most
of it, compression schemes have steadily
improved – and new algorithms push the
envelope even further. As such, system-
processing rates have increased over time,
and real-time image processing is an ideal
way to meet these requirements while
removing memory overhead.

At the same time, Moore’s Law has
resulted in low-cost programmable logic
devices, such as the new FPGAs, that pro-
vide the same functionality and perform-
ance previously found only in expensive
professional broadcast products.

FPGAs provide both professional and
consumer digital broadcast OEMs with
real-time image processing capabilities
that address the system requirements of
new and emerging video applications.
Compared to other technologies, FPGAs
offer an unrivalled flexibility that enables
you to get your products to market
quickly. Remote field upgradeability
means that systems can be shipped now
and features, upgrades, or design fixes
added later.

The VSK has been architected to
reduce implementation risks, time to
market, and development costs. By pro-
viding hardware and MPEG-4 IP in a
pre-tested and integrated platform, you
can concentrate on implementing the
application-specific video and imaging
functionality that is most relevant to your
particular product.

For more information, visit www.
xilinx.com/products/design_resources/dsp_
central/grouping/index.htm.

CMOS
Camera

MIC

NTSC/PAL
Decoder

Audio
Processing IP

AC97
CODEC

Flash SDRAM

Custom IP

Ethernet
PHY

Video
Encoder

Application

TCP/IP Stack

RTOS

Processor Core

MPEG-4
CODEC IP Monitor

RJ45

Hard Disk

Video Starter Kit 4VSX35

Figure 3 - Network surveillance camera

by Andrey Filippov
President
Elphel, Inc.
andrey@elphel.com

Much of the Spring 2003 issue of the Xcell
Journal in which my article about
Spartan™-IIE-based Elphel Model 313
cameras appeared (“How to Use Free
Software in FPGA Embedded Designs”)
was dedicated to the Xilinx® Spartan-3
FPGA. I immediately started to think
about using these devices in our new gen-
eration of Elphel network cameras, but it
wasn’t until last year that I was finally able
to start working with them.

One of the factors that slowed my com-
pany’s adoption of this new technology was
the fact that at first I could not find appro-
priate software that could handle the
devices selected, as it is essential that our
end users can modify our products without
expensive software development tools.
When I visited the Xilinx website in
Summer 2004 and found that the current
version of the free downloadable
WebPACK™ software could handle the
XC3S1000 – the largest device available in
a small FT256 package – I knew it was the
right time to switch to the Spartan-3 device.

Encoding High-Resolution
Ogg/Theora Video with
Reconfigurable FPGAs

Encoding High-Resolution
Ogg/Theora Video with
Reconfigurable FPGAs

October 2005 DSP magazine 13

Once the traditional application area of custom ASICs, modern
FPGAs can now handle high-performance video encoding.
Once the traditional application area of custom ASICs, modern
FPGAs can now handle high-performance video encoding.

The Camera Hardware
The new Model 333 camera (Figure 1)
uses the same Linux-optimized CPU
(ETRAX100LX by Axis Communications)
as the earlier Model 313, but with
increased system memory – 32 MB of
SDRAM and 16 MB of Flash. The second
major upgrade is the use of 32 MB of DDR
SDRAM as a dedicated frame buffer that
works in tandem with the FPGA, supple-
menting its processing power with high
capacity and I/O bandwidth.

The Spartan-3 DDR I/O functionality
made it possible to increase the memory
bandwidth without increasing board size –
the complete system still fits on a 1.5 x 3.5-
inch four-layer board (see Figure 2). The
actual board area is even smaller, as the new
one is designed to fit the sealed RJ45 con-
nectors for outdoor applications.

For the camera circuit design, the goals
include combining high computational per-
formance with small size (that also simpli-
fies preserving high-speed signal integrity
on the PCB) and providing the flexibility
for the reconfigurable FPGA on the system
level. For the latter, I decided to split the
camera circuitry into two boards: one main
board and a second containing just a sensor
with minimal related components. On the
main board the FPGA I/O pins go directly
to the inter-board connector, so it is possi-

connected directly to the processor I/O
pins, so I could not use the software that
comes with Xilinx configuration hardware.
The JTAG instruction register is six bits
wide, not five as it was in the Spartan-IIE
devices with which I was familiar. After
some trial and error, I figured that out and
found that the same code could run at 125
MHz (instead of 90 MHz in the previous
model) and used just 36% (not 98% as
before) of available slices – plenty of room
for more challenging tasks.

Of course, I had some challenging tasks
in mind, as motion JPEG is not a really
good option for high-resolution/high-
frame-rate cameras because the amount of
data to be transferred or stored is quite
huge. It is a waste of network bandwidth or
hard disk space when recording such video
streams, as fixed-view cameras in most
cases have very little difference between
consecutive frames. Something like
MPEG-2 could make a difference; that was
the standard I was planning to implement
in the camera.

But as soon as I got some books on
MPEG-2 and started combing through
online resources, I found another funda-
mental difference between MPEG and
JPEG – not just that it can use the similar-
ity between consecutive frames. Contrary
to JPEG, MPEG-2 requires you to pay
licensing fees for using the encoders based
on this standard. The fee is small compared

to the cost of the hardware, but it still
could be a hassle and does not provide free-
dom for implementation.

It did not take long to find a perfect
alternative – Theora, based on the VP3

ble to change the pin functions (including
polarity) to match the particular sensor
boards. A similar solution allowed the earli-
er Model 313 camera to support different
types of sensors (most became available
after the board design). It even works in our
11-megapixel Model 323 cameras without
any PCB modifications.

Selecting the Video Encoding Technique
After the prototype camera was ready, it
took just a couple of weeks to modify the
code developed for the Spartan-IIE-based

camera and to implement motion JPEG
compression. Half of that time was spent
trying to figure out how to configure the
new FPGA with the generated bitstream.
In the camera, JTAG pins of the device are

14 DSP magazine October 2005

CMOS Image
Sensor

CPU/Compressor
Board (333)DDR SDRAM

16M x 16

Programmable
Clock Generator

(3 PLLs)

IEEE802.3af
Compliant

Power
Supply

10/100 BaseT
Transceiver LAN

Axis ETRAX100LX
32-bit 100 MHz

GNU/Linus Processor

SDRAM
8M x 32

JTAG Port

Xilinx
Spartan-3

1000K Gates
FPGA

FLASH
8M x 16

Sensor Board
(304/314/317/318)

Figure 1 – Camera system block diagram

Figure 2 – Camera system board

codec developed by On2 Technologies
(www.on2.com) and released as open-source
software for royalty-free use and modifica-
tions (see www.theora.org/svn.html).

Theora is an advanced video codec that
competes with MPEG-4 and other similar
low-bit-rate video compression schemes. It
is now supported by the Xiph.org
Foundation along with Ogg, the transport
layer used with Theora to deliver the video
content. The bitstream format is stable
enough and supported by multiple players
running on different operating systems.
Like JPEG and MPEG, it uses a two-
dimensional 8 x 8 DCT.

FPGA Implementation
The code for the Elphel Model 333 camera
FPGA is written in Verilog HDL (Figure
3). It is designed around the 8-channel
SDRAM controller that uses the Spartan-3
DDR capabilities. The structure of the
memory accesses and specially organized

data mapping both serve the same goal:
optimizing memory bandwidth that other-
wise would be a system bottleneck.

The rest of the code that currently uses
two-thirds of the general FPGA resources
(slices) and 20 of 24 block RAM modules
includes video compression modules, a
sensor, and system interfaces.

A detailed description of the camera
code is available, together with the source
code, at Sourceforge (https://sourceforge.net/
projects/elphel).

Conclusion
High-performance reconfigurable FPGAs
made it possible to build a fast high-resolu-
tion low-bit-rate network camera capable
of running 30 fps at a resolution of 1280 x
1024 pixels (12 fps at a resolution of 2048
x 1536). Many of the new features of the
Spartan-3 devices proved to be very useful
in this design: embedded multipliers for
DSP functions, advanced digital clock

management, DDR I/O functions, an
increased number of global clock networks
for the DDR SDRAM controller, and
large block RAM modules for the various
tables and buffers in the camera.

The free video encoder (Theora) and
completely open implementation of the
camera (all software and Verilog code is
provided under the GNU General Public
License) makes the second most important
function of Elphel products possible. You
can use these cameras not only as finished
products but also as universal development
platforms – demonstrating the power and
flexibility of the Spartan-3 family. It is pos-
sible to add your own code, rerun the tools
(both for the FPGA code and the C-lan-
guage camera software), and immediately
try the new camera with advanced image
processing implemented.

For more information, visit
www.elphel.com, https://sourceforge.net/
projects/elphel/, and www.theora.org.

October 2005 DSP magazine 15

CMOS
Image
Sensor

DDR
SRAM

CPU

Oscil-
lators

Sensor I/O
Synchronization

Sensor Interface

SDRAM Controller

Compressor Stage 2

System Interface

Compressor Stage 1

Xilinx Spartan-3 1000K Gates FPGA
Gamma Correction

FPN Correction
Overlay Application

Bypass Buffer

Bayer to
YCbCr 4:2:0

Converter

8 x 8
Forward

DCT

Quan-
tizer

8 x 8
Inverse

DCT
EOB Runs
Extractor

Coefficient
Encoder

(pretokens)

++
-

DC
Predictor

Dequan-
tizer

DMA
Buffer/

Controller

Status Data

Command Decode
Tables Write

Clock
Management

JTAG
Programming

Interface

Bus
Interface

Huffman
Encoder

Bitstream
Packager

0 - Data from Sensor

1 - FPN Correction/Overlay

2.- 20 x 20 Pixel Tiles to Compressor

3 - PIO SDRAM Access

4 - Reference Frame Write

5 - Reference Frame Read

6 - Compressed Tokens Write

7 - Compressed Tokens Read

Figure 3 – Block diagram of the FPGA code

by Paolo Giacon
Graduate Student
Università di Verona, Italy
paolo.giacon@students.univr.it

Saul Saggin
Undergraduate Student
Università di Verona, Italy
saul.saggin@students.univr.it

Giovanni Tommasi
Undergraduate Student
Università di Verona, Italy
giovanni.tommasi@students.univr.it

Matteo Busti
Graduate Student
Università di Verona, Italy
matteo.busti@students.univr.it

Computer vision is a branch of artificial
intelligence that focuses on equipping com-
puters with the functions typical of human
vision. In this discipline, feature tracking is
one of the most important pre-processing
tasks for several applications, including
structure from motion, image registration,
and camera motion retrieval. The feature
extraction phase is critical because of its
computationally intensive nature.

Digital image warping is a branch of
image processing that deals with tech-
niques of geometric spatial transforma-
tions. Warping images is an important
stage in many applications of image analy-
sis, as well as some common applications
of computer vision, such as view synthesis,
image mosaicing, and video stabilization
in a real-time system.

In this article, we’ll present an FPGA
implementation of these algorithms.

Feature Extraction Theory
In many computer vision tasks we are
interested in finding significant feature
points – or more exactly, the corners.
These points are important because if we
measure the displacement between fea-
tures in a sequence of images seen by the
camera, we can recover information both
on the structure of the environment and
on the motion of the viewer.

Figure 1 shows a set of feature points
extracted from an image captured by a
camera. Corner points usually show a
significant change of the gradient values
along the two directions (x and y). These
points are of interest because they can be

uniquely matched and tracked over a
sequence of images, whereas a point
along an edge can be matched with any
number of other points on the edge in a
second image.

The Feature Extraction Algorithm
The algorithm employed to select good
features is inspired by Tomasi and
Kanade’s method, with the Benedetti and
Perona approximation, considering the
eigenvalues α and β of the image gradient
covariance matrix. The gradient covari-
ance matrix is given by:

where Ix and Iy denote the image gradi-
ents in the x and y directions.

Hence we can classify the structure
around each pixel observing the eigenval-
ues of H:

No structure : α ≈ β ≈ 0
Edge : α ≈ 0, β >> 0
Corner : α >> 0, β >> 0

H =
Ix

Ix Iy

Ix Iy
2

Ix
2

Implementing DSP Algorithms
Using Spartan-3 FPGAs
Implementing DSP Algorithms
Using Spartan-3 FPGAs

16 DSP magazine October 2005

This article presents two case studies of FPGA implementations for commonly used
image processing algorithms – feature extraction and digital image warping.
This article presents two case studies of FPGA implementations for commonly used
image processing algorithms – feature extraction and digital image warping.

Using the Benedetti and Perona approx-
imation, we can choose the corners without
computing the eigenvalues.

We have realized an algorithm that,
compared to the original method, doesn’t
require any floating-point operations.
Although this algorithm can be imple-
mented either in hardware or software, by
implementing it in FPGA technology we
can achieve real-time performance.

Input:

• 8-bit gray-level image of known size
(up to 512 x 512 pixels)

• The expected number of feature
points (wf)

Output:

• List of selected features (FL). The type
of the output is a 3 x N matrix whose:

– First row contains the degrees of con-
fidence for each feature in the list

– Second row contains the x-coordinates
of the feature points

– Third row contains the y-coordinates
of the feature points

Semantic of the Algorithm
In order to determine if a pixel (i, j) is a fea-
ture point (corner), we followed Tomasi
and Kanade’s method.

First, we calculate the gradient of the
image. Hence the 2 x 2 symmetric matrix
G = [a b; b c] is computed, whose entries
derive from the gradient values in a patch
around the pixel (i, j).

If the minimum eigenvalue of G is
greater than a threshold, then the pixel (i, j)

compute for each pixel three coeffi-
cients used by the characteristic poly-
nomial. To store and read the gradient
values, we use a buffer (implemented
using a Spartan-3 block RAM).

2. Calculation of the characteristic poly-
nomial value. This value is important
to sort the features related to the spe-
cific pixel. We implemented the mul-
tiplications used for the characteristic
polynomial calculus employing the
embedded multipliers on Spartan-3
devices.

3. Feature sorting. We store computed
feature values in block RAM and sort
them step by step by using successive
comparisons.

4. Enforce minimum distance. This is
done to keep a minimum distance
between features; otherwise we get
clusters of features heaped around the
most important ones. This is imple-
mented using block RAMs, building a
non-detect area around each most
important feature where other features
will not be selected.

Spartan-3 Theoretical Performance
The algorithm is developed for gray-level
images at different resolutions, up to 512 x
512 at 100 frames per second.

The resources estimated by Xilinx
System Generator are:

• 1,576 slices

• 15 block RAMs

• 224 LUTs

• 11 embedded multipliers

The embedded multipliers and extensive
memory resources of the Spartan-3 fabric
allow for an efficient logic implementation.

Applications of Feature Extraction
Feature extraction is used in the front end
for any system employed to solve practical
control problems, such as autonomous
navigation and systems that could rely on
vision to make decisions and provide con-
trol. Typical applications include active
video surveillance, robotic arms motion,

is a corner point. The minimum eigenvalue
is computed using an approximation to
avoid the square root operation that is
expensive for hardware implementations.

The corner detection algorithm could
be summarized as follows:

The image gradient is computed by
mean of convolution of the input image
with a predefined mask. The size and the
values of this mask depend on the image res-
olution. A typical size of the mask is 7 x 7.

• For each pixel (i, j) loop:

where N is the number of pixels in the
patch and Ix

k and Iy
k are the components of

the gradient at pixel k inside the patch.

• Pi,j = (a – t)(c – t) – b2

where t is a fixed integer parameter.

• If (Pi,j > 0) and (ai,j > t), then we retain
pixels (i,j)

• Discard any pixel that is not a local
maximum of Pi,j

• End loop

• Sort, in decreasing order, the feature list
FL based on the degree of confidence
values and take only the first wf items.

Implementation
With its high-speed embedded multipliers,
the Xilinx® Spartan™-3 architecture
meets the cost/performance characteristics
required by many computer vision systems
that could take advantage of this algorithm.

The implementation is divided into
four fundamental tasks:

1. Data acquisition. Take in two gradient
values along the x and y axis and

2
, ()

N
k

i j x
k

a I=

,

N
k k

i j x y
k

b I= I

2
, ()

N
k

i j y
k

c I=

∑

∑

∑

October 2005 DSP magazine 17

Figure 1 – Feature points extracted
from an image captured by a camera

measurement of points and distances, and
autonomous guided vehicles.

Image Warping Theory
Digital image warping deals with tech-
niques of geometric spatial transformations.

The pixels in an image are spatially rep-
resented by a couple of Cartesian coordi-
nates (x, y). To apply a geometric spatial
transformation to the image, it is conven-
ient to switch to homogeneous coordi-
nates, which allow us to express the
transformation by a single matrix opera-
tion. Usually this is done by adding a third
coordinate with value 1 (x, y, 1).

In general, such transformation is repre-
sented by a non-singular 3 x 3 matrix H and
applied through a matrix-vector multiplica-
tion to the pixel homogeneous coordinates:

The matrix H, called homography or
collineation, is defined up to a scale factor
(it has 8 degrees of freedom). The transfor-
mation is linear in projective (or homoge-
neous) coordinates, but non-linear in
Cartesian coordinates.

The formula implies that to obtain
Cartesian coordinates of the resulting pixel
we have to perform a division, an operation
quite onerous in terms of time and area
consumption on an FPGA. For this reason,
we considered a class of spatial transforma-
tions called “affine transformations” that is
a particular specialization of homography.
This allows us to avoid the division and
obtain good observational results:

Affine transformations include several
planar transformation classes as rotation,
translation, scaling, and all possible combi-
nations of these. We can summarize the
affine transformation as every planar trans-
formation where the parallelism is pre-

served. Six parameters are required to
define an affine transformation.

Image Warping Algorithms
There are two common ways to warp an
image:

• Forward mapping
• Backward mapping
Using forward mapping, the source image

is scanned line by line and the pixels are
copied to the resulting image, in the position
given by the result of the linear system shown
in equation (2). This technique is subject to
several problems, the most important being
the presence of holes in the final image in the
case of significant modification of the image
(such as rotation or a scaling by a factor
greater than 1) (Figure 2).

The backward mapping approach gives

better results. Using the inverse transforma-
tion A-1, we scan the final image pixel by
pixel and transform the coordinates. The
result is a pair of non-integer coordinates in
the source image. Using a bilinear interpola-
tion of the four pixel values identified in the
source image, we can find a value for the
final image pixel (see Figure 3).

This technique avoids the problem of
holes in the final image, so we adopted it
as our solution for the hardware imple-
mentation.

Implementation
Software implementations of this algorithm
are well-known and widely used in applica-

tions where a personal computer or work-
station is required. A hardware
implementation requires further work to
achieve efficiency constraints on an FPGA.

Essentially, the process can be divided
in two parts: transformation and interpo-

lation. We implemented the first as a
matrix-vector multiplication (2), with four
multipliers and four adders. The second is
an approximation of the real result of the
interpolation: we weighted the four pixel
values approximating the results of the
transformation with two bits after the bina-
ry point. Instead of performing the calcula-
tions given by the formula, we used a LUT
to obtain the pixel final value, since we
divided possible results of the interpolation
into a set of discrete values.

Spartan-3 Theoretical Performance
We designed the algorithm using System
Generator for DSP, targeting a Spartan-3
device. We generated the HDL code and
synthesized it with ISE™ design software,
obtaining a resource utilization of:

• 744 slices (1,107 LUTs)

• 164 SRL16

• 4 embedded multipliers

The design can process up to 46 fps
(frames per second) with 512 x 512 images.
Theoretical results show a boundary of 360+
fps in a Spartan-3-based system.

Applications of Image Warping
Image warping is typically used in many
common computer vision applications, such
as view synthesis, video stabilization, and
image mosaicing.

Image mosaicing deals with the composi-
tion of sequence (or collection) of images
after aligning all of them respective to a com-
mon reference frame. These geometrical
transformations can be seen as simple rela-
tions between coordinate systems.

By applying the appropriate transforma-
tions through a warping operation and
merging the overlapping regions of a
warped image, we can construct a single
panoramic image covering the entire visible
area of the scene. Image mosaicing provides
a powerful way to create detailed three-
dimensional models and scenes for virtual
reality scenarios based on real imagery. It is
employed in flight simulators, interactive
multi-player games, and medical image sys-
tems to construct true scenic panoramas or
limited virtual environments.

18 DSP magazine October 2005

()'',''

1
'

'
'

'

'

'

'

1 3,32,31,3

3,22,21,2

3,12,11,1

3,32,31,3

3,22,21,2

3,12,11,1

wywxw
y

w
x

w

y

x

HyHxH

HyHxH

HyHxH

y

x

HHH

HHH

HHH

==

++

++

++

=• (1)

(','

1

'

'

11100
3,22,21,2

3,12,11,1

3,22,21,2

3,12,11,1

yxy

x

AyAxA

AyAxA

y

x

AAA

AAA

=++

++

=) (2) •

Conclusion
The challenge is to design efficient, effec-
tive, and reliable vision modules with the
highest possible reliability.

Ultimodule, a Xilinx XPERTS partner,
and the VIPS Laboratory at the
Università di Verona have defined a foun-
dation platform for computer vision
using Ultimodule’s system-on-module
family. The platform provides a stereovi-
sion system for real-time extraction of
three-dimensional data and a real-time
image-processing engine implementing
most of the algorithms required when an
application relies on vision to make deci-
sions and provide control.

The platform supports applications
that require high performance and robust
vision analysis, both in qualitative and
computational terms (real-time), includ-
ing active video surveillance, robotic arm
motion and control, autonomous vehicle
navigation, test and measurement, and
hazard detection. The platform provides
modules with all required system control
logic, memory, and processing hardware,
together with the application software.
Interconnecting modules allow fast devel-
opment of a complex architecture.

The platform leverages Xilinx Spartan-
3 devices, which are an optimal choice for
image processing IP cores because of their
flexibility, high performance, and DSP-
oriented targeting. The Spartan-3 family
provides a valid, programmable alternative
to ASICs. This characteristic, coupled with
its low cost structure, adds considerable
value when time to market is crucial.

For more information about feature
extraction, you can e-mail the authors at
paolo.giacon@students.univr.it or saul.
saggin@students.univr.it. For more informa-
tion about image warping, you can e-mail
matteo.busti@students.univr.it or giovanni.
tommasi@students.univr.it.

We are grateful for the support from our
advisor, Professor Murino, in the Vision, Image
Processing, and Sound (VIPS) Laboratory in
the Dipartimento di Informatica at the
Università di Verona, and contributions from
Marco Monguzzi, Roberto Marzotto, and
Alessandro Negrente.

October 2005 DSP magazine 19

1

1 2 3 4 5 6 7 8 9 10 11

2

3

4

5

6

7

8

9

y

x

1

1 2 3 4 5 6 7 8 9 10 11

2

3

4

5

6

7

8

9

y'

x'

H

lw(1,2) = I(1,1)
lw(3,2) = I(2,1)

INPUT: source image I
For every y from 1 to height (I)
 For every x from 1 to width(I)
 Calculate x', u = round(x')
 Calculate y', v = round(y')
 If 1<= u <= wodth(lw) and 1<= v <= height(lw)
 Copy I(x,y) to lw(u,v)

OUTPUT: warped image lw

Image l Image lw
Forward Mapping

1

1 2 3 4 5 6 7 8 9 10 11

2

3

4

5

6

7

8

9

y

x

1

1 2 3 4 5 6 7 8 9 10 11

2

3

4

5

6

7

8

9

y'

x'

H-1

INPUT: source image I
For every v from 1 to height (Iw)
 For every u from 1 to width(Iw)
 Calculate x
 Calculate y
 Calculate lw(u,v)as bilinear interpolation the four pixel values:

OUTPUT: warped image lw

Image l Image lw

 I(,), I(,), I(x y x y x , y), I(x , y) such as

 () () () () () 110111010011, pkhpkhpkhpkhvuIw + –+ – +• • • • • • •– –=

 where:

 () () () ()

I=I=I=I=

–=–=

yxpyxpyxpyxp

yykxxh

,11,,01,,10,,00

,{

lw(4,5) = interpolation of { l(3,2), l(4,2), l(3,3), l(4,3)}
lw(4,7) = interpolation of { l(3,4), l(4,4), l(3,5), l(4,5)}

Backward Mapping

Figure 2 – Forward mapping with a scaling factor greater than one

Figure 3 – Backward mapping with a scaling factor greater than one

by David Gamba
Senior Manager, Strategic Solutions Marketing
Xilinx, Inc.
david.gamba@xilinx.com

Wireless infrastructure revenue continues
to experience phenomenal growth, increas-
ing from approximately $27 billion in
2003 to an estimated $35 billion in 2004.
Industry analysts are predicting that 2004
will be the peak revenue year, as forecasts
show the revenue figure dropping back to
$27 billion in 2005, eventually settling in
to the $10-$15 billion range by the end of
the decade. This revenue decline is driven
both by lower prices as well as a drop in
base station deployments, from nearly
500,000 stations in 2004 to less than
200,000 in 2010.

As the industry transitions from a high-
growth phase to a more mature state, cost
pressures will increasingly mount in all
facets of the infrastructure, including the
wireless base station. Next-generation base
station deployments must conquer the
challenge of continually reducing cost (as
measured by cost per channel) while
adding functionality to support new servic-
es, protocols, and changing subscriber
usage patterns.

Using FPGAs in Wireless
Base Station Designs
Using FPGAs in Wireless
Base Station Designs

20 DSP magazine October 2005

Wireless base station design trends benefit from Virtex-4 device features.Wireless base station design trends benefit from Virtex-4 device features.

To begin addressing this challenge,
wireless base station designs are shifting
from ASIC technology to more readily
available off-the-shelf components such as
FPGAs. This shift is driven both by declin-
ing annual base station unit volumes as
well as FPGA technology improvements
that increase processing power and enable a
much lower cost per channel.

The migration to FPGAs is not just an
attempt to reduce costs and create a com-
mon platform to achieve commoditization
– it is also being driven by time-to-market
pressures, along with the need to make in-

field upgrades of base station deployments.
This shift away from ASICs has enabled
significant new design opportunities for
Xilinx® Virtex-4™ devices to fill the void.

Wireless Base Station Module Building Blocks
Inside a wireless base station are fairly dis-
tinct module blocks performing different
functions, such as radio, baseband process-
ing, transport network interfacing, and
control (Figure 1). Traditional base station
designs used ASICs – along with DSPs and
other discrete components – to implement
these various architectural features and
functions.

This design approach is rapidly giving
way to more cost-effective and flexible
designs that use FPGAs. With lower costs
and increased flexibility, product delivery is
accelerated and inventory control is much

Extending Current Design Lifecycles
Standardization is the first step towards
the commoditization of base station
design and will eventually lead to a phas-
ing out of ASICs from wireless base sta-
tions. In the interim, companies are
inserting discrete devices next to their cur-
rent ASICs to support new functionality
that cannot be added in a timely or cost-
effective manner to the current design.

For instance, the Third Generation
Partnership Project (3GPP), which is a
collaboration agreement between several
telecommunications bodies, is actively
creating additional standards for the
wireless industry. 3GPP has added a
high-speed downlink packet access
(HSDPA) feature as a new Universal
Mobile Telecommunications System
(UMTS) requirement in its latest base-
band processing specification, Release 5,
for Wideband Code Division Multiple
Access (W-CDMA).

ASICs in current base stations do not
support this new variant for UMTS.
This creates a hole in the service offer-
ings for UMTS, which forecasters are
predicting will represent approximately
80% of the wireless traffic in the next
few years. This deficiency must be
addressed before future field deploy-
ments, and it can be – without exceeding
the system power budget – by using a
Virtex-4 LX device next to the ASIC,
implementing HSDPA using the avail-
able Xilinx HSDPA IP offering.

Next-Generation Base Station Designs
But adding external devices to patch
design holes created by existing ASIC
designs limitations is purely a stopgap
solution. Future base station designs must
be able to quickly adapt to changes in sub-
scriber traffic patterns, as well as support
the upcoming convergence of new servic-
es and emerging cellular technologies such
as W-CDMA, TD-SCDMA, EDGE,
1xEV-DO, and WiMAX.

As shown in Figure 2, the amount of
cellular technologies is expected to contin-
ue to proliferate, leading base stations
down the path of having to support many
more technologies. Current issues such as

more manageable, avoiding some of the
multi-million dollar inventory obsoles-
cence issues that base station manufacturers
have faced with ASIC solutions fabricated
to support the 3G launch.

Standardizing the Wireless Base Station
Another significant step taken by the wire-
less industry is the launch of industry
organizations focused on standardizing the
non-differentiated features inside a base
station. The most notable development for
Xilinx is the migration to a standardized
high-speed serial interconnect solution

between the different base station module
blocks, such as the Open Base Station
Architecture Initiative (OBSAI) Reference
Point 3 (RP3) and Common Public Radio
Interface (CPRI) interconnects for base-
band and radio module connectivity.

Many leading base station manufactur-
ers are members of these organizations
and are rapidly preparing to adopt one of
these two standard interconnect solutions
in their upcoming design implementa-
tions. Xilinx is fully prepared to support
these standards, and has both OBSAI and
CPRI IP solutions and reference designs
available for implementing in Virtex-II
Pro™, Virtex-II Pro X, and Virtex-4 FX
FPGA devices, using the integrated
RocketIO™ multi-gigabit tranceivers
(MGTs) in association with the logic
building blocks.

October 2005 DSP magazine 21

Antenna

Multichannel
Power Amp

Low Noise
Amp

ADC

Analog
RF RX

Analog
RF TX

ADC DAC

Digital Down
Conversion

Digital Up
Conversion

Digital Filtering
and Antenna

Diversity

Pre-Distortion
and Digital

Filtering

Baseband
Interface Bus

Symbol
Encoding

Symbol
Decoding

Modulation
and Spreading

Symbol
Detection and

Combining

Chip-Rate
Demodulation

and Despreading

Channel
Estimation

B
ac

kp
la

ne

Circuit Switched
Network Control

Packet Switched
Network Control B

T
S

 to
 R

N
C

I
In

te
rf

ac
e

Central
Processor

Control
Interface

Timing and Clock
Generation Power Supply AC/DC

Power

E1, T1
Frame Relay

or
IP Network

(Gigibit
Ethernet

etc.)

Amplifiers Baseband Processing Network Interface

Main Processor

TX/RX

Figure 1 – Wireless base station module block diagram

multi-user detection and antenna selection
will be augmented by new technical chal-
lenges, such as channel provisioning and
base station tuning, that will need to be
resolved appropriately to reduce a service
provider’s customer turnover. The funda-
mental expectation to receive the same
high-quality wireless service wherever a cus-
tomer roams must be completely addressed.

These customer expectations would
benefit from substantial flexibility in the
base station. Fortunately, many of the base-
band processing functions and radio mod-
ule functions are well suited for
implementation in Virtex-4 devices, taking

advantage of the integrated XtremeDSP™
slices in the product architecture.

For instance, quite a few baseband
processing tasks – such as call initiation
and set-up and multi-path signal detec-
tion and monitoring – are heavily based
on mathematical algorithms. You can
very efficiently implement these algo-
rithms by using the integrated multiplier
capabilities available in Virtex-4 devices,
along with the readily available intellectu-
al property components such as the
Random Access Channel (RACH),
Searcher, and 3G Turbo Convolutional
Codecs (3GTCC) that Xilinx has imple-

mented as reference designs to demon-
strate these capabilities.

The integrated DSP capability in the
Virtex-4 SX device enables a very low
power implementation of these func-
tions. Radio functions can be expanded
by using a Virtex-4 SX device to enable
more channel support.

Several enabling pieces of intellectual
property targeted at radio functions, such
as digital pre-distortion (DPD), crest fac-
tor reduction (CFR), and digital up/down
conversion (DUC/DDC), are supported
by the Virtex-4 SX device. Not only does
this help increase in the number of chan-
nels supported in a base station, but it also
helps reduce the cost per channel. Table 1
gives an overview of the different capabili-
ties offered by Xilinx baseband and radio
module IP offerings.

System Generator for DSP Development Tool
Xilinx complements its Virtex-4 product
offerings with the System Generator for
DSP tool. This is a complete integrated
DSP design environment that simplifies
the development, debug, and verification
of high-performance DSP designs target-
ing wireless base stations. This tool also
helps designers interface with complemen-
tary general-purpose and DSP processors
used in wireless base station designs.

System Generator for DSP provides
high-level abstractions that are automati-
cally compiled into Virtex-4 devices at the
push of a button, with no loss in perform-
ance over designs implemented in lower-
level languages such as VHDL. System
Generator is part of the XtremeDSP solu-
tion, which combines state-of-the-art
FPGAs, design tools, intellectual property
cores, and design and education services.

Conclusion
To learn more about the key markets
and end applications of Xilinx wireless
solutions, visit www.xilinx.com/esp/,
or e-mail 3g@xilinx.com. For more
details about Virtex-4 FPGAs, visit
www.xilinx.com/virtex4/. And for more
details on System Generator for DSP or
other pieces of the Xilinx DSP solution,
visit www.xilinx.com/dsp/.

22 DSP magazine October 2005

GSM

TDMA

IS95a/b 1xRTT

1xEV-D0

1xEV-DV

3xRTT

W-CDMA

TD-SCDMA

GPRS EDGE HSDPA

Wireless LANs

4G

2G 2.5G 3G 3.5G 4G

Current Being Deployed Development Future

IEEE 802.11
IEEE 802.16

Xilinx Baseband Intellectual Property Offerings

IP Offering Application

HSDPA Increases downlink data transmission rate to a peak of 14.4 Mbps

RACH Receiver path preamble detection (specified by W-CDMA)

Searcher Multi-path delay estimate for each subscriber

3G TCC Forward error correction

Xilinx Radio Intellectual Property Offerings

IP Offering Application

DPD Signal conditioning to enable use of lower cost RF power amplifiers

CFR Signal amplitude conditioning to enable increased RF power amplifier efficiency

DUC Baseband signal modulation for digital-to-analog converter input

DDC Receiver signal modulation for analog-to-digital converter input

Table 1 – Xilinx baseband and radio IP offerings

Figure 2 – Mobile technology roadmap

Simple, affordable, high-performance
video processing in any format,
on any device, in any seat in the house.
That’s the DaVinci Effect.

When your video is better than live, that's the DaVinci Effect. See live

action like you've never imagined: closer, clearer and crisper. DaVinci
TM

technology from Texas Instruments allows a high-performance, video

processing platform to stream directly to a handheld device, an on-board

system in your car or your home entertainment center. And because of its

DSP-based programmability, you can create unique, feature-rich devices

optimized with specific applications in mind and get them to market quickly.

The applicability is greater, the design process is faster, and the time

to begin is now. For a technical brief, go to www.thedavincieffect.com.

DaVinci™ technology is a DSP-based system solution tailored
for digital video applications that provides optimized software,
development tools, integrated silicon, and support to simplify
design and stimulate innovation in less time. It consists of:

� DaVinci Optimized Software: Interoperable, optimized, off-the-
shelf digital video and audio codecs, protocols, and user interfaces
leveraging integrated accelerators, published APIs, and application
specific frameworks that utilize a variety of real-time operating
systems for rapid implementation

� DaVinci Development Tools: Complete development kits, reference
designs, and comprehensive ARM/DSP system-level IDEs to speed design

� DaVinci Integrated Silicon: Scalable, programmable DSP-based
system-on-chip solutions tailored for digital video applications

� DaVinci Support/Ecosystem: System integrators, hardware and
software providers, as well as TI and third party comprehensive
video system expertise

DaVinci, Technology for Innovators and the red/black banner are trademarks of Texas Instruments. 1140A0 © 2005 TI

by Ahmad Ansari
Senior Staff Systems Architect
Xilinx, Inc.
ahmad.ansari@xilinx.com

Peter Ryser
Manager, Systems Engineering
Xilinx, Inc.
peter.ryser@xilinx.com

Dan Isaacs
Director, APD Embedded Marketing
Xilinx, Inc.
dan.isaacs@xilinx.com

The APU controller provides a flexible
high-bandwidth interface between the re-
configurable logic in the FPGA fabric and
the pipeline of the integrated IBM™
PowerPC™ 405 CPU. Fabric co-processor
modules (FCM) implemented in the FPGA
fabric are connected to the embedded
PowerPC processor through the APU con-
troller interface to enable user-defined con-
figurable hardware accelerators. These
hardware accelerator functions operate as
extensions to the PowerPC 405, thereby
offloading the CPU from demanding com-
putational tasks.

APU Instructions
The APU controller allows you to extend the
native PowerPC 405 instruction set with cus-
tom instructions that are executed by the soft

FCM; the primary capabilities are shown in
Figure 1. This provides a more efficient inte-
gration between an application-specific
function and the processor pipeline than is
possible using a memory-mapped coproces-
sor and shared bus implementation.

The instructions supported by the APU
are classified into three main categories:

• User-defined instructions (UDI)

• PowerPC floating-point instructions

• APU load/store instructions

The UDIs are programmed into the
controller either dynamically through the
PowerPC 405 device control register
(DCR) or statically when the FPGA is con-
figured through its bitstream. The APU
controller allows you to optimize your sys-
tem architecture by decoding instructions
either internally or in the FCM.

The floating-point unit (FPU) is an
example of an FCM. The PowerPC float-
ing-point instruction set is decoded in the
APU controller, whereas the computation-
al functionality is implemented in the
FPGA fabric. To support FPUs with dif-
ferent complexities, the APU controller
allows you to select subgroups of the
PowerPC floating-point instructions.
These instructions are executed in the
FCM while other subgroups of instructions
are either computed through software FPU

emulation or ignored completely. This fine-
tuning optimizes FPGA resources while
accelerating the most critical calculations
with dedicated logic.

The APU controller also decodes high-
performance load and store instructions
between the processor data cache or system
memory and the FPGA fabric. A single
instruction transfers up to 16 bytes of data –
four times greater than a load or store
instruction for one of the general purpose
registers (GPR) in the processor itself. Thus,
this capability creates a low-latency and high-
bandwidth data path to and from the FCM.

APU Controller Operation
Figure 2 identifies the key modules of the
APU controller and the 405 CPU in rela-
tion to the FCM soft coprocessor module
implemented in FPGA logic. To explain
the operation of the APU controller and
the processor interactions related to the
execution units in soft logic, we can trace
the step-by-step sequence of events that
occur when an instruction is fetched from
cache or memory.

Once the instruction reaches the decode
stage, it is simultaneously presented to both
the CPU and APU decode blocks. If the
instruction is detected as a CPU instruc-
tion, the CPU will continue to execute the
instruction as it would normally.
Otherwise, within the same cycle, the CPU

Accelerated System Performance
with APU-Enhanced Processing
Accelerated System Performance
with APU-Enhanced Processing

24 DSP magazine October 2005

The Auxiliary Processor Unit (APU)
controller is a key embedded processing
feature in the Virtex-4 FX family.

The Auxiliary Processor Unit (APU)
controller is a key embedded processing
feature in the Virtex-4 FX family.

will look for a response from the APU con-
troller. If the APU controller recognizes the
instruction, it will provide the necessary
information back to the CPU.

If the APU controller does not respond
within that same cycle, an invalid instruc-
tion exception will be generated by the
CPU. If the instruction is a valid and rec-
ognized instruction, the necessary operands
are fetched from the processor and passed
to the FCM for processing.

Because the PowerPC processor and the
FCM reside in two separate clock domains,
synchronization modules of the APU con-
troller manage the clock frequency differ-
ence. This allows the FCM to operate at a
slower frequency than the processor. In this
instance, the APU controller would receive
the resultant data from the coprocessor and

implement synchronization semantics to
pace the software execution with the hard-
ware FCM latency.

Non-autonomous instruction types are
further divided into blocking and non-
blocking. If blocking, asynchronous excep-
tions or interrupts are blocked until the
FCM instruction completes. Otherwise, if
non-blocking, the exception or interrupt is
taken and the FCM is flushed.

Software Description
Software engineers can access the FCM
from within assembler or C code. On one
side, Xilinx has enabled the GCC compiler
(which is contained in the Embedded
Development Kit) to generate code that
uses an FCM floating-point unit to calcu-
late floating-point operations. Furthermore,
assembler mnemonics are available for
UDIs and the pre-defined load/store
instructions, enabling you to place hard-
ware-accelerated functions into the regular
program flow. For the ultimate level of flex-
ibility, you can define your own instructions
designed specifically for the hardware func-
tionality of the FCM.

You can easily use the pre-defined
load/store instructions through high-level
C macros. For example, in an application
where the FCM is used to convert pixel
data into the frequency domain, 8 pixels of
16 bits are transferred from main memory
to an FCM register with a simple program:

unsigned short pixel_row[8]; // 8 pixels,
each pixel has a size of 16 bits

lqfcm(0, pixel_row); // transfer a row of
pixels to FCM register zero

The quadword load operation main-
tains cache coherency as the data is moved
through the cache, if caching is enabled for
the corresponding address space.

The FCM operation on the pixel data
can start on an explicit command; for
example, a UDI. However, for many appli-
cations the operation starts immediately
after the FCM hardware detects the com-
pletion of the load instruction.

The latter approach has many advantages:

• Simple software – A load operation
moves the data from the memory to

at the proper execution time send the data
back to the processor. The APU controller
knows in advance, based on instruction
type, if or when it will get the result.

Autonomous and
Non-Autonomous Instructions
Two major categories of instructions exist:
autonomous and non-autonomous. For
autonomous instructions, the CPU contin-
ues issuing instructions and does not stall
while the FCM is operating on an instruc-
tion. This overlap of execution allows you
to achieve high performance through tech-
niques such as software pipelining.

On the other hand, during the syn-
chronized execution, the CPU pipeline
stalls while the FCM is operating on an
instruction. This feature allows you to

October 2005 DSP magazine 25

PowerPC
APU

Controller

Soft
Auxiliary

Processor

PLB

OCM FPGA Fabric

APU
I/F

FPGA
I/F

Processor BlockProcessor Block

• Extends PPC 405 Instruction Set
 – Floating Point Support
 (with soft auxiliary processor)
 – User-Defined Instructions

• Offloads CPU-Intensive Operations
 – Matrix Calculations
 • Video Processing
 – Floating-Point Mathematics
 • 3D Data Processing

• Direct Interface to HW Accelerators
 – High Bandwidth
 – Low Latency

Fetch Stage

Decode Stage

Decode

EXE Stage

Exec. Units

WB Stage

Load WB Stage

Decode
Control

Decode
Registers

APU Decode

Pipeline
Control

Buffers and
Synchronization

Optional Decode

Execution
Units

Register File

Intructions from
Cache or Memory

Processor Block

Soft Coprocessor
Module

405
Core

APU
 Controller

Instruction

Instruction

Control

Operands

Operands
Result Result

Load Data

Figure 1 – APU expanded processing capabilities

Figure 2 – APU controller processing operative block diagram

the FCM and starts the operation. A
subsequent store instruction retrieves
the result of the operation and stores it
back to main memory.

• High data transfer rates – Quadword
load and store operations take just a few
cycles to complete. A single operation
moves 16 bytes within that timeframe.

• Low latency – FCM load operations
are simple to use. The processor com-
pletes the operation in a single cycle.

The principle of the RISC architecture
uses a number of simple instructions on
data stored in general-purpose registers
(GPR) to compute complex operations.
User-defined instructions fall into this cat-
egory but take the concept a step further in
that the system architect defines the com-
plexity of the operation on data stored in
GPRs and FCM registers (FCR). Again,
from a software point of view, the engineer
codes user-defined instructions through C
macros. GCC recognizes mnemonics such
as udi0fcm as a user-defined operation of
the general form:

udi0fcm<FCRT5/RT5>,<FCRA5/RA5/imm>,
<FCRB5/RB5/imm>

The target of the operation is either a
GPR or an FCR. The operands are either
GPRs, FCRs, immediate values, or a com-
bination. As you can see, the semantics are
not defined by the instruction and depend
on your intentions and the implementation
in the FCM.

This code sequence demonstrates the
use of a user-defined instruction as an
example of a complex add operation:

struct complex {
int r, i; // 32 bit integer for real
and imaginary parts

};
complex a, b, r;
ldfcm(0, &a); // load complex number a
into FCM register 0
ldfcm(1, &b); // load complex number b
into FCM register 1
udi0fcm(2, 1, 0); // udi0fcm computes r = a
+ b, where r is stored in FCM register 2
stdfcm(&r, 2); // store complex result
from FCM register 2 to variable r

To increase the readability of the code,
you can redefine the user-defined instruc-
tion with regular C preprocessor constructs.
Instead of using the udi0fcm() macro, you
can redefine it to a more comprehensible
complex_add() macro with #define com-
plex_add(r, a, b) udi0fcm(r, a, b) and change
the listing to call complex_add(2, 1, 0)
instead of udi0fcm(2, 1, 0).

Therefore, system architects can partition
their tasks into hardware- and software-
executed pieces that are efficiently and pre-
cisely interfaced to one another through the
use of the APU controller. This partitioning
can be done statically during the initial sys-
tem configuration or dynamically during
the program execution. Using the direct
processor/FPGA coupling presented by the
APU controller and its high throughput
interfaces, hardware/software synchroniza-
tion is greatly simplified and performance
significantly improved.

Accelerating System Performance
The following examples showcase key
advantages the APU provides based on two
different scenarios. The first scenario is
essentially a benchmarking comparison of a
finite impulse response (FIR) filter using a
soft FPU core, implemented as an FCM
attached directly to the APU controller (as
compared to software emulation used to
calculate the filter function). The second
scenario implements a two-dimensional

inverse discrete cosine transform (2D-
IDCT) typically used as one of the pro-
cessing blocks in MPEG-2 video
decompression, again compared to emu-
lating the 2D-IDCT function in software.

The two use cases are different in that
the FPU implements a set of registers in the
FPGA fabric upon which the FPU instruc-
tions operate. The 2D-IDCT only requires
load and store operations, while the func-
tionality of the operation on the data
stream is fixed. In either case the operations
are complex enough to justify offloading
into the FPGA fabric.

Thus, the combination of using the
APU and FPGA hardware acceleration
clearly provides a significant performance
advantage over software emulation – or the
conventional method involving the proces-
sor and processor local bus architecture
with a soft co-processing function.

FIR Filter
The implementation of floating-point
calculations in hardware yields an
improvement by a factor of 20 over soft-
ware emulation. Connecting the FPU as
an FCM to the APU controller provides
performance improvement because the
latency to access the floating-point regis-
ters is reduced and dedicated load and
store instructions move the operands and
results between the FPU registers and the
system memory.

26 DSP magazine October 2005

PowerPC
APU

Controller
Processor
(soft logic)

XtremeDSP
XtremeDSP

XtremeDSP

OCM FPGA Fabric

APU
I/F

FPGA
Interface

Processor BlockProcessor Block

43.8 .40 0

0 0 0 0 0 000

0 0 0 0 0 000

0 0 0 0 0 000

0 0 0 0 0 000

0 0 0 0 0 000

0 0 0 0 0 000

0 0 0 0 0 000

-4.1 0 -1.1 0 0

223 191 159 128 98 72 39 16

223 191 159 128 98 72 39 16

223 191 159 128 98 72 39 16

223 191 159 128 98 72 39 16

223 191 159 128 98 72 39 16

223 191 159 128 98 72 39 16

223 191 159 128 98 72 39 16

223 191 159 128 98 72 39 16

Pixel Amplitude Values

Pixel DCT ValuesRGB

YUV

Blocks

APU Function:
 • Decompresses
 encoded pixel data
 for output display
• Utilize FPGA Resources
 – Less overhead logic
 – Fast data transfer

Spatial Redundancy:
Pixel Decoding Using the IDCT

MPEG Decode Flow

Figure 3 – Utilizing APU to decode pixel data for display output

2D-IDCT
The 2D-IDCT transforms a block of 8 x 8
data points from the frequency domain into
pixel information. A high-level diagram
depicting the pixel decode by the APU con-
troller, along with advantages, is shown in
Figure 3. In this example, each data point
has a resolution of 12 bits and is represented
as a 16-bit integer value. The data structure
is defined where each row of 8 pixels con-
sumes 16 bytes. This is an ideal size that
allows optimal use of the FCM load and
store instructions described earlier. In other
words, eight FCM quadword load instruc-
tions are needed to load a data block into the
2D-IDCT hardware. Eight FCM quadword
store instructions are sufficient to copy the
pixel data back into the system memory.

The calculation of the 2D-IDCT in the
FCM starts immediately after the first load,
and the pixel data is available shortly after
the last load operation. As shown in Figure
4, the 2D-IDCT makes uses of the new
XtremeDSP™ slices in the Virtex-4 archi-
tecture that offer multiply-and-accumulate
functionality.

A software-only implementation of a
2D-IDCT takes 11 multiplies and 29 addi-
tions together with a number of 32-bit load
and store operations, while the hardware-
accelerated version takes 8 load and 8 store
operations. The reduced number of opera-
tions results in a speed-up of 20X in favor
a 2D-IDCT FCM attached through the
APU controller.

By comparison, if you connect the 2D-
IDCT hardware block to the processor local
bus, as it is done conventionally, the system
performance will be reduced. This increased
latency is mainly caused by the bus arbitra-
tion overhead and the large number of 32-
bit load and store instructions. This is
illustrated schematically in Figure 5.

Conclusion
The low-latency and high-bandwidth fab-
ric coprocessor module interface of the
APU controller enables you to accelerate
algorithms through the use of dedicated
hardware. Where operations are complex
enough to justify the offloading into the
FPGA fabric, or when acceleration of a

specific algorithm is desired to achieve
optimal performance, the combination of
the APU controller and FPGA hardware
acceleration provides a definitive per-
formance advantage over software emula-
tion or the conventional method of
attaching coprocessors to the processor
memory bus.

Generating the accelerated functions
called by user-defined instructions is easily
performed through GUI-based wizards.
This functionality will be included in sub-
sequent releases of the powerful Embedded
Development Kit or Platform Studio.

If you are more comfortable working
at the source code or assembly level, the
APU controller allows you to define your
own instructions written specifically for
the hardware functionality of the FCM,
or you can easily use the pre-defined
load/store instructions through high-level
C macros.

The APU controller provides a close
coupling between the PowerPC processor
and the FPGA fabric. This opens up an
entire range of applications that can imme-
diately benefit customers by achieving
increases in system performance that were
previously unattainable.

For additional details on the APU con-
troller in Virtex-4-FX devices, including
detailed descriptions and timing waveforms,
refer to the Virtex-4 PowerPC 405 Processor
Block Reference Guide at www.xilinx.com/
bvdocs/userguides/ug018.pdf.

October 2005 DSP magazine 27

PowerPC
APU

Controller

Auxiliary
Processor
(soft logic)

XtremeDSP
XtremeDSP

XtremeDSP

PLB

OCM FPGA Fabric

APU
I/F

FPGA
Interface

Processor BlockProcessor Block

• Leverages Integrated Features
 – PowerPC, APU, XtremeDSP Blocks

Example: Video Application – MPEG De-Compression Algorithm

• HW Acceleration Over Software
 – Lower Latency and High Bandwidth

• Effecient HW/SW Design Partitioning
– Optimized Implementation

• Significant Performance Increase

Over 20X Performance Improvement Compared to Software Emulation

Power
PC

Memory

Power
PC

Memory Memory

Processor
Local Bus

Processor
Local Bus

FPGA
Interface

Soft
IDCT

Soft
IDCT

Power
PC

FPGA Fabric FPGA Fabric FPGA Fabric

Software Emulation APU AcceleratedProcessor w/Soft IDCT

Software Only
>200 Lines Code
Several 100 Instructions

Accelerated w/Soft Core
Multiple Load/Store Operations
per IDCT

APU w/XtremeDSP Slices
Single Instruction Execution
Leverages APU and Soft Logic

Inverse Two-Dimensional IDCT Algorithm

APU
Controller

Processor Block

Figure 4 – Accelerated system performance with APU

Figure 5 – Comparison of implementation models for 2D-IDCT

by Reed Tidwell
Sr. Staff Applications Engineer
Xilinx, Inc.
reed.tidwell@xilinx.com

The XtremeDSP™ system feature,
embodied as the DSP48 slice primitive in
the Xilinx® Virtex-4™ architecture, is a
high-performance computing element
operating at an industry-leading 500 MHz.
The design of the Virtex-4 infrastructure
supports this rate, with Xesium clock tech-
nology, Smart RAM, and LUTs configured
as shift registers.

Many applications, however, do not
have data rates of 500 MHz. So how can
you harness the full computing perform-
ance of the DSP48 slice with data streams
of lower rates?

The answer is to use a double-data-rate
(DDR) technique through the DSP48
slice. The DSP48 slice, operating at 500
MHz, can multiplex between two data
streams, each operating at 250 MHz.

One application of this technique is
alpha blending of video data. Alpha blend-
ing refers to the combination of two
streams of video data according to a
weighting factor, called alpha. In this arti-
cle, we’ll explain the techniques and design
considerations for applying DDR to two
data streams through a single DSP48 slice.

Alpha Blending Two Data Streams
Using a DSP48 DDR Technique

28 DSP magazine October 2005

Achieve full throughput of the DSP48 slice with a double-data-rate technique.

Virtex-4 DSP48
The DSP system elements of Virtex-4
FPGAs are dedicated, diffused silicon with
dedicated, high-speed routing. Each is con-
figurable as an 18 x 18-bit multiplier; a
multiplier followed by a 48-bit accumulator
(MACC); or a multiplier followed by an
adder/subtracter. Built-in pipeline stages
provide enhanced performance for 500
MHz throughput – 35% higher than for
competing technologies.

All Virtex-4 devices have DSP48 slices,
although the SX family contains the largest
number (an industry-high 512) and the high-
est concentration of DSP48 slices to logic ele-
ments, making it ideal for math-intensive
applications such as image processing.

A triple-oxide 90 nm process makes the
DSP48 slice very power-efficient.

flip-flops; CLB LUTs configured as shift
registers (SRL16); or directly from block
RAM. Block RAM, configured as a FIFO
using the built-in FIFO support, also sup-
ports the 500 MHz clock rate.

Design Considerations
Dealing with data at 500 MHz requires
great care; you should observe strict pipelin-
ing with registers on the outputs of each
math or logic stage. The DSP48 slice pro-
vides optional pipeline registers on the input
ports, on the multiplier output, and on the
output port from the adder/subtracter/accu-
mulator. Block RAM also has an optional
output register for efficient pipelining when
interfaced to the DSP48 slice.

Where you are using CLBs, place only
minimal levels of logic between registers to
provide maximum speed. For DDR opera-
tion, only a 2:1 mux (a single LUT level) is
required between pipeline stages. Whether
you are interfacing to the DSP48 slice with
memory or CLBs, placing connected 500
MHz elements in close proximity mini-
mizes connection lengths in the general
routing matrix.

DDR requires the DSP48 slice to oper-
ate at double the frequency of the input
data streams. You can use a DCM to pro-
vide a phase-aligned double-frequency
clock using the CLK 2X output.

Another aspect of inserting DDR data
through a section of pipeline is ensuring
that data passes cleanly between clock
domains. This may require adding extra
registers clocked with the double-fre-
quency clock at the output of the double-
pumped section, to synchronize the data
with the original clock. The rule of
thumb is that in order to insert a double-
pumped section cleanly into a single-
pumped pipeline, there must be an even
number of register delays in the double-
pumped section.

Architectural features, including built-in
pipeline registers, accumulator, and cas-
cade logic nearly eliminate the use of gen-
eral-purpose routing and logic resources
for DSP functions, and further reduce
power. This slashes DSP power consump-
tion to a fraction when compared to
Virtex-II Pro™ devices.

DDR with Two Data Streams
DDR, in this context, refers to multiplex-
ing two input data streams into one
stream at twice the rate, interleaving
(in time) the data from each stream
(Figure 1). Figure 1 also shows the reverse
operation, creating two parallel resultant
streams after processing.

You can drive the DSP48 slice inputs at
the fast 500 MHz clock rate from CLB

October 2005 DSP magazine 29

Data Stream 0

Data Stream 1

DDR Data Stream
DSP48

Processed
Stream 0

Processed
Stream 1

clk2xclk1x

A0

A1

B0

B1

out0 = A0 * B0
out1 = A1 * B1

clk1x

out0

out1

DSP48

All Virtex-4 devices have DSP48 slices, although the SX family contains the
largest number (an industry-high 512) and the highest concentration of DSP48

slices to logic elements, making it ideal for math-intensive applications ...

Figure 1 – DSP48 DDR

Figure 2 – Two-stream multiply through DSP48 slice

Implementation
Several configuration options exist for
implementing DDR functionality. Figure
2 shows a straightforward implementation.

In Figure 2, stream 0 consists of A0
and B0 inputs. We multiply them togeth-
er and output as out0. Likewise, stream 1
consists of inputs A1 and B1 multiplied
together and output as out1. There are
two clock domains: the clk1x domain, at
the nominal data stream frequency, and
the clk2x domain, at twice the nominal
frequency.

Figure 2 shows two registers after the
multiplier. The second is the accumula-
tion register, even though we do not use
accumulation in this configuration. The
register, however, is still required to
achieve the full, pipelined performance.
We use two sets of registers on the inputs
of the DSP to make the total delay
through the DSP48 slice an even number
(four) for easier alignment of the output
data with clk1x. These registers are “free”
because they are built into the DSP48
slice, and using them reduces the need
for alignment registers external to the
DSP48 slice. The extra pipeline register
on out0 compensates for taking stream 0
into the DSP one clk2x cycle before
stream 1. As seen from the timing dia-
gram in Figure 3, this is required to re-
align the stream 0 data back into the
clk1x domain.

Note that the input mux select,
mux_sel, is essentially the inverse of clk1x.
It is important, however, to generate this
signal from a register based on clk2x (rather
than deriving it from clk1x) to avoid hold-
time violations on the receiving registers.

At the transitions between clock
domains, the data have only one clk2x peri-
od to set up. This is the reason to have no

logical operations between registers in the
two domains. The placement of the first
registers in the clk1x domain is more criti-
cal than other registers in the same domain.

Alpha Blending
Alpha blending of video streams is a
method of blending two images into a sin-
gle combined image, such as fading
between two images, overlaying anti-
aliased or semi-transparent graphics over
an image, or making a transition band
between two images on a split-screen or
wipe. Alpha is a weighting factor defining
the percentage of each image in the com-
bined output picture. For two input pixels

30 DSP magazine October 2005

clk1x

clk2x

A0 Reg

A1 Reg

A DSP input

A0:0

A1:0

A0:0 A1:0

A0:1 A0:2 A0:3 A0:4 A0:5 A0:6

A1:1 A1:2 A1:3 A1:4 A1:5 A1:6

A0:1 A1:1 A0:2 A1:2 A0:3 A1:3 A0:4 A1:4 A0:5 A1:5 A0:6

B0 Reg

B1 Reg

B DSP input

B0:0

B1:0

B0:0 B1:0

B0:1 B0:2 B0:3 B0:4 B0:5 B0:6

B1:1 B1:2 B1:3 B1:4 B1:5 B1:6

B0:1 B1:1 B0:2 B1:2 B0:3 B1:3 B0:4 B1:4 B0:5 B1:5 B0:6

Mux sel

Prod0:0 Prod1:0 Prod0:1 Prod1:1 Prod0:2 Prod1:2 Prod0:3 Prod1:3 Prod0:4 Prod1:4 Prod0:5

align 0 reg

Mult. Reg

out 1

Prod0:0 Prod1:0 Prod0:1 Prod1:1 Prod0:2 Prod1:2 Prod0:3 Prod1:3 Prod0:4 Prod1:4Adder Reg

Prod1:0 Prod1:1 Prod1:2 Prod1:3

out 0 Prod0:0 Prod0:1 Prod0:2 Prod0:3

A0:0 A1:0 A0:1 A1:1 A0:2 A1:2 A0:3 A1:3 A0:4 A1:4 A0:5 A1:5
A DSP input_del

B DSP input del B0:0 B1:0 B0:1 B1:1 B0:2 B1:2 B0:3 B1:3 B0:4 B1:4 B0:5 B1:5

Prod0:0 Prod1:0 Prod0:1 Prod1:1 Prod0:2 Prod1:2 Prod0:3 Prod1:3 Prod0:4

P0

P1

alpha

1 - alpha

Pf

clk2x

zero

R
ed 0

R
ed 1

A
lp

h
a

1-A
lpha

Red out

clk1x

Alpha
Generator

1-

BlueGreen

Green out Blue out

Video Stream 0

Video Stream1

Red

DSP48

Figure 3 – Timing of two-stream multiply

Figure 4 – Alpha blend formula
in graphical terms

Figure 5 – Alpha blend on three-component video

(P0, P1, and a blend factor, α, where
0 <=α < =1.0), the output pixel Pf will be:

Pf = αP0 + (1-α)P1 (see Figure 4)

This operation is performed separately
for each component: red, green, and blue.

A pixel rate of 250 MHz or less is suffi-
cient for all standard and high-definition
video rates, and common Video
Electronics Standards Association (VESA)

standards as high as 1600 x 1200 at 85 Hz.
Therefore, one DSP48 slice can perform
the multiply and add on one component,
and a set of three slices can alpha blend the
three components from each of two video
streams, as shown in Figure 5. The opera-
tions must be performed identically and in
parallel on each of the three components.

There are several ways to implement
alpha blending depending on the nature

of the video streams and how alpha is
generated. Figure 6 shows a basic imple-
mentation with two video streams alter-
nating as one multiplier input. The other
multiplier input alternates between alpha
and 1- alpha.

The operating mode of the adder
alternates between add zero (pass
through) mode and add output (accumu-
late) mode. The DSP48 slice output reg-
ister contains the result of the Video0 *
alpha multiply during one clock cycle,
and the final result (Video1 * (1 – alpha)
+ Video0 * alpha) on the alternate clock.
Figure 7 shows the timing for this
configuration.

The align registers on the inputs of
the DSP are used to make the total delay
through the DSP48 slice an even number
(four), as explained in the previous
example. The final output register for
blend loads new data to every other DSP
clock to register the blend results at the
original pixel rate.

Conclusion
You can efficiently use the high-perform-
ance of Virtex-4 devices with DSP48
slices by processing multiple data streams
in a time-multiplexed fashion. With care-
ful design, a single DSP48 can perform
multiply operations on two independent
data streams, operating at 250 MHz each.

Alpha blending of video streams, as
outlined in this article, is one example of
processing two data streams through a sin-
gle DSP48 slice. This capability comple-
ments the DSP features of Virtex-4 FPGAs
– including built-in pipelining and cas-
cading, integrated 48-bit accumulator,
and an abundance of DSP48 slices in the
SX family – to make Virtex-4 devices the
ideal DSP platform.

For details about the DSP48 slice, refer
to the “Virtex-4 FPGA Handbook,”
Chapter 10, or the “XtremeDSP Design
Considerations User Guide” at www.
xilinx.com/bvdocs/userguides/ug073.pdf.

October 2005 DSP magazine 31

clk2x

zero

clk1x clk1x

DSP48

align

blend

blend = (Video0 * alpha)
 + (Video1 * (1-alpha))

Video0

Video1

alpha

1-alpha

A

B

clk1x

clk2x

Video0 reg

Video1 reg

V0:0

V1:0

V0:0 V1:0

V0:1 V0:2 V0:3 V0:4 V0:5 V0:6

V1:1 V1:2 V1:3 V1:4 V1:5 V1:6

V0:1 V1:1 V0:2 V1:2 V0:3 V1:3 V0:4 V1:4 V0:5 V1:5 V0:6A input reg

B input reg

a:0

1-a:0

a:0 1-a:0

a:1 a:2 a:3 a:4 a:5 a:6

1-a:1 1-a:2 1-a:3 1-a:4 1-a:5 1-a:6

a:1 1-a:1 a:2 1-a:2 a:3 1-a:3 a:4 1-a:4 a:5 1-a:5 a:6

Mux sel

blend output

Mult. Reg Prod0:0 Prod1:0 Prod0:1 Prod1:1 Prod0:2 Prod1:2 Prod0:3 Prod1:3 Prod0:4 Prod1:4 Prod0:5

Prod0:0 Blend0 Prod0:1 Blend1 Prod0:2 Blend2 Prod0:3 Blend3 Prod0:4 Blend4Acc. Reg

alpha reg

1 - alpha reg

Blend 0 Blend 1 Blend 2 Blend 3

V0:0 V1:0 V0:1 V1:1 V0:2 V1:2 V0:3 V1:3 V0:4 V1:4 V0:5 V1:5A align reg

B align reg a:0 1-a:0 a:1 1-a:1 a:2 1-a:2 a:3 1-a:3 a:4 1-a:4 a:5 1-a:5

You can efficiently use the high-performance of Virtex-4 devices with DSP48
slices by processing multiple data streams in a time-multiplexed fashion.

Figure 6 – Alpha blend implementation (one component)

Figure 7 – Alpha blend timing

by Ramon Uribe
Sr. Principal IP Development Engineer
AccelChip Inc.
ramon.uribe@accelchip.com

Tom Cesear
Chief Scientist
AccelChip Inc.
tom.cesear@accelchip.com

Matrix inversion is an important opera-
tion in many state-of-the-art DSP algo-
rithms and implementations, including
radar, sonar, and multiple antenna sys-
tems for communications. A common
component of these algorithms is a beam-
former or spatial filter, whose function is
to steer (in some optimal fashion) the
response of an array of sensors for the
reception of signal sources.

When using the least-squares (LS) crite-
rion, the computation of optimum weights
is based on the solution of a system of linear
equations known as the deterministic nor-
mal equation. This is shown in the equation:

Rx w = p

Here, w is a vector of beamformer
weights, which can be obtained with inver-
sion of the correlation matrix Rx as shown
in the equation:

w = Rx
-1 p

From a numerical point of view, the best
approach to matrix inversion is to not do it
explicitly, whenever possible. Instead, it is
better to solve the system of equations
using an adequate solution technique.

Implementing Matrix Inversions
in Fixed-Point Hardware
Implementing Matrix Inversions
in Fixed-Point Hardware

32 DSP magazine October 2005

Our method is based on a synthesizable QR-decomposition
MATLAB model and the AccelChip DSP Synthesis tool.
Our method is based on a synthesizable QR-decomposition
MATLAB model and the AccelChip DSP Synthesis tool.

Traditionally, implementations like this
have been done with general-purpose DSP
devices using floating-point arithmetic to
minimize round-off error. A disadvantage of
these implementations, however, is the limited
processing power because of the small number
of floating-point processing units commonly
available per device. An appealing alternative
for implementation is to use the Xilinx®

Virtex™-4 FPGA family, which offers large
amounts of parallelism. One complication
with these silicon fabrics is that they are tai-
lored for fixed-point arithmetic, and imple-
mentation in these is inherently challenging
because of sensitivity to round-off error.

In this article, we’lI present an efficient
methodology that enables the implementation
of algorithms involving matrix-inversion oper-
ations in hardware with fixed-point arith-
metic. This methodology includes three
essential steps to follow in the development
process:

• Capturing the DSP algorithm descrip-
tion in the MATLAB language

• Definition of the fixed-point parameters
directly coupled to the MATLAB algo-
rithm description

• Automated generation of a hardware
implementation that is bit-accurate to
the fixed-point arithmetic model and
that meets area/speed requirements for a
particular application

Using this methodology, you can fully
exploit the benefits of the processing power
offered by implementations in FPGA or
ASIC fixed-point hardware.

Beamforming and Matrix Inversion
Figure 1 shows a basic narrowband beam-
former with K sensor elements arranged in a
uniform linear array (ULA); this also shows
a signal source sq(t) impinging on the array
at an angle of incidence q. The K beam-
former weights (w1, w2, ..., wK) are used to
linearly combine the array data observation
samples (x1(n), x2(n), ..., xK(n)). These are
set to “steer” the response of the array for
optimum reception. The output of the
beamformer is the scalar y(n).

A generalized sidelobe canceller (GSC) is
a special beamformer structure that allows

One effective technique for the solution
of this equation is the recursive least-squares
(RLS) approximation with QR decomposi-
tion of the input data matrix. This tech-
nique finds the solution without explicit
inversion of a matrix and avoids construct-
ing the correlation matrix, explicitly reduc-
ing the dynamic range requirements of
signals involved in the computations.

Figure 3 shows the diagram of an adap-
tive GSC beamformer that uses a QRD-
RLS algorithm for a recursive solution of
the normal equation.

the use of unconstrained optimization
methods in the design of the optimum
beamformer weights. The structure of the
GSC is shown in Figure 2. To find the opti-
mum weights wa using the LS criterion, the
following deterministic normal equation
must be solved:

Rx wa = b

Here, Rx is the correlation matrix of the
input to the unconstrained section of the
GSC and the vector b is the cross-correlation
of the input Xa and the ideal response.

October 2005 DSP magazine 33

x1(n)
w1*

w2*

w3*

wK*

∑

x2(n)

sq (t)

x3(n)

xK(n)

y(n)

Sensor Array
Elements

Broadside

q

Data-Independent
Wc

Unconstrained
Wc

Block Matrix
B

x y(n)

Sensor
Data

Beamformer
Output

+
+

-

Non-Adaptive
Wc

Adaptive
Wc

Block Matrix
B

x

xa

y(n)
e(n)d(n)

Sensor
Data

Beamformer
Output

QRD-RLS Adaptive
Spatial Filter

+
+

-

Figure 1 – Narrowband beamformer

Figure 2 – Generalized sidelobe canceller (GSC)

Figure 3 – Adaptive GSC beamformer

34 DSP magazine October 2005

Example Beamformer
Model for Hardware Synthesis
The GSC beamformer MATLAB model
we used for the design includes the fol-
lowing features:

• A ULA array of four sensor ele-
ments

• A narrowband input signal of inter-
est, impinging at an angle of 0°

• A narrowband interfering signal
impinging at an angle of 10°, with
the same amplitude as the signal of
interest

• Uncorrelated white noise to model
receiver noise at a level of -20 dB
relative to the signal of interest

The GSC MATLAB model consists
of three parts. A top-level script gener-
ates signals and displays results to ana-
lyze the performance the beamformer.
The script invokes the QRD-RLS
algorithm function in a streaming
fashion to perform interference can-
cellation. Figure 4 shows an excerpt of
this script.

The second part of the model is a
synthesizable QRD-RLS algorithm
function, qrd_rls_spatial(), which per-
forms optimum cancellation of the
interferer signal. This function is
shown in Figure 5.

The last part of the GSC model is
the synthesizable function that rotates
arrays of values to perform orthogonal
Givens rotations (givens_rotation).
This rotation function can be automat-
ically generated by the AccelChip DSP
Synthesis tool as part of the Advanced
Math Toolkit of synthesizable models.
This function is shown in Figure 6.

The analysis and visualization of the
performance of the GSC model is
shown with plots in Figure 7. The sig-
nal of interest is shown on the top plot.

The middle plot shows the signal
from the data-independent portion of
the GSC. This signal clearly shows the
distortion caused by the interferer sig-
nal impinging on the sensor array.

The bottom plot shows the output
of the GSC after effective cancellation

of the interferer done by the QRD-RLS
algorithm function.

Figure 8 shows beampatterns of the
GSC. The top plot shows the beampat-
tern of the data-independent portion of
the GSC. This shows that the interferer
signal impinging at 10° suffers an atten-
uation of only 2 dB approximately rela-
tive to that of the desired signal at 0°;
this small attenuation is what causes the
distortion in the received signal from
the broadside.

The middle plot shows the overall
GSC beampattern. The improvement in
the cancellation of the interfering signal
can be seen with the larger attenuation at
10°. This is what accounts for the cancel-
lation of the interferer signal obtained at
the output of the GSC.

The bottom plot is a zoomed view of
the overall GSC beampattern to highlight
the attenuation achieved around 10°.

Definition of the Fixed-Point Model
The starting point of the design is the
original “golden” reference MATLAB
model of the GSC. The next step is to
define a fully parameterized fixed-point
arithmetic model. This model is directly
coupled to the original MATLAB model
to maintain lockstep with this golden ref-
erence. There are two critical aspects for
efficiency in this step:

• The ability to intuitively associate
fixed-point parameters with vari-
ables in the MATLAB algorithm
description

• The ability to quickly evaluate the
effects of the fixed-point arithmetic
on the overall performance of the
algorithm

Defining a fully parameterized fixed-
point arithmetic model is an iterative
process. In the case of the GSC with
QRD-RLS, the numerical performance
of the implicit matrix inversion operation
is measured by the attenuation shown in
the overall beampattern. We evaluated
several input bit-widths with the interme-
diate variables sized to avoid overflows –
the effect on the attenuation in the beam-
pattern is shown in Figure 9.

...

% combine signal, interference and noise

s = s_p + s_i + DetNoise;

Wc = ones(NSensors,1);

d = s*Wc; % broadside array output

% blocking matrix

B = [eye(NSensors-1); zeros(1,NSensors-1)] -

- [zeros(1,NSensors-1); eye(NSensors-1)];

s_n = s * B; % interferer and noise only

% streaming loop for recursive LS

computation

for n = 1:NUM_ITER

 [e_rls(n)] =

qrd_rls_spatial(s_n(n,:),d(n));

end

...

function [e] = qrd_rls_spatial(xa,d)

% QRD-RLS for adaptive spatial filtering

M = 3;

persistent R p

if isempty(R)

 R = zeros(1,M*M);

 R(1:M:end) = 0.01;

 p = zeros(1,M);

end

Ci = 1.0;

lambda = sqrt(0.99);

% update R matrix and p vector

for row = 1:M

 xvec = lambda*[R(1:M) p(1) Ci];

 yvec = [xa d 0];

 xvec_rot,yvec_rot] =

givens_rotation(xvec,yvec);

 R = [R(M+1:end) xvec_rot(1:M)];

 xa = [yvec_rot(2:M) 0];

 p = [p(2:end) xvec_rot(M+1)];

 d = yvec_rot(M+1);

 Ci = xvec_rot(end);

end

e = Ci*d; % recursive error estimate

function [v, w] = givens_rotation(x, y)

% Givens rotation

r_sqr = x(1)^2 + y(1)^2;

r_inv = invsqrt_001(r_sqr);

sin_phi = y(1)*r_inv;

cos_phi = x(1)*r_inv;

v = x*cos_phi + y*sin_phi;

w = y*cos_phi - x*sin_phi;

Figure 4 – GSC MATLAB top-level script

Figure 5 – Synthesizable QRD-RLS function

Figure 6 – Givens rotation function

We selected a 16-bit implementation
that achieves an almost ideal interference
rejection, as shown in Figure 9.

Generation of Hardware Implementation
The final step in our methodology is to
generate the hardware implementation.
There are two critical aspects to achieve
efficiency:

• The ability to automatically generate
an implementation that is bit-accu-
rate against the fixed-point model of
the DSP algorithm

• The ability to tailor the hardware
architecture of the implementation
to meet area/speed requirements

The generation of a suitable hard-
ware implementation is also done itera-
tively to balance resource utilization
and speed of operation. For the QRD-
RLS algorithm, there are two points
where the area/speed of the implemen-
tation can be affected:

• Controlling the degree of resource
sharing of the givens_rotation
function

• The rotation of row elements in
the Givens rotation function can
be achieved with different compu-
tation styles, including Newton-
Raphson (using multipliers) and
CORDIC (multiplier-less) micro-
architectures

We performed iterations of this step
exploring different combinations of
resource utilization and speed of oper-
ation of the QRD-RLS function. The
results of RTL synthesis, summarized
in Table 1, are for a Xilinx Virtex-4
XC4VSX55 target device.

The results indicate a small
decrease in resource utilization (LUTs)
with sequential implementations.
With a goal of maximum speed of
operation and a minimum use of hard-
ware multipliers, the CORDIC paral-
lel implementation was picked for the
place and route of the netlist from
RTL synthesis. The results of the
implementation using the Xilinx
ISE™ software mapped to the same
target device as during synthesis are
shown in Table 2.

The hardware implementation
results show that the QRD-RLS func-
tion can be implemented in 12% of
the logic resources of a XC4VSX55
device with a sustainable data rate of
1.7 megasamples per second.

Conclusion
You can create an efficient hardware
implementation of DSP algorithms in
Xilinx FPGAs using matrix inversion
operations with fixed-point arithmetic.
The efficiency with which you can
implement these algorithms is based on
the use of the AccelChip DSP Synthesis
tool to enable a high level of automa-
tion. The results show the effectiveness
of this methodology in the implemen-
tation of a challenging algorithm in
fixed-point arithmetic hardware.

To get more information about
AccelChip’s solutions, visit www.
accelchip.com. For a list of other techni-
cal papers from AccelChip, visit
www.accelchip.com/papers.

This article is based on the paper, “Efficient
Methodology for Implementation of Matrix
Inversion in Fixed-Point Hardware,” pre-
sented at the 2005 GSPx Conference.

Metric Multiplier Parallel Multiplier Sequential CORDIC Parallel CORDIC Sequential

LUTs 5% 4% 10% 9%

DSP48s 51 19 1 1

Sustainable
Data Rate 1.9 MSPS 0.8 MSPS 1.8 MSPS 0.18 MSPS

Occupied Slices 3076 (12%)

DSP48s 1

Sustainable Data Rate 1.7 MSPS

October 2005 DSP magazine 35

Figure 7 – GSC time-domain signals

Figure 8 – GSC beampatterns

Figure 9 – GSC beampattern in fixed point

Table 1 – RTL synthesis results Table 2 – Implementation results

by Eric Cigan
Product Marketing Manager
AccelChip Inc.
eric.cigan@accelchip.com

Narinder Lall
Senior DSP Marketing Manager
Xilinx, Inc.
narinder.lall@xilinx.com

There are two kinds of people in electronic
design: those who think in terms of words
and those who think in terms of pictures.
This dichotomy is most appar-
ent in the world of DSP. Some
designers prefer to develop
algorithms in language form,
while others choose to draw out
block diagrams showing data
flows. Until now, different sets
of tools were required for each
method – but why should you
have to choose?

Xilinx® System Generator
for DSP is well established as a
productive tool for creating
DSP designs using graphical
methods. With a visual pro-
gramming environment that
leverages The MathWorks
Simulink tool and its prede-
fined Xilinx block set of DSP
functions, System Generator
meets the needs of both sys-
tem architects (to integrate
design components) and hard-
ware designers (to optimize
implementations). (For more
details, see “Implementing

DSP Algorithms in FPGAs” in the
Winter 2004 issue of the Xcell Journal.)

Many DSP algorithm developers have
found that the MATLAB language best
meets their preferred development style.
With more than 1,000 built-in functions, as
well as toolbox extensions for signal process-
ing, communications, and wavelet process-
ing, MATLAB offers a rich environment for
algorithm development and debugging.

In addition to the IP functions pro-
vided in MATLAB, the MATLAB lan-

guage is uniquely adept with vector- and
array-based waveform data at the core of
algorithms in applications such as wire-
less communications, radar/infrared
tracking, and image processing.

The AccelChip DSP Synthesis tool was
developed specifically for algorithm devel-
opers and DSP architects who have
embraced a language-based flow. With
AccelChip, you begin with MATLAB M-
files to perform stimulus creation, algo-
rithm evaluation, and post-processing.

You can load the M-files into
the AccelChip tool; they
become the “golden source” for
a design flow that ultimately
produces optimized implemen-
tations in Xilinx FPGAs.

Unifying Words and Pictures
In the past, design teams
looked on System Generator
and AccelChip DSP Synthesis
as mutually exclusive design
tool options, but wished for
access to the best aspects of
each tool. In response,
AccelChip and the DSP divi-
sion at Xilinx collaborated in an
effort to combine AccelChip’s
tools with System Generator.
The result allows you to
mix language-based algorithm
design in MATLAB and graph-
ical block-oriented design in
Simulink in a novel unified
electronic-system-level (ESL)
design environment (Figure 1).

Integrating MATLAB Algorithms
into FPGA Designs
Integrating MATLAB Algorithms
into FPGA Designs

October 2005 DSP magazine 37

The integration of AccelChip DSP Synthesis
and Xilinx System Generator for DSP provides
a seamless path from MATLAB/Simulink to
verified FPGA-based DSP systems.

The integration of AccelChip DSP Synthesis
and Xilinx System Generator for DSP provides
a seamless path from MATLAB/Simulink to
verified FPGA-based DSP systems.

Figure 1 – System Generator/AccelChip interface

AccelChip’s DSP Synthesis tool aug-
ments System Generator by providing a
seamless integration path for algorithm
developers, enabling the rapid creation of
IP blocks, directly from M-files, that
enhance the Xilinx block set in System
Generator. In addition, AccelChip has
optional AccelWare toolkits that comple-
ment System Generator with additional IP
cores optimized for Xilinx cores. AccelWare
toolkits include mathematical building
blocks, signal processing, communications,
and advanced math to implement linear
algebra functions.

Kalman Filter Design Example
To illustrate this approach, let’s take an
advanced algorithm written in MATLAB,
use AccelChip to synthesize the design, and
then integrate it into a System Generator
model. Our example is a Kalman filter – a
recursive, adaptive filter well-suited to
combining multiple noisy signals into a
clearer signal (for details on the topic, see
Arthur Gelb’s book, “Applied Optimal
Estimation”).

Kalman filters embed a mathematical
model of an object – such as a commercial
aircraft being tracked by ground-based
radar – and use the model to predict future
behavior. Kalman filters then use measured
signals (such as the signature of the aircraft
returned to the radar receiver) to periodi-
cally correct the prediction.

Figure 2 shows the MATLAB M-file
describing the Kalman filter. The algorithm
defines matrices R and I that describe the

fixed-point design effects like saturation
and rounding. AccelChip aids in this
process by propagating bit growth through-
out the design and letting you use direc-
tives to set constraints on bit width. This
algorithmic design exploration allows you
to attain the ideal quantization that mini-
mizes bit widths while managing overflows
or underflows, allowing early trade-offs of
silicon area versus performance metrics.

Once you have attained suitable quanti-
zation, the next step is to generate RTL for
your target Xilinx device. At this point, you
can use the AccelChip GUI to set constraints
on the design using the following design
directives to achieve further optimizations:

• Rolling/unrolling of FOR loops

• Expansion of vector and matrix addi-
tions and multiplications

• RAM/ROM memory mapping of
vectors and two-dimensional arrays

• Pipeline insertion

• Shift-register mapping

Using these directives constitutes
hardware-based design exploration,
allowing the design team to further
improve quality of results. In synthesizing
the RTL, AccelChip evaluates the entire
design and schedules the entire algo-
rithm, performing necessary boundary
optimization in the process.

statistics of the measured signal and the
predicted behavior. The last nine lines of
the algorithm are the code that predicts
and corrects the estimate.

This algorithm illustrates the flexibility
and conciseness of the MATLAB language.
Common operators such as addition and
subtraction operate on variables like the
two-dimensional arrays A or P_cap without
having to write loops, as you would in lan-
guages like C. Multiplication of
two-dimensional arrays is auto-
matically performed as matrix
multiplication without any special
annotation. MATLAB operators
such as matrix transposition allow
the MATLAB code to be compact
and easily readable. And complex
operations like matrix inversion
are completed using MATLAB’s
extensive linear algebra capabili-
ties. Although such an algorithm
could be constructed as a block
diagram, doing so would obscure
the algorithm structure so readily
apparent in MATLAB.

With AccelChip, a first step in
synthesizing a complete algorithm
is to generate any major cores that
are referenced – in this case, the matrix
inverse indicated by the function call
inv(P_cap_est+R). But you can implement a
matrix inverse in many ways; the choice of
which method to use depends on the size,
structure, and values of the matrix.

Using the matrix inverse IP core from
the AccelWare toolkit, you can choose
from micro-architectures designed for dif-
ferent applications. These micro-architec-
tures can be optimized for speed, area,
power, or noise. In this case, the most suit-
able approach is to use the AccelWare QR
matrix inverse core.

Synthesizing RTL with AccelChip
With the MATLAB M-file loaded into
AccelChip, the next step is to simulate the
floating-point design to establish a baseline.
You would then use AccelChip to convert
the design to fixed-point math, verifying it
in MATLAB as shown in Figure 3.
AccelChip offers an array of tools to help
you trim bits from the design and verify

38 DSP magazine October 2005

function [S] = simple_kalman(A)
 DIM = size(A,2);
 persistent p P_cap
 if isempty(P_cap)
 P_cap = [8 0 0; 0 8 0; 0 0 8];
 p = ones(DIM,1)/2;
 end;
 I = eye(DIM);
 R = [128 0 0;0 128 0; 0 0 128];

 % estimate step:
 %p_est = p;
 P_cap_est = P_cap+I;

 % correction step:
 K = P_cap_est * inv(P_cap_est+R);
 p = p + K * (A' - p);
 P_cap = (I - K)*P_cap_est;
 S = p';

0 50 100 150 200 250 300 350
-0.5

0

0.5
True signals

0 50 100 150 200 250 300 350
-1

0

1
Signals with additive noise

0 50 100 150 200 250 300 350
-1

0

1
Filtered signals

Figure 2 – Kalman filter example M-file

Figure 3 – The Kalman filter constructs estimates of the
three signals based on input signals corrupted by noise.

Throughout this flow, AccelChip main-
tains a uniform verification environment
through a self-checking test bench; the
input/output vectors that were generated
when verifying the fixed-point MATLAB
design are used to verify the generated
RTL. The RTL verification step also gives
AccelChip the information necessary to
compute the throughput and latency of the
Kalman filter. This is essential information
to assess whether the design meets specifi-
cations and is critical for achieving cycle-
accurate simulation.

Exporting from AccelChip to System Generator
Although RTL verification is a key step in
the design flow, designers want to see algo-
rithms running in hardware. System
Generator’s hardware-in-the-loop co-simu-
lation interfaces make this a push-button
flow, allowing you to bring the full power
of MATLAB and Simulink analysis func-
tions to hardware verification.

Now that you have run RTL verifica-
tion in AccelChip, you are ready to export
the AccelChip design to System Generator
by going to the “Export” pull-down menu
in the AccelChip GUI and selecting
“System Generator.” AccelChip then gen-
erates a cycle-accurate System Generator
block that supports both simulation and
RTL code generation.

At this point, you transition the design
flow to System Generator, where a new

block for the Kalman filter is available in
the Simulink library browser. You need
only select the Kalman filter block and drag
it into the destination model to incorporate
the AccelChip-generated Kalman filter into
a System Generator design.

Figure 4 shows the resulting diagram for
the Kalman filter. In the center of the
System Generator diagram is the Kalman
filter, and around it are the gateway blocks
needed for a System Generator design.

Once the AccelChip-generated block is
included in the System Generator design,
you can perform a complete, system-level
simulation of cycle-accurate, bit-true mod-
els to verify that the system meets specifica-
tions. You can use AccelChip-generated
blocks for System Generator in conjunc-
tion with the Xilinx block set. Once this
system-level verification step is completed,
the next step in the System Generator flow
is to move on to design implementation.
The “Generate” step in System Generator
compiles the design into hardware.

Verification Options
All design files generated by AccelChip,
including exported System Generator files,
are verified back to the original “golden”
source MATLAB M-file. AccelChip’s veri-
fication approach is based on the genera-
tion of a test bench from the MATLAB
source – this test bench is applied at the
RTL level within AccelChip and can be

applied in System Generator to verify the
correctness of the design.

Once verified in the System Generator
environment, you can verify the
AccelChip-generated block using System
Generator’s supported methods – includ-
ing HDL co-simulation and hardware-in-
the-loop – to accelerate hardware-level
simulation 10 to 100 times.

Conclusion
The integration of AccelChip with
Xilinx System Generator is the first solu-
tion to unite MATLAB-based algorith-
mic synthesis favored by algorithm
developers with the graphical design flow
used by system architects and hardware
designers. It uses the rich MATLAB lan-
guage and its companion toolboxes to
create System Generator IP blocks of
complex DSP algorithms.

By using these tools together, design
teams can employ the most productive
means of modeling hardware for imple-
mentation, fully involving algorithm
developers in the FPGA design process
and completing higher quality designs
more quickly.

For more information on AccelChip
and its interface to Xilinx System
Generator, visit www.accelchip.com. For
more information on System Generator,
visit www.xilinx.com/products/design_
resources/dsp_central/grouping/index.htm.

October 2005 DSP magazine 39

a_in_3

a_in_2

a_in_1

s_3

s_2

s_1

kalman_filter_wrapper
s-model_kalman_filter_wrapper

Step

Sine Wave2

Sine Wave1

Sine Wave

Scope4

Scope3

Scope2 Scope

[ac_reset]

Goto

fpt dbl

Gateway Out2

fpt dbl

Gateway Out1

fpt dbl

Gateway Out

dbl fpt

Gateway In3

dbl fpt

Gateway In2

dbl fpt

Gateway In1

dbl fpt

Gateway In

Band-Limited
White Noise2

Band-Limited
White Noise1

Band-Limited
White Noise

Sy stem
Generator

Figure 4 – AccelChip exports a cycle-accurate System Generator block that supports both simulation and RTL code generation.

by Manuel Uhm
Senior Marketing Manager
Xilinx, Inc.
manuel.uhm@xilinx.com

Software-defined radios (SDRs) have
already become a reality in the defense
industry through programs such as the
Joint Tactical Radio System (JTRS).
Because SDRs are already being deployed,
why would a new architectural paradigm
be of interest? The reason is simple: the
power consumption and cost of first-gener-
ation SDRs is generally too high for wide-
spread deployment.

Despite Moore’s Law, incremental process
improvements are not sufficient to reach the
power and cost restrictions for small-form-
factor, handheld, and manpack radios, such
as those required for JTRS Cluster 5. In
addition, architectural changes are required
to reach the strenuous requirements.

Using partially reconfigurable platform
FPGAs as an SDR system-on-chip (SoC)
addresses both of these issues by decreasing
the number of DSP components in an

SDR while still providing the necessary
functionality. In this article, I’ll discuss
how to apply this revolutionary technology
to an SDR black-side modem.

Architectural Improvement #1:
SCA-Enabled SDR SoC
Current SDR modem architectures, such as
that of JTRS Cluster 1, utilize a discrete gen-
eral-purpose processor (GPP) to manage the
application and control infrastructure,
known as the Software Communications
Architecture (SCA) Operating Environment
(OE). The GPP is coupled with an FPGA
for channelization and wideband waveform
processing and a DSP for narrowband wave-
form processing.

The SCA OE comprises a POSIX-com-
pliant real-time operating system (RTOS)
for scheduling and memory protection, a
CORBA (Common Object Request Broker
Architecture) ORB for message passing, and
an SCA Core Framework (CF) for loading
and tearing down waveforms.

With the availability of platform
FPGAs such as Xilinx® Virtex™-II Pro

and Virtex-4 FX devices that incorporate
a hard-core PowerPC™ 405 GPP, it is
now possible to run the entire SCA OE
in the same FPGA that is required in the
modem for channelization and wideband
waveform processing. Because the 405
has a memory management unit
(MMU), it is possible to run a full RTOS
and ensure memory protection, unlike a
soft-core GPP. This results in an SCA-
enabled SDR SoC.

I/O accounts for the most power con-
sumption in an SDR modem; thus it is
important to reduce the I/O count as
much as possible. Removing the discrete
GPP from the modem does just this, there-
by having the primary benefit of reducing
the power consumption of the modem.
Furthermore, the 405 hard-core is power-
efficient, providing 600 DMIPS at 0.4W.

Secondary benefits include potentially
lower cost by the removal of the discrete
GPP and a reduced signal processing foot-
print, which can result in a smaller form
factor or better thermal dissipation
through superior board layout.

Software-Defined Radio:
The New Architectural Paradigm
Software-Defined Radio:
The New Architectural Paradigm

40 DSP magazine October 2005

Reduce system power and cost with a shared resources SoC.Reduce system power and cost with a shared resources SoC.

Architectural Improvement #2:
Shared Resources
The current architecture for implement-
ing an SDR modem is known as a dedi-
cated resources model. It is called
dedicated resources because a set of pro-
cessing resources is dedicated to a radio
channel (where each channel is capable of
running a waveform, such as the Single
Channel Ground and Airborne Radio
System [SINCGARS]). In this case, the
processing resources consist of an A/D,
D/A, FPGA, DSP, and GPP. To imple-
ment an N-channel radio, N sets of pro-
cessing resources are required. This is
illustrated in Figure 1 for a four-channel
SDR modem supporting an SCA CF.

From a functional perspective, this
architecture is sufficient for radios with less
power and size-constrained environments,
such as Cluster 1 vehicular radios.
However, it is an inefficient usage of the
available processing resources, resulting in
excess power consumption and cost. For
example, the signal processing parts for all
channels of the radio must be selected for
the worst-case scenario; the processing
resources must be able to support the
largest waveform (WNW, the Wideband
Networking Waveform) such that if only a
small narrowband waveform like SINC-
GARS is instantiated, most of that chan-
nel’s processing resources are not utilized.
This has a significant impact on driving up

ed is a function of the size of the waveform
and the size of the available processing
resources. Figure 2 illustrates how a multi-
channel SCA-enabled SDR modem could
be implemented using this architecture. In
this instance, the signal processing part
count has decreased from 20 to 4 compo-
nents. Hence, implementation of these
architectural advantages can result in a pro-
duction cost and power consumption that
is two to three times lower than the dedi-
cated resources model.

You will also notice that the FPGA is
capable of doing all the heavy digital signal
processing. The embedded GPP is also a
natural fit for the light signal processing,
such as synchronization loop control, as
well as the upper protocol layers such as
link and network layers.

It is also worth noting that both archi-
tectures illustrated here are using 100%
commercially available components. In the
shared resources model, the SoC FPGA can
be a mid- to large-sized Virtex-II Pro or
Virtex-4 FX FPGA with an embedded
PowerPC core.

Partial Reconfiguration:
The Enabling Technology
The technology that enables the shared
resources model is partial reconfiguration
of the FPGA. Partial reconfiguration
enables an application or component, such
as a waveform or waveform component, to

the cost of the modem. Obviously, the
problem gets exacerbated as you scale the
model further. JTRS AMF (the JTRS
Cluster for Airborne, Maritime, and Fixed
installations) requires some radios to sup-
port eight channels. This also has an
impact on power consumption.

A more efficient architecture for an SDR
modem is referred to as a shared resources
model. Unlike a dedicated resources model,
this architecture offers the capability to sup-
port multiple waveforms across a single set
of processing resources, allowing for much
more efficient usage of the resources. The
number of waveforms that can be support-

October 2005 DSP magazine 41

Waveform D

Waveform C

Waveform B

Waveform A Waveform Control

A/D

D/A

FPGA DSP GPP

FPGA Functions
• Channelization
• DSP

DSP Functions
• Mod/Demod
• FEC

GPP Functions
• SCA CF
• CORBA
• RTOS
• DSP

GPP Functions
• SCA CF
• CORBA/RTOS
• DSP

FPGA Functions
• Channelization
• DSP

Waveform Control

N
arro

w
b

an
d

 W
avefo

rm

N
arro

w
b

an
d

 W
avefo

rm

N
arro

w
b

an
d

 W
avefo

rm

N
arro

w
b

an
d

 W
avefo

rm

W
id

eb
an

d
 W

avefo
rm

(i.e., W
N

W
)

A/D

D/A

Embedded

GPP
Embedded

GPP

FPGA FPGA

SERDES

Figure 2 – A multi-channel SCA-enabled SDR modem architecture using a shared
resources model. In this example, 5 channels supporting 1 wideband waveform and

4 narrowband waveforms have been implemented, while reducing the signal processing
part count from 20 to 4 components compared to a dedicated resources model.

Figure 1 – Current SCA-enabled SDR modems use a dedicated set of signal processing
hardware for each channel. The more channels the SDR must support, the more hardware

it contains. This has a direct impact on power consumption and cost.

42 DSP magazine October 2005

be dynamically loaded or unloaded in a
portion of the device while other portions
are either being used by other applications
or going unused. This allows support for
multiple independent applications concur-
rently in a single FPGA, which is some-
what analogous to dynamic task switching
of a GPP. Without this capability, it would
be necessary to reconfigure the entire
FPGA to support a different application,
which would result in the loss of
all previous applications.

For example, if an FPGA was
configured to support a SAT-
URN comm link, it would have
to be fully reconfigured to sup-
port an HAVEQUICK comm
link, therefore resulting in the
loss of the SATURN link regard-
less of how much leftover logic
there was in the FPGA. Clearly
this is unacceptable for a radio.
Furthermore, partial reconfigu-
ration enables an adaptive wave-
form to be supported in a
smaller FPGA because the
FPGA can dynamically load and
switch between waveform com-
ponents, rather than having all
possible waveform components
loaded at runtime.

Three basic elements are
required to support partial
reconfiguration in an FPGA:

1. An FPGA that inherently
supports partial reconfigura-
tion, such as the Xilinx Virtex
family. The Virtex family is
frame-reconfigurable, meaning that
individual frames of logic within the
device can be dynamically reconfigured
independent of the rest of the frames. In
Virtex-II Pro devices, a frame consists of
a column, while in Virtex-4 FPGAs, a
frame consists of a 16 x 1 configurable
logic block (CLB) “tile.”

2. At least a basic controller must be avail-
able to dynamically manage the recon-
figuration of the FPGA. This could be
an embedded GPP, a soft-core GPP
(such as the Xilinx MicroBlaze™
processor core), or an external GPP con-

nected to the FPGA. In the shared
resources model example, the same
embedded GPP that is running the SCA
OE is also managing the partial recon-
figuration of the FPGAs.

3. Partial reconfiguration software develop-
ment tools that support the develop-
ment of applications, restricted to
boundaries complying with the hard-
ware architecture of the FPGA.

Although elements #1 and #2 have been
around for some time, it is only recently that
software development tools enabling partial
reconfiguration design have become avail-
able. Standard tools from Xilinx are available
by request for Virtex-II Pro today and for
Virtex-4 in the fourth quarter of 2005.

Implementing the Architecture
The shared resources model using an SCA-
enabled SoC has been proven to work
today in a COTS (commercial-off-the-
shelf) Xilinx Virtex-II Pro-based SDR
modem from ISR Technologies. The
demonstration system uses two modems,

each supporting two independent applica-
tions: a narrowband, 256 Kbps waveform
supporting a comm link between two VoIP
phones; and a wideband, 1,024 Kbps wave-
form supporting a streaming video link
between two laptops.

Using a COTS SCA CF from the
Communications Research Centre, the video
link can be instantiated and torn down while
maintaining the comm link – and vice versa.

More details on the demon-
stration can be found in
the December 2004 JTRS
JPO Technology Awareness
Bulletin, published by the
JTRS Joint Program Office at
http://jtrs.army.mil/sections/
t e c h n i c a l i n f o r m a t i o n /
fset_technical.html.

Figure 3 illustrates the
floorplan of the Virtex-II Pro
device in each of the
modems. The yellow areas
represent static infrastruc-
ture, as they do not change
regardless of the waveforms
being supported. This
includes the digital down
and up converter, internal
shared buses (the Core
Connect bus for the embed-
ded PowerPC 405) and the
interfaces to external devices,
such as the A/D and D/A.
The two applications (wave-
form A and B) run inde-
pendently in the partially
reconfigurable region in the

right-hand side of the device. If necessary,
a larger waveform or more smaller wave-
forms could run in the same space.

Conclusion
Power consumption and cost are issues that
are preventing widespread deployment of
SDRs today, particularly in size, weight,
power, and cost-constrained environments.
Architectures that incorporate SCA-
enabled SDR SoCs and a shared resources
model can help to address these issues by
providing the most efficient SDR modem
implementation, thereby driving down the
power and cost.

RJ45 – 100BT
(Data)

RJ45 – 100BT
(Voice)

RJ45 – 100BT
(Ctlr)

Ethernet Switch

Ethernet Interface

405
GPP

C
ore C

onnect
B

us to 405 C
ore

W
aveform

 A

W
aveform

 B

Waveform Combiner

Interpolation Filter

TX NCO RX NCO

D/A Interface
(14 bits – 300 MHz)

A/D Interface
(12 bits – 200 MHz)

DAC ADC

Xilinx Virtex-II Pro
SCA-Enabled
SDR SoC

Decimation Filter

Figure 3 – Floorplan of a Xilinx Virtex-II Pro-based SCA-enabled SDR SoC
suporting shared resources through partial reconfiguration. The yellow areas

represent static infrastructure and do not change from waveform to waveform,
whereas the rest of the FPGA is available for partially reconfigured applications.

Traquair Data Systems, Inc. Tel: 607-266-6000 Email: sales@traquair.com Web: www.traquair.com

micro-line C6713Compact

Embedded DSP/FPGA board

The micro-line C6713Compact is a high performance single board DSP/FPGA

solution, offering exceptional capabilities and flexibility.

Texas

Instruments’ most powerful floating point DSP processor, the TMS320C6713,

as well as with

xtensive digital I/O capabilities for easy integration with the on-board

FPGA, DSP and FireWire resources.

Measuring only 67 x 120mm, it combines a Xilinx Virtex-II FPGA with

up to 64MBytes of SDRAM, 8MBytes of FLASH ROM, FireWire,

and optional Ethernet communications and analog I/O.

It is suitable for stand-alone operation or as a mezzanine daughter card, and

has e

TMS320C6713 DSP

Up to 2400MIPS/1800 MFLOPS

Virtex-II FPGA

250k, 500k or 1MGates

IEEE 1394 FireWire

400MBit/sec Communications

IIDC DCAM Video Framecaputre

Optional Ethernet

10/100BaseT,

TCP/IP, UDP, ICMP, IGMP, Telnet,

HTTP, SMTP, POP3, FTP ,

Embedded Web Server

Optional Analog I/O

12/14/16-bit multi-channel A/D/A

via FPGA I/O Pins or DSP EMIF

The Compact DSP & FPGA Solution

Optional Data Storge

HD or Compact FLASH

FAT32 Filesystem Support

by Ken Sienski
President
Red River
sienski@red-river.com

Established in 1996, Red River specializes
in high-performance signal processing and
data communication solutions for the
embedded systems market, especially soft-
ware defined radio applications.

Our main challenge in serving the soft-
ware defined radio market is to have a hard-
ware platform that meets the demands of
multiple configurations. Some customers
are looking for a complete, pre-built radio
solution; others are looking to add custom
features to a radio platform. These disparate
requirements place great demands on us to
find a common programmable silicon solu-
tion that meets both needs.

The Xilinx® Virtex-4™ FPGA family

allows us to do exactly that – provide differ-
ent customer solutions at the lowest cost.
Advanced features such as FIFO logic,
embedded PowerPC™, RocketIO™ trans-
ceivers, and Ethernet MAC, as well as
advanced power and packaging technology,
makes Virtex-4 devices a perfect choice for us.

Model 351 (Pocket Change)
Our next-generation product, the Model
351, or “Pocket Change,” transforms any
portable computer into a high-performance
multi-channel software defined radio
transceiver. The Pocket Change CardBus
PC Card accepts two analog input signals
through MMCX coaxial connectors on
the outside edge of the card. The receiver
input is AC-coupled to a 14-bit (80
MSPS) A/D converter. The transmitter
output is supplied through a 14-bit
(100 MSPS) D/A converter. Most of the

digital logic is supplied using a Virtex-4
FPGA device.

When we began developing the Model
351, we investigated various offerings on
the market and finally decided to use
Virtex-4 FPGAs. The Virtex-4 FPGA fam-
ily provides the flexibility and features that
support both our needs and the require-
ments of our customers.

The Model 351 design comprises a
Virtex-4 FPGA connected to an A/D con-
verter, a D/A converter, and a dedicated PCI
bus controller (for the CardBus interface to
the host computer) (Figure 1). Although it is
targeted at our traditional software defined
radio customers, the Model 351 is also suit-
able for signal acquisition or generation, sig-
nal intelligence collection, transceiver
modem algorithm prototyping, frequency
hop signal generation, or portable signal
recorder/playback applications.

Virtex-4 FPGAs for
Software Defined Radio
Virtex-4 FPGAs for
Software Defined Radio

44 DSP magazine October 2005

Red River’s new PCMCIA Type II module can
transform any notebook computer into a
software defined radio using a Virtex-4 FPGA
for performance-critical DSP functions.

Red River’s new PCMCIA Type II module can
transform any notebook computer into a
software defined radio using a Virtex-4 FPGA
for performance-critical DSP functions.

Customization and Flexibility
Initially we considered using dedicated dig-
ital upconverter/downconverter chips to
implement the Model 351 transceiver
function. However, many of our customers
prefer the flexibility of inserting custom
functions into their designs. The cus-
tomization requirement pushed us to use
programmable technology.

By selecting a leading programmable
logic architecture, we can address the cus-
tomization needs of a broad set of cus-
tomers. Xilinx ISE™ development
software provides our customers a familiar
design environment to embed custom DSP
functions in the uncommitted logic of the
Virtex-4 FPGA.

Another benefit from using Virtex-4
FPGAs is that we can offer multiple prod-
ucts using one common hardware plat-
form. This has helped reduce hardware
development time and simplify inventory
management.

Power and Space Efficiency
One of the challenges in CardBus PC Card
development is to select a device that meets
the PCMCIA functional specification and
the tight power restriction of 3.3W. We
were impressed with the power efficiency
of the Virtex-4 family, as it consumes half
the power of comparable logic solutions.

Virtex-4 FPGAs give us significant fea-
tures and performance while still meeting
the tight power budget of our design. In
addition, PCMCIA imposes severe height
restrictions in order to fit into the Type II
module form factor. The Virtex-4 FF668
package offering is one of the few FPGA
packages that meet the height requirements.

the highest-performance internal block
RAM and unique integrated FIFO logic,
Virtex-4 FPGAs give us the FIFO quanti-
ty and performance that we need to keep
up with the bandwidth of the analog
components and host interface.

Three Platforms Satisfy
Multiple Requirements
The three Virtex-4 platforms (LX, SX, and
FX) give us unique capabilities for several
upcoming products. For customers want-
ing to add custom logic functionality, we
use the LX platform. LX offers the choice
of many different gate densities within the
same package footprint, allowing us to use
the same base design to support many dif-
ferent customer needs.

We have some designs that necessitate
tremendous additional DSP capability
for math-intensive processing, including
signal modulation and demodulation.
For these applications, we see the SX
platform as a natural fit. SX devices
give us by far the largest amount of DSP
performance.

For some of our other designs, we are
implementing the advanced system-level
block functionality of the FX platform –
PowerPC running VxWorks, RocketIO
transceivers for optical and PCI Express
interfacing, and gigabit Ethernet MAC
cores. Because Virtex-4 devices give us
three platforms to choose from, we can
offer different capabilities across our
product line.

Conclusion
Software defined radio products must
address a broad application space, which
presents a challenge when selecting com-
ponent features. The three Virtex-4 plat-
forms give us the feature choice and
performance that we require to field a
family of solutions for both fixed and
mobile installations.

The upcoming Model 351 demon-
strates cutting-edge capabilities in an
extremely small, power-efficient module
that operates in a standard notebook com-
puter. Visit www.red-river.com for more
information about the Model 351 and
other Red River products.

Advanced Features and Performance
One key requirement for a software defined
radio application is high-performance DSP
capability. The performance requirement is
driven by the need to support multiple sig-
nal channels in real time.

Virtex-4 FPGAs are capable of perform-
ing multi-channel digital upconversion and
downconversion across the entire Model
351 analog bandwidth. The Virtex-4
device can also perform Fast Fourier
Transforms (FFTs) for spectral analysis of
incoming signal data.

The Virtex-4 FPGA provides the “heavy
lifting” to process digital information
between the host computer and the A/D or
D/A converter. The signal processing
power comes directly from the SX plat-
form. Virtex-4 devices can achieve high-
DSP performance by taking advantage of
massive parallelism within each FPGA. For
math-intensive algorithms (like
DUC/DDC applications in a software
defined radio), the high number of DSP
slices – multiply/add/accumulate engines –
that can run up to 500 MHz provides the
kind of performance only previously avail-
able in fixed ASIC technology.

Our designs also make extensive use of
the internal block memories in the FPGA
to provide multi-queue FIFO capabilities.
The FIFOs are used to buffer data
between the A/D or D/A converters and
the local bus for DMA operations, provid-
ing performance-intensive processing
without involving the host CPU in mem-
ory transfers. This gives our products the
ability to flexibly handle digital radio data
without completely consuming the CPU
performance of the host computer. With

October 2005 DSP magazine 45

Xilinx Virtex-4 FPGAs

A/D

CardBus
Interface

Analog
Input

AC
Coupler

Host
Processor

A
/D

 a
nd

 D
/A

 In
te

rf
ac

e

D/A
AC

Coupler

Analog
Output

Digital
Data/Control

Clock SelectExternal
Clock

U
se

r-
C

on
fig

ur
ab

le
 L

og
ic

Lo
ca

l B
us

 In
te

rf
ac

e

Configuration
FlashOscillator

Figure 1 – Model 351 block diagram

by Scott Ferguson
Factory Application Engineer, Logic Analyzers
Agilent Technologies, Inc.
sferguson@agilent.com

As FPGAs become a viable option for high-
performance signal processing in the digital
communications design space (cellular base
stations, satellite communications, and
radar), analysis and debug tools must
include new techniques to help you get the
most optimal performance in your circuits
in the least amount of time.

Although signal analysis tools that con-
nect to simulation and RF analog signals
are available, it’s important to be able to
measure signal quality (frequency spec-
trum, I-Q constellation, and error vector
magnitude [EVM]) in the sub-circuits of
your FPGA. Thus, Agilent has linked its
89601A Vector Signal Analysis (VSA) soft-
ware with its line of logic analyzer products
(1680, 1690, and 16900 families) to create
a digital VSA tool. This tool, when com-
bined with the Xilinx® ChipScope™ Pro
Agilent Trace Core, allows you to perform
signal analysis anywhere inside your FPGA
design quickly and easily.

In this article, we’ll show how this com-
bination of tools works – and how it can
help you get the most from your Xilinx-
based DSP circuits.

Real-Time Analysis
of DSP Designs
Real-Time Analysis
of DSP Designs

46 DSP magazine October 2005

Agilent combines the FPGA Dynamic Probe and digital VSA.Agilent combines the FPGA Dynamic Probe and digital VSA.

Digital VSA
VSA uses Fast Fourier Transform (FFT)-
based data processing to provide a combi-
nation of time- and frequency-domain
displays and measurements. Figure 1
shows a typical VSA display. Although
the display is extremely flexible and con-
figurable, the main components include
the I-Q constellation plot (upper left),
magnitude spectrum (lower left), error
vector (upper right), and measurements
(lower right). The EVM is displayed in
the measurements section. This single
value is a key indicator of the quality of
the modulated signal.

EVM is computed by extracting I-Q
symbols from the captured data; the sym-
bols are the grid points in the constella-
tion defined by the QPSK, QAM, or
other modulation scheme. Once extracted
from the measured signal, the symbol
sequence is used to create an ideal (theo-
retically perfect) signal known as the “ref-
erence” signal. Each measured signal is
compared to the reference signal, and the
difference is known as an error vector.
(The error can contain both I and Q, or
magnitude and phase components). The
individual error vectors for a single cap-
ture are combined to make a single EVM
measurement.

Although this analysis software was
originally created to analyze analog RF
signals, it was developed in a hardware-
independent, PC-based software package.
Because Agilent logic analyzers are also
PC-based, it was easy to extend the VSA
software to link to the logic analyzers.

Digital baseband and IF signals are rep-
resentations of analog signals. Rather than
using an instrument that digitizes a signal
to enable FFT analysis (like an RF signal
analyzer), the signal is digital from the
start. These digital versions of analog sig-
nals can be displayed in a logic analyzer in
a chart-style waveform, which resembles
an oscilloscope display (as in Figure 2).

As you can see, when the bus is syn-
chronously sampled and the sample rate
meets the Nyquist requirements, the logic
analyzer captures a sufficiently accurate
version of the “once-was” or “will-soon-
be” analog signal.

core is a switching MUX incorporated
into the design using the ChipScope Pro
Core Inserter, typically post-synthesis.
During core insertion, you select the
internal nets to connect to the trace core,
and the physical pads to which you will
connect the MUX output. These pads are

then routed on the circuit board to
a logic analyzer probe.

The logic analyzer controls the
FPGA through JTAG (downloading
the bit file and selecting banks).
When you select a new bank, the
logic analyzer automatically reconfig-
ures itself to match the names of the
nets now connected to the probe.

Design Example – QAM16 Modulator
With help from our local Xilinx
DSP specialist FAE, we created a
demo that fits into a small Virtex™-
II part (XC2V250-FG256) using
Xilinx System Generator for DSP.
This tool makes creating DSP
designs quick and easy. The design
(shown in the block diagram in
Figure 3) contains a 25 MHz symbol
encoder; a root-raised cosine filter
with 24 taps and 4X interpolation
(the output running at 100 MHz);
and an IF modulation stage with a
25 MHz local oscillator.

FPGA Dynamic Probe
The FPGA Dynamic Probe, working with
the ChipScope Pro analyzer, can provide
access to any part of a DSP design without
recompiling. In Figure 3, a simplified dig-
ital radio transmitter design is connected
to the Agilent Trace Core 2 (ATC2). This

October 2005 DSP magazine 47

Symbol
Encoder

BB Filter

BB Filter

IF LO

90 deg

0deg

Bank 0 Bank 1 Bank 2 Bank 3

MUX

Logic Analyzer Probe

JTAG

I

Select Signal Bank
via JTAG

Q

Figure 3 – FPGA Dynamic Probe

Figure 2 – Chart display of digital bus

Figure 1 – VSA display

Integrating the ATC2 Core
in a System Generator Design
After compiling this design into
VHDL, we inserted the ATC2 core.
To make the signal names more logi-
cal on the logic analyzer display, we
did some hand-editing of the VHDL.
(You could avoid this step by carefully
choosing net names in the System
Generator.) We then connected most
of the interesting nets as output ports
from the top-level object to make the
net names short enough to fit on the
logic analyzer screen.

When connecting nets to output
ports solely for use with the FPGA
Dynamic Probe, a good trick is to use
the “keep” attribute in the VHDL.
Because you don’t add the ATC2 core
to the design until after synthesis,
many nets would otherwise be opti-
mized out because they’re not con-
nected to anything. In VHDL, the
syntax to use the “keep” attribute
looks like this:

attribute keep : string;

attribute keep of i_symbol:
signal is “true”;

attribute keep of q_symbol:
signal is “true”;

We created an ATC2 core with
four banks, each with 48 signals.
Using the ATC2 core’s 2X TDM
option (time-slicing two signals at a
time on each pad), this requires only
25 package pads on the FPGA (one
for a clock and 24 for data). This gives
us access to 192 signals. Actually, we
only need to view about 92 signals:

• I-Q symbols, 8 bits each (16)

• I-Q filter output, 24 bits each (48)

• IF local oscillator sine and cosine,
2 bits each (4)

• Combined IF signal (24)

The output of the RRC filter with
24-bit I and Q signals was the largest
requirement, defining the number of
pins required. If 24 pins were not
available, you could drop the least sig-

nificant bits, losing some dynamic range
but still being able to view the signals.

Time-Domain, Logic,
and VSA Measurements
The logic analyzer uses synchronous
sampling (or “state mode”) to capture
the output of the ATC2 core. This
means that data is sampled on each
edge of the ATC2’s output clock. Our
design has two clock rates in the circuit
– 25 MHz for the symbol data before
the RRC filter and 100 MHz for all
parts after the filter. Because the ATC2
core supports only one clock per core,
two options exist for debug:

• Using two cores, one for each
clock rate

• Using one core with the faster
clock rate and over-sampling the
25 MHz bus

Because the two clocks are correlated
– and one is an integer multiple of the
other – you can just over-sample the
slower bus. If over-sampling is not desir-
able, the logic analyzer can use a setup
that stores every fourth sample, thereby
capturing the 25 MHz bus accurately
with one sample per 25 MHz clock.

With the extra signals available in
the MUX, we were able to double-
probe some of the interesting signals.
For example, in bank 0 we have the I
and Q symbols before the filter, and
also the I component after the RRC fil-
ter. This means we can do some time-
domain analysis in the logic analyzer to
measure group delay in the filter, as in
Figure 4. Two markers indicate a com-
mon signal feature: a wide, flat top and
the marker measurement display show-
ing an interval of 250 ns.

After probing the interesting parts of
the circuit, we performed vector signal
analysis on the signals and measured the
quality of our RRC filter and IF modu-
lation stages.

Looking at the QAM16 I-Q symbols
before they were filtered (as shown in
Figure 5), you can see the 16-point
QAM constellation (upper left graph).

48 DSP magazine October 2005

Figure 7 – Digital IF signal

Figure 6 – Filtered IQ baseband data

Figure 5 – Unfiltered QAM16 symbols

Figure 4 – Filter group delay measurement

With one point per symbol, the lines
between the constellation points are
straight. The frequency spectrum (in the
lower left graph) is centered at 0 Hz and
has a 25 MHz pass-band with power in
adjacent channels. Adjacent channel power
is undesirable in the RF signal, of course,
which is the reason for the baseband filter.

By selecting a different bank in the
ATC2 core (controlled by the logic analyz-
er), you can perform analysis on the IQ sig-
nal after the baseband filter, as seen in
Figure 6. Now the spectrum has sidebands
removed, and the measurement display (in
the lower right quadrant) shows an EVM
of 0.5%. The next time your RF team com-
plains of errors in the baseband design, you
can point to this measurement (with which
they are quite familiar), and prove that it’s
not your filter’s fault.

In many digital radio designs, this IQ
signal would now be converted to analog.
However, we performed the IF modulation
digitally inside the same FPGA. Switching
banks in the FPGA Dynamic Probe gives us
access to the digital IF (again, without
another synthesis and place and route step),
as shown in Figure 7. Note that the spec-
trum and I-Q constellation are roughly the
same, only now centered about 25 MHz.
The EVM is a little bit higher, indicating
that you may want to use a higher quality
local oscillator or another filter stage.

Conclusion
Xilinx System Generator and ChipScope
Pro analyzer, combined with the Agilent
logic analyzer and Agilent VSA software,
allow you to perform real-time in-depth
analysis on digital baseband and IF signals
inside your Xilinx FPGA. This will save
you time and eliminate doubts about the
difference between simulation and real
hardware. It can also help you communi-
cate with your colleagues on the RF design
team, enabling you to speak their language
and use the same analysis software regard-
less of signal format (analog, digital, base-
band, or RF).

For more information about these
applications, visit www.agilent.com/find/
logic-sw-apps, or contact your Agilent
representative.

October 2005 DSP magazine 49

Would you like to write for
Xcell Publications?

It’s easier than you think.

Would you like to write for
Xcell Publications?

It’s easier than you think.
We recently launched the Xcell Publishing Alliance

to help you publish your technical ideas. We can help you –
from concept research and development, through planning and

implementation, all the way to publication and marketing.

Submit articles for our Web-based Xcell Online or our printed
Xcell Journal and we will assign an editor and a graphics artist to work

with you to make your work look as good as possible. Submit your
book concepts and we will bring our partnership with Elsevier,

the largest English language publisher in the world, and our
broad industry resources to assist you in planning, research,

writing, editing, and marketing.

We recently launched the Xcell Publishing Alliance
to help you publish your technical ideas. We can help you –

from concept research and development, through planning and
implementation, all the way to publication and marketing.

Submit articles for our Web-based Xcell Online or our printed
Xcell Journal and we will assign an editor and a graphics artist to work

with you to make your work look as good as possible. Submit your
book concepts and we will bring our partnership with Elsevier,

the largest English language publisher in the world, and our
broad industry resources to assist you in planning, research,

writing, editing, and marketing.

For more information on this exciting and
highly rewarding program, please contact:

Forrest Couch
Executive Editor, Xcell Publications

xcell@xilinx.com

by Dick Benson
Consulting Applications Engineer
The Mathworks Inc.
dbenson@mathworks.com

In today’s competitive environment, with
product lifetimes now measured in
months, getting it right the first time takes
on new importance. Designs are increas-
ingly complex and often comprise hybrid
technologies including RF, high-speed sig-
nal processing (50-200 megasamples per
second [MSPS]), as well as lower speed sig-
nal processing and control.

More often than not, it is unclear at the
outset of the design process where the opti-
mal positions of the technology boundaries
will be. System designers and implementers
often make educated guesses as to the par-
titioning. Only near the end of the design
process will they know if their guess was
accurate, and that is obviously the worst
time to discover faults. The concept of
model-based design addresses this as well as
other design challenges.

The Design and Implementation
of a GPS Receiver Channel
The Design and Implementation
of a GPS Receiver Channel

50 DSP magazine October 2005

An FPGA plus DSP creates a powerful combination.An FPGA plus DSP creates a powerful combination.

Model-Based Design
Having one set of cost-effective integrated
tools that you can use to design, verify,
partition, and automatically generate code
for both FPGAs and DSPs is now a reali-
ty. The Mathworks calls this process
“model-based design.”

The concept is quite simple. First, you
create a functional implementation inde-
pendent model of the system. This is an
“executable specification,” a model that
forms the basis of all that is to follow. Once
you have verified the model to achieve your
system objectives, you can incorporate fur-
ther detail, such as adding fixed-point
effects, RF/ADC non-idealities, and parti-
tioning the design between high-speed
fixed-point hardware (an FPGA) and lower
speed hardware (a DSP). At every step of
the process, you verify that the model
achieves the performance goals. The final
step is to use the automatic code generation
capability to flawlessly implement the
model on hardware.

GPS Receiver
The GPS system has been fully operational
with 24 satellites in its constellation since
1994. It is used by millions of people, both
civilian and military, every day. The funda-
mental concept of using code-division mul-
tiple access (CDMA) for time-delay
measurement (yielding range) while allow-
ing all satellites to share the same carrier fre-
quency (1.57542 GHz for civilian access)
has not changed in the past 30 years.

Each GPS satellite uses a unique 1,023-
chip orthogonal code (Gold code) to
spread the low-speed binary phase shift
keying (BPSK, 20 ms per bit) navigation
data bitstream. The chipping clock rate is
1.023 MHz, and therefore the sequence of
1,023 chips repeats every millisecond.

The GPS receiver generates a local
copy of the same Gold code, which is
then cross-correlated with the incoming
signal. When the receiver code phase
aligns with the incoming signal code
phase, there is a +30 dB improvement in
the SNR (10*log10(1023)), and the
BPSK navigation bitstream can then be
easily detected. Roughly speaking, you
can use the local code time offset, where

the inset. The transmitter model allows
timing errors to be introduced while the
channel model includes Doppler shift.
These impairments test the receiver timing
recovery and carrier tracking loops.

Once the simulation meets the required
performance goals, it becomes an exe-
cutable specification. In theory, the model
implements the GPS physical layer accord-
ing to written specifications that you can
find in the public domain.

Verify the Model and Partition
Studies have shown that defects are most
often introduced at the beginning of a
design. Before adding more detail to the
model, it is prudent to verify that it truly
implements a GPS receiver. The MATLAB
language is becoming increasingly popular
in test and measurement applications. The
Instrument Control Toolbox option for
MATLAB can communicate with virtually
any instrument that has a hardware inter-
face. Beyond this, several test and meas-
urement vendors have integrated
MATLAB into their instruments. Anritsu
is one such company; their Signature spec-
trum analyzer can capture data into MAT-
LAB with a single mouse click.

the correlation is maximized to estimate
the time difference between the received
signal and the signal transmitted by the
satellite. The range is directly proportion-
al to time; therefore, with four satellite
ranges, and knowing the positions of the
satellites, you can navigate.

Like all CDMA systems, the design of a
GPS receiver presents some formidable
challenges. The satellites are traveling at
close to 7,000 km per hour, giving rise to a
Doppler shift ranging from -6000 to
+6000 Hz. They are 20,200 km away, run-
ning low-power (50W) transmitters.
Signals at the terrestrial receiver input are
typically 20 dB or more below the noise
level. And the local receiver clock is never
in step with the ultra-precise Cesium clocks
in the satellites, so Doppler and symbol
timing recovery loops need to be imple-
mented as well as acquisition logic.

An Executable Specification
Figure 1 shows a top-level view of a
Simulink model. It contains the transmit-
ter, channel, receiver, and measurement
visualization subsystems. This model has
numerous levels of hierarchy – a glimpse
under the hood of the receiver is shown in

October 2005 DSP magazine 51

Figure 1 – A top-level view of a GPS system, including a transmitter with
timing error, channel model with Doppler, and a receiver with timing and
Doppler de-rotation loops. The model contains numerous levels of hierarchy.

A glimpse down one level into the receiver is shown in the lower right.

52 DSP magazine October 2005

An antenna and low-noise pre-amplifier
were connected to the Signature analyzer,
and tuned to 1.57542 GHz. We recorded
approximately one second of I/Q format
data, which was then available in the MAT-
LAB workspace. Note that since the satel-
lite signals are more than 20 dB below the
noise, it is not immediately obvious that a
useable data set has been captured. We used
a separate Simulink model implementing a
simplified GPS receiver (no tracking loops)
to confirm that satellite signals were pres-
ent in the data. The transmitter portion of
the original model was then replaced with
a Simulink library block to provide actual
satellite data for testing the receiver model.

Next, the model is partitioned into a por-
tion that will reside in the FPGA and a por-
tion that will reside in a floating-point DSP.

The incoming I/Q data at the 8 MSPS
rate is first passed through a root-raised
cosine FIR filter. Naturally, this higher speed
processing is best suited for the FPGA. The
filtered signal is then down-sampled by a
factor of two, and after the Doppler de-rota-
tion, feeds three cross-correlators: early,
prompt, and late, which refer to the local de-
spreading code phase driving the respective
correlators. The numerically controlled
oscillators for both the Doppler and the
local de-spreading code are also in the FPGA
partition. Because the de-spreading
sequence repeats every millisecond, the out-
puts of the three correlators are only of inter-
est at this one-millisecond rate, which is
easily handled by a DSP.

After the receiver model is working using
floating-point arithmetic, the next step is to
define the fixed-point attributes that will be
required for the FPGA partition.

Simulink models can accommodate
arbitrary precision fixed-point representa-
tions of signals. The FPGA partition
includes these fixed-point constraints. As
before, numerous levels of hierarchy exist
in this model, and Figure 2 represents the
top level. Notice that the partitioning
reveals a feedback control system between
the DSP and the FPGA.

In review, the 8 MHz I/Q satellite signal
input is processed by the FPGA producing
low-rate (1 kHz) correlator outputs, which
are then processed by the DSP. Using these

signals, the DSP in turn implements the
proportional-integral-derivative controllers
for both the Doppler and timing recovery
loops. The two controller outputs are fed
back into the FPGA. The real captured
satellite data is again used as a source to test
the partitioning and the chosen fixed-point
data constraints. Figure 2 shows the satellite

data source (picture), the FPGA partition
(yellow), and the DSP partition (green).

Implement the FPGA Partition
It is now relatively easy to transition the
fixed-point receiver subsystem in Figure 2 to
one using blocks from the Xilinx® System
Generator for DSP library. The transition to

Figure 2 – The receiver portion of the model has now been partitioned with the high-
speed fixed-point portion in yellow, and the lower speed single precision floating-point
portion in green. RF from actual GPS satellites is captured with a spectrum analyzer.

This is now the data source for verifying the model with real-world data.

Figure 3 – The fixed-point partition in Figure 2 is now implemented using blocks from the
Xilinx System Generator library. A digital down converter (IF processor) has been added

along with a 64 MSPS ADC to form a front end for the base-band receiver subsystem. The
correlation data from the receiver is time-division multiplexed and buffered with a FIFO

before being fed to the DSP partition. All of the VHDL (or Verilog) required to implement
this is automatically generated using Xilinx System Generator.

October 2005 DSP magazine 53

the FPGA is easy if Simulink blocks that
functionally match those in the System
Generator library were used.

Figure 3 shows the FPGA portion of the
design. Hardware-specific gateway blocks
pass signals between the FPGA and the DSP.
The output signals from the FPGA include
three complex correlation signals (early,
prompt, late), a signal-level estimate for
AGC, and a synch word. These eight values
are time-division multiplexed into a single
data stream and fed through a 32-bit gate-
way block back to the DSP. Control signals
for the timing and Doppler tracking loops
come through 32-bit gateway blocks to the
FPGA, along with other ancillary control
signals such as satellite selection.

When running the hardware in real time,
the signal input to this GPS receiver comes
from an analog front-end down converter
with an IF of 17 MHz, not a spectrum ana-
lyzer. Therefore, a digital down converter
(DDC) is also needed in the FPGA. The
DDC takes this 17 MHz real-band pass sig-
nal sampled at 64 MSPS and translates it to
a base-band I/Q signal running at 8 MSPS.

The high-level signal processing functions
(DDS, CIC, FIR, FIFO, TDM) from the
Xilinx System Generator library make it easy
to implement this portion of the design.
Once the simulation is verified, a click of the
mouse automatically generates the circa 350
VHDL files (750 kB of ASCII) required to
implement the design. After this point we are
in the standard Xilinx ISE™ design flow.

Implement the DSP Partition
The top-level view of the DSP portion is
shown in Figure 4. The time-division multi-
plexed signals from the FPGA arrive through
the gray gateway block on the left of the
model. They are then de-multiplexed into
the early/prompt/late correlation signals and
level required by the timing recovery and
Doppler controllers implemented in the DSP
partition. The task of acquiring the GPS is
implemented in the DSP using Simulink’s
event-driven option, StateFlow. Operations
such as square root and arc tangent are
required. Although these operations are pos-
sible with a CORDIC in the FPGA, they are
even easier to do in the floating-point DSP.

Because the signals from the FPGA arrive
every millisecond, the processing is light duty
for the DSP. The numerical readout in Figure
4 indicates that only 4.6% of the available
DSP horsepower is being consumed. That
said, it should be noted that this example
implements one “channel” of a GPS receiver
in that only one satellite can be received. A
typical GPS receiver incorporates six to ten
channels and the loading of the DSP will
increase in proportion to the number of
channels.

The C code for the DSP is automatically
generated using the Real-Time Workshop
option in the Simulink environment. Once
this is complete, a click of the mouse down-
loads both the bitstream for the FPGA and the
binary for the DSP to the Lyrtech SignalWave
hardware. The SignalWave has a Virtex™-II
Pro XC2V3000 FPGA 64 MSPS ADC and
DAC, as well as audio and video CODECs.

When the real-time processing is started in
the hardware, the Simulink block diagram
then becomes a GUI that allows you to seam-
lessly interact with the processing. Scopes and
numerical readouts are the primary real-time
display options. You can also change the state
of switches, the values of constants, and mul-
tiplier gains to interact with the design with-
out stopping or introducing gaps in the
real-time processing.

Conclusion
This operational GPS receiver was developed
using tools from Xilinx, The Mathworks, and
Lyrtech. Not a single line of code was hand-
written for either the FPGA or the DSP. It took
approximately six weeks to create – from
scratch – a receiver producing the navigation
data bitstream from RF satellite input signals.

This model-based design example has
been privately presented to several GPS
design groups. Feedback indicates that
accomplishing what we have shown in this
article typically takes these designers more
than a year.

If you are designing and implementing
complex signal processing systems for real-
time hardware, you cannot afford to be with-
out these tools.

For more information, visit www.
mathworks.com, www.xilinx.com/systemgenerator_
dsp, and www.lyrtech.com.

Figure 4 – The floating-point portion of the receiver is implemented using a TI C6713 DSP.
The data from the FPGA is de-multiplexed into the signals required to implement both

acquisition and tracking of the CDMA satellite signal. The control signals back to the FPGA
pass through hardware “gateways” that are specific to the Lyrtech SignalWave hardware. The
C code to implement this partition is automatically generated using The Mathworks’ Real-
Time Workshop. Once the bitstream and binary are loaded to the hardware, the block dia-

gram becomes a user interface, allowing you to change parameters on the fly and have
dynamically updating readouts, including time-history scopes.

320,000,000 MILES, 380,000 SIMULATIONS
AND ZERO TEST FLIGHTS LATER.

THAT’S MODEL-BASED DESIGN.

Accelerating the pace of engineering and science

After simulating the final descent
of the Mars Rovers under thousands
of atmospheric disturbances, the
engineering team developed and
verified a fully redundant retro
firing system to ensure a safe
touchdown. The result—two
successful autonomous landings
that went exactly as simulated.
To learn more, go to
mathworks.com/mbd

©2005 The MathWorks, Inc.

by Narinder Lall
Sr. DSP Marketing Manager
Xilinx, Inc.
narinder.lall@xilinx.com

Brad Taylor
System Generator Applications Manager
Xilinx, Inc.
brad.taylor@xilinx.com

FPGAs have made significant strides as
engines for implementing high-perform-
ance signal processing functions, whether
for ASIC replacement or performance
acceleration in the signal processing chain
with DSP processors. Although much has
been written about how to use FPGAs as
signal processors, not much has been pub-
lished about building control circuits with-
in such systems.

There are perhaps two key decisions to
make when implementing control circuits
for FPGA-based DSP systems:

• Should the control circuit be imple-
mented in hardware or developed as a
software algorithm?

• What building blocks are available to
make the development of the control
circuit as efficient and painless as
possible?

Software or Hardware?
In this first stage, you can make tradeoffs
between algorithms that are implemented
in hardware, and those that are better
implemented in software using a soft
microprocessor (Xilinx® PicoBlaze™ and
MicroBlaze™ processors) or hard embed-
ded microprocessor (PowerPC™ 405).
Table 1 shows the tradeoffs between hard-
ware- and software-based approaches.

A number of attributes need to be con-
sidered when making tradeoffs between
these approaches. These include:

• Algorithm complexity. You can easily
implement simple algorithms (like
those that do not need many lines of
C-code) in both software and hard-
ware. Although no absolute measure
exists to correlate how many lines of
C-code represent one slice, a good

rule of thumb is that one line equals 1
to 10 slices. When algorithm com-
plexity rises, implementing and test-
ing the algorithm in hardware
becomes more challenging. You can
more easily implement complex algo-
rithms in lines of C code on a micro-
processor, which is the preferred route
most designers choose.

• Need for an RTOS. If an RTOS is
a mandatory piece of the control
algorithm, this again favors a software
approach that exploits the use of
the hard embedded PowerPC on
Virtex™-II Pro or Virtex™-4 FX
FPGAs, or on external microproces-
sors. RTOS support for these micro-
processors currently includes support
from Wind River and MontaVista.

• Communication with the host.
Communication with a host processor
will often – but not always – require a
bus architecture of some kind. In this
instance, a microprocessor such as the

Designing Control Circuits for
High-Performance DSP Systems
Designing Control Circuits for
High-Performance DSP Systems

October 2005 DSP magazine 55

These simple techniques could save you days of work.These simple techniques could save you days of work.

MicroBlaze processor or PowerPC
processor is ideal, as both support bus
architectures such as the OPB.
Hardware-based host communication
using state machines, although possible,
can be somewhat more cumbersome.

• Speed of decisions. If you specify
speed of decisions as clocks per deci-
sion, then for decisions that are needed
quickly it is obvious that a hardware
circuit will be preferred, if not
required. For decisions that can be
made in hundreds or thousands of
clock ticks, software-based algorithms
will be sufficiently capable to handle
this level of performance.

• Need for floating point. Although
floating point is largely tangential to
control functions, cases do exist where
systems employ floating point for con-
trol. One example is the calculation of
filter coefficients. In sonar systems that
require matrices to be inverted, floating-
point control is often preferred, as it is
often easier to develop with. Floating-
point control is also preferred when
control precision is high and the algo-
rithms are not available in fixed point.

Once you’ve decided on hardware or
software, you have access to a number of
building blocks. Each one is particularly
suited to different types of control tasks.

Types of Control Tasks and Possible Circuits
Many different types of control tasks
exist. For this article, we have chosen to
focus on the following types of problems,
which are commonly found in signal pro-
cessing systems.

• Hardware-Based

– Data-Driven Multiplexing

– Implementing Finite State
Machines (FSMs)

– Sample Rate Control

– Sequencing – Pattern Generation

• Software-Based

– Implementing Low-Rate Control
Algorithms

Task 2: Implementing FSMs
Finite state machines are used when decisions
must be made based on the current “stored”
state of the input(s). For hardware-based
high-performance DSP systems, it is not
uncommon to see circuits where monitoring
of state(s) is performed every clock tick.

Although you can implement them in
many ways, perhaps the most common
ways to implement FSMs within a System
Generator design are through m-code
CASE statements (popular with algorithm

– High Complexity Control of Physical
Layer Data Paths (MAC layer) (out-
side the scope of this article)

Table 2 shows a summary of the tools and
types of typical control tasks. These are not
hard-and-fast recommendations – merely
some suggestions for some of the better
options. As Xilinx System Generator for DSP
is the tool of choice for modeling and design-
ing DSP systems onto FPGAs, in this article
we’ll also provide some examples using free
demos contained within System Generator
that demonstrate the use of the control circuit.

Task 1: Data-Driven Multiplexing
An example of a control task that does not
require monitoring of the current state is data-
driven multiplexing, in which data is moni-
tored and tests are performed on that data.
The results of those tests determine the output
of the control circuit. Figure 1 shows an exam-
ple of data-driven multiplexing. Here the
function is determined by a simple MATLAB
function called xlmax. Input y is selected
unless x > y, in which case input x is selected.

56 DSP magazine October 2005

Clocks Per Algorithm RTOS Floating Communicate
Decision Complexity Point With Host

Hardware-Based Control 1-10 Simple No No Difficult

Software-Based Control 100-100000 Complex Yes Sometimes Easy

Class of Control Problem

State Data-Driven Sample Rate Low-Rate Control
Toolkit Sequencing Machine Muxing Control Algorithm

Pattern Generation
Components (ROMs,
Expressions, Comparators,
Counters, Delays)

X

M-code X X

Comparators/Muxes X

FIFOs/Clock Enables/Up/
Down Conversion X

PicoBlaze X

MicroBlaze/PowerPC 405 X

Figure 1 – Data-driven muxing using m-code

Table 1 – Hardware/software tradeoffs

Table 2 – Types of control problems and tool kits available in System Generator

developers) and writing HDL (preferred by
hardware engineers). HDL can be easily
incorporated into System Generator
designs using a black box and co-simulated
using ModelSim if necessary.

Figure 2 illustrates how easily you can
implement an FSM in System Generator
using the m-code block that pulls in a
MATLAB script contained in the file
detect1011_w_state. The purpose of this
script is to detect a 1011 pattern from a sig-
nal passed through from the MATLAB
workspace.

Task 3: Sample Rate Control
In high-performance DSP systems, samples
often arrive into a system or a piece of a sys-
tem at a different rate than that of the
FPGA clock. We recommend that engi-
neers therefore learn techniques for per-

forming sample rate control. Possible solu-
tions within System Generator that facili-
tate the design of sample rate control
circuits include up/down sampling, clock
domains, FIFOs, and clock enables.

Figure 3 demonstrates how you can
implement multiple IIR filters using a sin-
gle time-shared second-order section
(biquad). Specifically, 15 distinct IIR fil-
ters, each consisting of 4 cascaded biquads,
are realized in a “folded” architecture that
uses a single hardware biquad. Hardware
folding is a technique to time-multiplex
many algorithm operations onto a single
functional unit (adder, multiplier). For
low-sample-rate applications like audio and
control, the required silicon area can be sig-
nificantly reduced by time-sharing the
hardware resources.

This design uses a number of control
circuits, including a count-limited counter
feeding into a two-input mux (that selects
between the serial data and the feedback
path) and up-sample and down-sample
blocks (that control the data rate through
the biquad).

Task 4: Sequencing (Pattern Generation)
Sequencing problems usually involve the
need for a periodic control pattern that is
predictable and not necessarily dependent
on the current “stored” state. A common
solution for sequencing is to use a simple
pattern generator. You can build a pattern
generator using building blocks like coun-
ters, comparators, delays, ROMs, or the
logic expression block within the System
Generator block set. The beauty of this
underutilized technique lies in its simplici-
ty – yet many designers often opt for more
complex, unnecessary state machines.

An example of a pattern generator is
contained in the biquad block in Figure 3.
The address generator within the biquad
block (not shown) generates all of the
addresses of the RAMs and ROMs, as well
as the write-enable signal for the single-
port RAM in the folded biquad module.

Task 5: Low-Rate Control Algorithms
Implementing low-rate algorithms using a
Xilinx microprocessor is becoming increas-
ingly common. With a choice of three

mainstream processors – the PicoBlaze 8-
bit processor, MicroBlaze 32-bit processor,
and embedded IBM PowerPC 405 32-bit
processor – you have the ability to scale
depending on the task at hand. Common
tasks that often necessitate the need for
on-chip processors include calculating fil-
ter coefficients, scheduling tasks, detecting
packets (such as in an FEC receiver), and
RTOS implementation.

Figure 4 shows a simple control circuit
built using the PicoBlaze microprocessor.
This example forms the receive path of a
16-QAM demodulator that performs
adaptive channel equalization and carrier
recovery on a QAM input source. An

attached synchronization marker (ASM)
applied by the transmitter is stripped
from the demodulated data before con-
catenated FEC is applied. The PicoBlaze
microcontroller controls the RS decoder,
maintains frame alignment of the
received packets, and performs periodic
adjustments of the de-mapping QAM-16
quadrant reference.

Conclusion
When implementing control circuits for
high-performance FPGA-based DSP sys-
tems, you have access to a number of
building blocks within System Generator
to make this an easier task. Tables 1 and 2
list some of the tradeoffs to consider and
summarize possible control solutions.

All of these designs – and many more –
are included within the Xilinx System
Generator tool, which retails for $995.
You can also try the tool free for 60 days
by downloading the evaluation version at
www.xilinx.com/systemgenerator_dsp.

October 2005 DSP magazine 57

Figure 2 – Implementing an FSM
in System Generator

Figure 3 – Sample rate control

Figure 4 – QAM packet detection using
the PicoBlaze microprocessor

����������	�	�
��������		��
�����������
������������������ �����!���!!"� �#�$%&'(

������������������ �����!���!!"� �#�$%&'(

����������	
���������	�
�	����
�������������	�������������
�
������
������������������������
��	������ ��	��������
����	�����������������	��
�
�����
���������	��������
�������
���
������������	������	����������������
��������������������������	�����������������
���
�������� ��������������� !������������"�������#����������
�$��������
�%	�����	����������������
�������"����
��"����
���	���
������
����������	�����������	������
�������$�	�&�
��	������	�������������'�������������������	������������������	�������	���
�	����	�
���������	��'�	���
�������(�	�������������	�		�����)������������		���	������������
�	������������	������	���������	��	���
����*
��������
���*�
���	������	��������	��������
���������	�����������������	��������
�	�����	�������
����������������	�

�
�
�
�
������
+�)�������������
�	���	����������
�
������������ ���������������������������

�	��������������������������������(,��-...�/�#����������(����*�
��
�����������������	���)���������
�	���	������
�0

�����������������������
	��������
+ 1�����
��'���������������������������������
�	�'
���
��	������
���0�2��$���3��	��4�����������%� ������
 ���������������'��5���	������
�&�����6	

+ ��	����
���	���������������������������
����������	

+ /��	������ ����������������������	�����������
�����
���������"�	���
��"�	�

+ /��	������ �����������������������6�����
&�����6	

+ 5����
�	��	�����������������
��	��������	�����
��
����	�����������������	

+� 4������5�1�/���
����������������1���������

+ 4�������'	���#���������������

1��	�����'	������������(�����������
���	����
�	���������������������
������	�	�����	0�7����������$� �7�	����$��
�����7�	�����
�����!��3�����
�������//��������-89�����/5)�*���������������������'�,���1�	������	���
��
����	�����'���������������������������
�	��������������������������
��������������	�������	�������
�����������*����
�	�����������������
�
���
���
�	��������������	�������/�������������������������*����	�����������
���
�	���������������������'�����
��'��������*����	���
�����������	��	��
�������������������������'	������	�������	����������������
�����

1�����3�
�:9(;�&�
���
�����������
��������
������*��������������������
����������������
�	�	��	'	��	����
����	�����
��������������
������3�������
������������6������������
���;�&�
���	������

<

<

by Zulfiqar Ali Zamindar
Field Application Engineer
Nu Horizons Electronics Corp.
azamindar@nuhorizons.com

To meet their system design goals, design-
ers today must prototype a new idea and
integrate its product features into the low-
est cost silicon, complete with versatile
functionality. Specifically, two of the
biggest challenges are to get the design cor-
rect in the first place and to fix a problem
rapidly. Immediate design solutions are
essential for meeting time-to-market pres-
sures, keeping up with changing industry
standards, and prototyping quickly.

Even after the design is completed, a need
may exist for field upgradeability if a bug is
found or a new functionality is available. The
Xilinx® Spartan™ FPGA has been a great
low-cost programmable platform for low-
density control logic and system interfaces.
However, when it comes to signal processing,
designers traditionally purchase a fixed algo-
rithm standard product for high-speed mul-

tiply and accumulate (MAC)
functions. This requirement demands
additional design resources, verification
time, system components, and more
board space.

With the explosion of the wireless
communication market and prolifera-
tion of low-cost 90 nm processes,
Spartan-3 devices – with plenty of logic,
memory, and as many as 104 18 x 18
embedded hard multipliers – are the ideal
solution for many signal processing needs.

The challenge for today’s digital pro-
cessing systems is their large memory
requirements and the very fast MACs need-
ed for rapid mathematical operations. Every
multimedia system contains an external
DSP processor and memory component
that reduces system performance and
increases component costs. Once you have
uncovered a solution that integrates a paral-
lel or semi-parallel system, you can then
focus on improving the overall DSP design
to eliminate performance bottlenecks.

As a result of digital processing chal-
lenges, many companies have focused their
efforts on developing the system-on-chip
(SOC) concept by adding feature sets to

Signal Processing
Capability with the
NuHorizons Spartan-3
Development Board

Signal Processing
Capability with the
NuHorizons Spartan-3
Development Board

October 2005 DSP magazine 59

The Spartan-3 platform provides a low-cost FPGA-based
solution to perform digital signal processing requirements.
The Spartan-3 platform provides a low-cost FPGA-based
solution to perform digital signal processing requirements.

bring additional functionality to a single
piece of silicon. Customized ASICs have
become very costly solutions in today’s com-
petitive landscape. Traditional DSP proces-
sors are capable of carrying out high-speed
MAC operations, but have bandwidth limi-
tations. FPGA technology has made tremen-
dous progress in recent years by increasing a
large number of intellectual properties to
reduce the cost of silicon development in var-
ious markets. This is accomplished by opti-
mizing architectures, using leading process
technologies, and adding IP cores.

Some of the typical applications for dig-
ital signal processing are digital cameras,
phones, 3G wireless, video conferencing
systems, and high-definition digital televi-
sions. Having a signal processing capability
inside an FPGA is the perfect design inno-
vation – the stepping stone to system-on-
chip in an FPGA without the high cost of
complex customized chip development.

System Generator for DSP
Xilinx expanded its features in the Spartan-3
FPGA by adding embedded multipliers in
the architecture. This technological inno-
vation is similar to embedded block mem-
ory, clock management, and multiple
standards for high-speed I/O circuits, all
standard characteristics of the Xilinx
Spartan-3 and Virtex™-II Pro families.

Time to market remains critical for
companies developing both system hard-
ware and software. With Xilinx System
Generator (SysGen), you can simultane-
ously create behavioral-level hardware
blocks and simulate the entire system with
just a few tool clicks. The design environ-
ment allows you to create block-based sys-
tems like digital QAM modulators for
software-defined radio, finite impulse
response (FIR) filters, image processing
functions, mathematical operators, A/D
and delta-sigma D/A conversion, and all-
in-one silicon for widely used applications.

Using System Generator within the
Simulink design environment from The
MathWorks, you have unrestricted access
to many blocks. You can select both Xilinx
and third-party blocks, drag and drop to
the Simulink work space, connect, and
simulate a system within minutes. The

ple, you can create a fast Fourier transform
(FFT) or FIR core with the easy-to-use GUI
in System Generator for DSP, customize the
core as per your application, and run the
Xilinx ISE™ tool in the background to
build your signal processor system. This
flow can synthesize, place, route, and gener-
ate hardware configuration files.

The Simulink environment allows you to
verify the functionality of each block or sub-
system created with scopes and graphs to
view images or observe data.

Digital filters are among the most signif-
icant components in digital signal process-
ing applications. The function of a filter is to
eliminate undesirable parts of the signal
(random noise) or to extract signals in a par-
ticular frequency range. Basic FIR filters are
used extensively in video broadcasting and
wireless communications. A mathematical
expression of a basic FIR filter is:

Y (n) = SUM h (k) * x (n-k); k=0 to k =N-1

It consists of an input sample, output
sample, and coefficients. Imagine “x” is a
continuous stream of input signal and “y” is
a resulting filtered stream of output signal.
The “n” and “k” in the equation correspond
to a particular instant in time, so to compute
“y (n)” at time “n,” a group of input samples
at “n” different points in time are required, or
numerically x (n), x (n-1), x (n-2) ... x (n-k).
A group of “n” input samples are multiplied
by “n” different coefficients and summed
together to form a result “y (n).”

This design example implements a 43-
tap FIR filter with a MAC engine and a
dual-port RAM used for data and coeffi-
cient storage. The filter is a low-pass filter
with a cut-off frequency of 6 KHz. The
sampling frequency is 44.1 KHz.

Figure 1 represents the model of the fil-
ter. The model has a coefficient width of
12, a coefficient binary point value of 12, a
data width value of 10, a data binary point
value of 8, and a sampling frequency of
44.1 KHz. Scope shots of the filtered out-
put are shown in Figure 2. An implementa-
tion summary displaying the use of RAM
and multiplier resources is shown in Figure
3. This design achieved ~ 125 MHz per-
formance in a -4 speed grade of the
Spartan-3 device.

Xilinx System Generator block is used to
select various implementation options such
as FPGA device, package, speed, system
clock, synthesis options, and HDL. The
need to write HDL is eliminated, as the
tool creates the proper language for you;
however, it can write HDL if you prefer.

Simulink also enables you to integrate
blocks from many different libraries.
Commonly used DSP block sets include
math functions, signal management, a vari-
ety of filters, transforms, encoders, decoders,
and linear feedback shift registers. For exam-

60 DSP magazine October 2005

Figure 1 – MAC FIR filter block diagram
in System Generator

Figure 2 – Simulation view of FIR filter

Figure 3 – Implementation summary

The NuHorizons Spartan-3 Board
Xilinx, its distributors, and third-party
companies offer several boards for proto-
typing or emulating a DSP-based system. A
low-cost prototyping platform from Nu
Horizons Electronics Corp. is the Spartan-
3 development board (HW-AFX-SP3-
2000-DB) (Figure 4). The board comprises
these elements (Figure 5):

• Xilinx XC3S2000-4FG676
Spartan-3 device

• XCF08 Flash PROM for configuration

• 4 x 24-character LCD display

• Graphical LCD interface

• 64 Mb SDRAM (2-1 Mb x 16 x 4)

• 32 Mb Flash 2 Mb x 16

• 50 MHz clock oscillator

• PLL clock multiplier

• CAN 2.0B transceiver

• RS232 interface

• PS2 interface

• Audio CODEC

• Two-channel A/D and D/A converter

• 10/100 Ethernet MAC

• 10/100 Ethernet PHY

• Flash memory interface

• SDRAM memory interface

• LED/push buttons

• JTAG configuration header for
programming

• 16-bit LVDS I/F with clock and control

• Test point headers for debugging

This fully loaded Spartan-3 develop-
ment board is priced at $449, which
includes all of the features necessary to pro-
totype a DSP-based system design. The
board comes with a user’s manual, power
supply, documents, and design files. The
option of getting the board bundled with
ISE Foundation™ software, System
Generator, and ChipScope™ Pro software
is also available at an additional cost.

Besides DSP designs, the Spartan-3
platform is a great tool to implement many
other Xilinx reference designs. Several
designs written by Nu Horizons’ field

application engineers cover topics such as
memory controllers, embedded processors,
hardware-in-the-loop with digital signal
processing, and system monitor design
using ADC and DAC on the board. ADC
and DAC are very powerful attributes of
our low-cost board, and two of the many
competitive board features. The Spartan-3
platform can be expanded with the add-on
ADC board from Linear Technology.

Conclusion
With fast multipliers and lower cost FPGAs,
engineers now have the ideal solution to
their signal and image processing require-
ments. With tools like System Generator,
anyone can implement a powerful parallel or

semi-parallel customized DSP system-on-
chip design within days.

The Spartan-3 board from Nu
Horizons is a perfect solution for proto-
typing signal processing using Spartan-3
FPGAs. The board has all of the inter-
faces necessary to create designs for wire-
less and digital imaging applications if
you want to:

• Integrate your logic and signal pro-
cessing capability on a single chip

• Prototype a configurable DSP system-
on-chip

• Reduce the cost of conventional serially
implemented external signal processors

• Improve system performance

Nu Horizons is also in the process of
releasing a Virtex-4 platform board for cus-
tomers requiring higher density logic, more
memory, and hard MACs running up to
500 MSPS for high-performance interfaces
to video and imaging applications.

For all of the designs and related
documentation for the Spartan-3 board,
visit the Nu Horizons website at
www.nuhorizons.com/sp3/.

October 2005 DSP magazine 61

5V Reg
LT1963A

3.3V Reg
LT1941

1.2V Reg
LT1941

12V / -12V
LT1941

3.3V Analog
LT1963A

1.2V - 3.3V
LT1963A

Audio
CODEC

ST W5093

User I/O
Agilent E5404A

Probe

JTAG I/F
Cable
II & IV

2 Channel
16-Bit D/A
LTC1654

2 Channel
16-Bit D/A
LTC1865L

16-Bit
LVDS I/F

with Control

2-RS232
I/F

ST323

PLL System
Clock

Generation x2
ICS511 &
ICS84021

PS2 I/F

32 Mb
Flash

ST M29W320DB
LCD Display

2x24 Character

Test LEDs
Push

Buttons

2 - 1M x 16 x 4
SDRAM - 16 MB
ISSI42S16400

High-Speed A/D - D/A
Board Connections

10/100
Ethernet Phy
ICS1893BF

10/100
Ethernet I/F

SMSC91C111

CAN I/F
STL9616

Xilinx Spartan-3
XC3S1500

or
XC3S2000

Figure 4 – Spartan-3 board

Figure 5 – Spartan-3 XC3S1500 /2000 board block diagram

by Niall Battson
DSP Applications Engineer
Xilinx, Inc.
niall.battson@xilinx.com

With the introduction of Xilinx® Virtex-4™
FPGAs in September 2004, the world of DSP
design witnessed a dramatic leap in program-
mable logic DSP: higher performance, lower
cost, lower power, and maximum flexibility.

At the same time this phenomenon asks
DSP hardware engineers to change their tradi-
tional way of designing and embrace a different
approach. These great improvements have been
made possible by the XtremeDSP™ slice.

The XtremeDSP Slice
The XtremeDSP slice (also referred to as the
DSP48) is a high-performance multiplier and
arithmetic unit with great flexibility that can
form the building block of many DSP algo-
rithms implemented in FPGAs. A detailed
diagram of the DSP48 structure is shown in
Figure 1.

The XtremeDSP slice comprises four main
sections:

• I/O registers

• 18 x 18 signed multiplier

• Three-input adder/subtractor

• Op-mode multiplexers

The I/O registers ensure a maximum clock
performance of 500 MHz in the fastest speed
grade device (400 MHz in the slowest speed
grade), also ensuring support for higher sample
rates. The dynamic op-mode multiplexers are
key to the functionality of the structure; they are
responsible for the DSP48’s great flexibility. For
example, in a simple MACC engine, you set the
X and Y MUX to multiply and select the feed-
back path from the registered output P as the Z
MUX input to the arithmetic unit.

In the Virtex-4 architecture, XtremeDSP
slices are arranged in columns. The most impor-
tant aspect about the column is the cascade logic
and routing between each block, which exists on
both the input and output stages of each slice.
This dedicated routing enables a number of
filters and other functions to be built entirely
within the XtremeDSP slice, thus removing the
need for signals to be routed through the FPGA
interconnect or logic fabric.

Designing with
the Virtex-4
XtremeDSP Slice

62 DSP magazine October 2005

Harness the full capabilities of the
XtremeDSP slice in filter design.

However, you must take this adder-chain
configuration into account when designing
functions that exploit the XtremeDSP slice.
Herein lies the fundamental change in the
approach to filter design. The simple, tradi-
tional adder-tree approach limited the per-
formance and extensibility of a given filter
implementation. By using adder-chain-style
implementations, these limitations are lifted
and the huge benefits Virtex-4 FPGAs offer
are possible.

The embedded nature of the XtremeDSP
slice has also had a radical impact on reduc-
ing the power consumed by high-speed mul-
tiply and add functions. Figure 2 illustrates
this dramatic reduction, showing that the
dynamic power consumption is 1/17 of
Virtex-II Pro™ devices with a specification
of 2.9 mW/100 MHz. As a designer, you
should migrate as much functionality into
these embedded functions as possible.

Filter Techniques
During the last ten years, hardware and
FPGA designers have created a wide variety
of filter architectures to efficiently exploit
the building blocks that the current gener-
ation of technology offers. With the intro-
duction of Virtex-4 FPGAs and the
XtremeDSP slice, filter implementations
must change to most efficiently exploit this
latest FPGA offering. Filters are prolific in
DSP designs and nearly always form the
starting point for analyzing an architecture.

The Semi-Parallel FIR Filter
Even within the filter world, you can
implement a wide variety of filters. The key
parameters that tell us which FIR filter
implementation we will construct are:

• Number of coefficients (N)

• Sample rate (Fs)

Let’s examine a particular filter structure
to demonstrate the key design techniques
that can help you maximize the benefits of
Virtex-4 devices. Our filter has 20 coeffi-
cients and a sample rate of 74.25 MHz.

As noted earlier, the maximum capable
clock speed of the XtremeDSP slice is 400
MHz in the slowest speed grade (-10).
Therefore, we have a total of five clock
cycles to perform the required 20 multiply
and adds to form the result.

This equation determines how many
multipliers to use for a particular semi-
parallel architecture:
Number of Multipliers =
(Maximum Input Sample Rate x
Number of Coefficients) / Clock Speed

For our example, the required number
of multipliers will be four. Once we have
determined the required number of multi-
pliers, there is an extendable architecture
using the XtremeDSP slices that can serve
as the basis for the filter.

The general FIR filter equation is a
summation of products (also known as an
inner product) defined in the equation:

In this equation, a set of N coefficients is
multiplied by N respective data samples,
and the results are summed to form an
individual result. The values of the coeffi-
cients determine the characteristics of the
filter: low-pass, band-pass, or high-pass.

yn = ∑ xn-i hi

N-1

i=0

October 2005 DSP magazine 63

CE

D Q
2-Deep

BCOUT PCOUT

B REG

CE

D Q

M REG

CE

D Q

P REG

CE

D Q
2-Deep

A REG

0

1

B

A

C

BCIN

18 18

72

7
48

PCIN

48

48
P

36 48A:B

36

0

36

0

0
18

48

X

Y

Z

Subtract

17-bit shift

17-bit shift

Carry In

OpMode

0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

0 100 200 300 400 500 600

Frequency (MHz)

A
v
e
r
a
g

e
 P

o
w

e
r
 (

m
W

)

Conditions: TT, 25C, nominal voltage, fully pipelined multiply-add mode, random vectors

* Based on power estimator spreadsheet, uses slice logic

Virtex-4

~2.3 mW/100 MHz

Virtex-II Pro*

 ~39 mW/100 MHz

Virtex-II*
~47 mW/100 MHz

Figure 1 – Simplified diagram of the XtremeDSP slice

Figure 2 – Dynamic power consumption of the XtremeDSP slice

XtremeDSP arithmetic units are
designed to be chained together easily and
efficiently thanks to dedicated routing
between slices. Figure 3 illustrates how the
four XtremeDSP multiply and add ele-
ments are cascaded together to form the
main part of the filter.

It is critical to highlight the usage of the
adder chain here rather than the more tradi-
tional adder tree. The adder chain has a pro-
found impact on the control logic required
for the filter, as well as its efficiency, because
of the mapping to the XtremeDSP slice.

Continuing to analyze the filter structure,
an extra XtremeDSP slice is required to per-
form the accumulation of the partial results,
thus creating the final result. A new result is
created every five clock cycles. This means
that for every five cycles the accumulation
must be reset to the first inner product of the
next result. This reset (or load) is achieved by
changing the op-mode value of the
XtremeDSP slice for a single cycle, from
0010010 to 0010000 (this is just a single bit
change). At the same time, the capture regis-
ter is enabled and the final result stored on
the output.

The Control Logic
The control is the most important and com-
plicated aspect of semi-parallel FIR filters;
getting it right is crucial to filter operation.
Because the XtremeDSP slice is most effi-
ciently used in adder chains, memory
addressing is necessary to provide the delay
for each multiply-add element that the adder
chain causes. Figure 4 illustrates the control
logic required to create memory addressing.

The counter creates the fundamental
zero through four count. This is then
delayed by one cycle
by the use of a register
in the control path.
Each successive delay
is used to address both
the coefficient memo-
ry and the data buffer
– and their respective
multiply-add ele-
ments. Hence, a single
delay is required for
the second multiply-
add element, two
delays for the third
multiply-add element,

and so on. Note that this is extensible con-
trol logic for M number of multipliers.

Figure 4 also shows write enable
sequencing. A relational operator is
required to determine when the count
limited counter resets its count. This sig-
nal is high for one clock cycle every five
cycles, reflecting the input and output
data rates. The clock enable signal is
delayed by a single register just like the
coefficient address; each delayed version
of the signal is tied to the respective sec-
tion of the filter.

The filter and control logic are
extremely cascadable. The address for each
SRL16E data buffer and coefficient mem-
ory pair are a delayed version of the previ-
ous elements’ address, and are identical.

The performance and resource utiliza-
tion for our filter is specified in Table 1. In
the table, you can see how logic slice uti-
lization dramatically drops when using the
XtremeDSP slice. Clock frequency per-
formance approximately doubles over
Virtex-II Pro FPGAs.

64 DSP magazine October 2005

DSP48 Slice

opmode = 0000101

0

x(n)

y(n)

18

40

h0
h1

h2

h3

h4

h5
h6

h7

h8

h9

h10
h111

h2

h13

h14

h15
h16

h17

h18

h19

DSP48 Slice

opmode = 0010101

DSP48 Slice

opmode = 0010010

Q

CE

D

Counter
0 -> (NM-1)

Coefficient and
Data Buffer 0

Address

WE

1

3

WE1 WE2 WE3 LOAD

Z
-5

Coefficient and
Data Buffer 1

Address

Coefficient and
Data Buffer 2

Address

Coefficient and
Data Buffer 3

Address

Compare
= (N/M-2)

Q

CE

D Q

CE

D Q

CE

D

Q

CE

D Q

CE

D Q

CE

D

Four-Multiplier 20-Tap
Semi-Parallel FIR Filter Virtex-4 (-11) Virtex-II Pro (-7)
18-Bit Data, 18-Bit Coefficients

Logic Slices 108 309

XtremeDSP Slice 5

Embedded Multipliers 7

Performance (Sample Rate) 90 MHz 77 MHz

Performance (Clock Frequency) 450 MHz 231 MHz

Figure 3 – The four-multiplier semi-parallel systolic FIR filter

Figure 4 – Control logic for the four-multiplier semi-parallel FIR filter

Table 1 – Resource utilization and performance
of four-multiplier 20-tap semi-parallel FIR filter

Three Important Design Points
This new filter architecture, along with
Virtex-4 devices and the XtremeDSP slice,
addresses the demanding needs of current and
future DSP designs. However, it is only one
filter in an extremely large array of possible
implementations, not to mention other DSP
functions such as IIRs, FFTs, and DCTs.

Knowing this, you can take away three
very important design questions that will
enable you to exploit the XtremeDSP slice
and Virtex-4 device as designed.

1. Is the design running as fast as possible?

The fastest speed grade (-12) should
run at 500 MHz. If your design is
running at 50 MHz, you’ve got the
room to reduce your resource utiliza-
tion by increasing performance (and
reducing cost) by making more effi-
cient use of the FPGA resources. The
faster a particular function operates,
the smaller it becomes. Our semi-
parallel FIR filter, for example, used
five XtremeDSP slices running at 375
MHz instead of 20 XtremeDSP slices
running at 74.25 MHz.

2. Are there any XtremeDSP slices left?

If you are not using them all up, you
can probably add some functionality.
This can lead to logic slice reduction
and lower power consumption.

3. Are you using adder chains instead
of adder trees?

DSP algorithms must aim to exploit
adder chain-based implementations
wherever possible, as this will lead to
the best utilization of the XtremeDSP
slice. Such implementations will result
in performance gains, power reduction,
and logic slice reduction.

Conclusion
For more information, see the XtremeDSP
Slice Design Considerations User Guide,
which provides in-depth details on other filter
implementations and DSP functions, at
www.xilinx.com/bvdocs/userguides/ug073.pdf.
There are also other HDL and System
Generator for DSP reference designs to get
you started.

October 2005 DSP magazine 65

R

Let Xilinx help you get your
message out to thousands

of programmable logic
users worldwide.

That’s right ... by advertising your product or service in the
Xilinx Xcell Journal, you’ll reach more than 70,000 engineers,

designers, and engineering managers worldwide.

The Xilinx Xcell Journal is an award-winning publication,
dedicated specifically to helping programmable

logic users – and it works.

We offer affordable advertising rates and a variety of
advertisement sizes to meet any budget!

Call today :
(800) 493-5551

or e-mail us at xcelladsales@aol.com

Join the other leaders
in our industry and advertise

in the Xcell Journal!

by Steve Pereira
Technical Marketing
Synplicity, Inc
stevep@synplicity.com

You can benefit greatly from a proper syn-
thesis strategy. Such strategies include
knowing the final target architecture,
knowing what coding problems could
arise, and understanding what performance
the periphery will require. You should also
understand how to use IP. Are models
available? Is cost an issue? Your initial setup
can greatly affect productivity and help you
achieve quicker peripheral timing closure.

In this article, I’ll describe a known good
strategy while using Synplify Pro tools.

Best Practices
Setting up your design correctly can result
in huge performance increases or reduc-
tions in area. The following checklist
describes the best practices to use when set-
ting up your design.

1. Include any CoreGen EDIFs or timing
models for black boxes. If you use
black-box IP in the design, ensure that
all EDIF, NGC netlists, or timing
models are provided. It is essential that
the Synplify Pro tool knows the timing

requirements into and out of the box
so that surrounding logic can be
altered to reduce or remove criticality.

If the design has an ngc file, use the
ngc2edn (provided in the Xilinx®

ISE™ /bin/ directory) converter utility
to produce an edn file for synthesis.

2. Ensure that the device is correct and
size the design. Ensuring that the
wireload models are correct for syn-
thesis can greatly affect the resulting
logic. The selection of wireload mod-
els is simply a matter of selecting the
correct device and speed grade. If
synthesis is performed on a different
device to the final implementation,
sub-optimal results are quite likely.

Selecting the correct device will also
provide Synplify Pro with the accurate
number of resources. One example of
the importance of this is with block-
select RAM mapping. Synplify orders
all of the RAMs from biggest to small-
est, and then starts to map the largest
RAMs until there are no block RAMs
left. The rest are placed into distributed
RAM. If the wrong device is selected,
sub-optimal mapping will occur.

Sizing the design also has a significant
impact. For example, if the design
uses 80% of the device, the wireload
models are correct for the design. If
the design consumes only a small per-
centage of the total resources (for
example, synthesizing just a part of
the design for verification), the wire-
load models will be inaccurate. To
resolve this problem, you can assign
the logic to an area group. Please see
the Synplify Pro documentation for
instructions on how to do this.

3. Provide accurate clock constraints.
Under- or over-constraining results in
reduced performance. Do not over-
constrain by more than 15%. For max-
imum performance, ensure that there
is 10% negative slack on the critical
clock. This ensures that critical paths
are squeezed. The Fmax field on the
front panel is fine for a quick run, but
do not use it if you need maximum
performance. Put unrelated clocks in
separate clock groups in the Synplify
Pro .sdc file. If your clocks are in the
same group, the Synplify Pro tool
works out the worst-case setup time
for the clock-to-clock paths.

Synthesis Tool StrategiesSynthesis Tool Strategies

66 DSP magazine October 2005

Set up your designs in Synplify for performance
improvement and area savings.
Set up your designs in Synplify for performance
improvement and area savings.

Figure 1 shows a timing diagram for
two clocks that are in the same clock
group. Synplify rolls the clocks for-
ward until they match up again.
The tool then calculates the mini-
mum setup time between the clocks,
in this case 10 ns.

If the clocks are unrelated, there may
be several hundred clock periods
before the clocks match up again. This
may result in the worst-case setup time
being very small (100 ps). You can
check the setup time in the clock rela-
tionships table in the log file. If the
setup time is too short, it is best to re-
constrain the clocks so that they are
more related.

4. Specify timing exceptions. Provide all
timing exceptions, such as false and
multicycle paths, to the Synplify Pro
tool. With this information, the tool
can ignore these paths and concentrate
on the real critical paths.

5. Constrain I/Os. If the design has I/O
timing constraints, it is likely that the
critical path is through the I/O block
(IOB). The Synplify Pro tool sees
these paths as the most critical and
tries to optimize them. Usually, I/O
paths physically cannot be optimized
any further; as they are the most criti-
cal, the Synplify Pro tool stops opti-
mizing the rest of the design.

improve your design performance by as
much as 50%. Retiming attributes
such as syn_allow_retiming let you
refine your constraints by surgically
applying retiming to a single register.
Synplicity recommends that you enable
both of these switches.

• Resource sharing. Always turn this
switch on. The behavior of this
switch was changed in Synplify 8.0.
With the switch on, timing-driven
resource sharing occurs. Non-critical
logic will have resource sharing, but
critical logic will not share resources
(for performance reasons).

• FSM Compiler extracts and optimizes
FSMs based on the number of states:

• 2 to 4: sequential

• 5 to 40: one-hot

• More than 40: gray

Synplicity also recommends enabling
the FSM Compiler and setting default
enumerated encoding to the “default”
value for VHDL designs.

• FSM Explorer timing-driven state
encoding. The Synplify Pro tool auto-
matically selects the best encoding for
the specified timing. This switch is
design-dependent. If the critical path
starts or ends at a state machine, turn
the switch on.

Conclusion
Because synthesis tools are operating at
higher levels of abstraction, synthesis opti-
mizations can have a dramatic impact on
design performance. After parsing through
the HDL behavioral source code and
extracting known functions (arithmetic
functions, multiplexers, and memories),
synthesis tools then map these functions on
the target architecture features.

The tools trade off area and performance
based on design constraints and tools set-
tings; these influence the use of optimiza-
tions such as replication, merging, re-timing,
and pipelining. As a result, the right tools set-
tings in synthesis can greatly increase pro-
ductivity and time to market.

A new switch has been added to the
Synplify Pro 7.3 release called “use
clock period for unconstrained I/O.”
When enabled, the tool does not
include any unconstrained I/O paths
in timing optimizations.

6. Keep code generic. Keeping code
generic and not locked down to a
particular architecture can aid design,
reuse, and portability. For example,
with the DSP48 block in the
Virtex™-4 architecture, you can
specify generic code to implement a
DSP function. The tool will map to
that component(s) when possible and
reduce uncertainty regarding how the
function was mapped. If DSP blocks
are generated, timing is better known
and can speed up debug – and time
to market. You can specify the regis-
ter configuration and code in the
opcode to drive the DSP block con-
figuration, all with generic code.

If for some reason you wish to use a dif-
ferent device family, such as moving
from Virtex-4 FPGAs to Virtex-II Pro
FPGAs, the porting process itself should
be seamless, but you may feel uncertain
about implementation and logic levels.

Good Switch Settings

• Retiming and pipelining. Enabling
retiming and pipelining options can

October 2005 DSP magazine 67

CLK1

CLK2

0

0 15

10ns 20ns 30ns

30 45 60 75 90 105 120 135

20 40 60 80 100 120 140

Figure 1 – Clock rolling for clocks in the same domain

by Randall Smith
Senior Electrical Engineer
Radiance Technologies, Inc.
rsmith@radiancetech.com

David Ellgen
Senior Electrical Engineer
Radiance Technologies, Inc.

The need to instantly detect the location
and type of enemy gunfire is becoming
more urgent than ever. Troops engaged in
humanitarian, peacekeeping, or wartime
operations are particularly vulnerable to fire
from snipers who may operate among the
civilian population with their tacit support.

The possibility of attacks in urban set-
tings where firing locations are abundant,
escape is easy, and echoes from closely
spaced buildings make it difficult to identi-
fy the source of a shot mean that detection
and location is a priority. With the escala-
tion of sniper fire, myriad engagements in
the arena of small-arms fire, and the
increased use of rocket-propelled grenades
(RPGs) comes the impetus behind the
development of an infrared (IR) technolo-
gy-based sniper-detection system. One of
these systems is the Weapons Watch
System (WWS), a sniper-detection system
that Radiance Technologies Inc. is provid-
ing to the U.S. Armed Forces.

A Weapon Detection System
Built with Xilinx FPGAs
A Weapon Detection System
Built with Xilinx FPGAs

68 DSP magazine October 2005

Building a low-cost, low-power, lightweight, highly reliable weapon detection system.Building a low-cost, low-power, lightweight, highly reliable weapon detection system.

WWS provides the ability to detect
weapon fire; determine azimuth, elevation,
and range measurements; and identify the
type of fire using high-performance image
processing from IR sensors that detect the
heat plume of a muzzle flash. This detection
technology is deployed at fixed sites utilizing
a commercial-off-the-shelf (COTS) system
based on eight tightly coupled Power PC™
processors running concurrently to provide
real-time image processing.

However, there is also a need for sniper-
detection systems to be mounted on mobile
platforms such as ground vehicles, helicop-
ters, and unmanned aerial vehicles – or pos-
sibly worn by individual soldiers. This
necessitated a miniaturized version of this
technology, which prompted the next gener-
ation of the system combining all of this
processing capability into a single FPGA.

Radiance met the requirements for a
low-cost, lightweight, low-power, next-
generation WWS with the use of the
Xilinx® Virtex™-II Pro 2VP100 FPGA as
the main processing engine. We chose the
Virtex-II Pro device over competing
FPGAs because of the hard-core processor,

ple phases of each frequency used in sec-
tions of the design. The first problem the
team encountered was that EDK and
System Generator do not directly support
differential clock inputs.

The LVDS input primitives were
instantiated directly in the VHDL code.
When this code was imported into an EDK
PCORE, a simple modification to the asso-
ciated MPD file was all that was required
to allow the design to properly compile.
Clocking requirements for the high-speed
I/Os, DCMs, and BuffG allocation were
also explicitly defined in the clocking mod-
ule and its associated UCF file. The devel-
opment of this clocking module allowed
our developers to consistently use defined
clocking resources in any of the Xilinx
design environments.

Algorithm Analysis, Development, and Testing
At first glance, we assumed that the design
would require multiple FPGAs to replicate
the high processing throughput of the eight
processors in the original system. One real
challenge for the team was to implement
proven existing C code that ran on the
COTS Power PCs into a System Generator
bitstream model.

To better understand the timing require-
ments, we tested each section of the existing
algorithms using the Xilinx ML300 proto-
typing board. Using System Generator

high-speed I/O, and wide
array of IP cores available
within the FPGA, as well as
the support software.
Additionally, Xilinx develop-
ment tools allowed this com-
plex processing system to be
consolidated into a single
FPGA, as pictured in Figure 1.

Parallel System Development
System development speed
was a high priority for our
design team. The system
design was broken into sever-
al logical sections that best fit

the available staff and design groups. Xilinx
System Generator for DSP, ISE™ soft-
ware, and EDK are well suited to this form
of modularizing. Key modules that would
be required for the development of others
were developed first. Frameworks for the
remaining modules were created to allow
each engineer to develop their section in
high-level MATLAB, ISE, or EDK envi-
ronments.

An example of this technique was the
development of a standard clocking and
DCM resource module that could be used
as either a black box for Simulink, PCORE
for EDK, or used directly in ISE design
tools. The design required the use of three
separate clocking frequencies, with multi-

October 2005 DSP magazine 69

Figure 1 – System chassis and
a single FPGA board

Figure 2 – High-level System Generator model

70 DSP magazine October 2005

models to understand the processing, we
employed several methodologies to test
the algorithm’s timing and resource uti-
lization. We developed drivers to stimu-
late the algorithms and used System
Generator’s hardware-in-the-loop testing
to quickly analyze the results.

As a result of the up-front testing, we
determined that the entire design code
could be placed into a single FPGA, which
dramatically reduced the size, cost, and
complexity of the system. The high-level
model of the System Generator core is
shown in Figure 2.

We used the System Generator’s black-
box module to encode modules that were
better expressed in interfacing VHDL
code. The WWS design required the use of
several black-box modules that interfaced
with other subsystems. One of these sub-

systems was a high-bandwidth QDR exter-
nal memory for the image processing chain
(IPC) in our System Generator PCORE.
The memory is connected through black
boxes. Configurable subsystem modules
allowed us to use simulation code, replicat-
ing the functionality of the black box in the
MATLAB environment without having to
recompile the model.

Hardware Integration and Testing
The project required interfacing to several
external subsystems, including:

• External memory for program and data
store – DDR2

• External memory for high-bandwidth
processing – QDR

• Infrared camera interface – HotLink

• High-speed data recording and play-
back – Fibre Channel

• External master clocks – Differential

We used ISE design tools to test and
implement these interfaces.
ISE software and the
ChipScope™ Pro analyzer
provided a rapid methodology
for subsystem development
and testing. Individual proj-

ects were set up to create cores that could
be “wrapped” for importing into EDK or
System Generator. By using this approach,
our hardware engineers were able to realize
these subsystem interfaces with minimal
system integration time because they were
completely tested using the ChipScope Pro
analyzer to ensure system compliance.
Several subsystem interfaces had extremely
tight timing constraints; in many cases we
used Xilinx Floorplanner software to man-
ually place and route the components.

Meeting the physical size constraint of
the WWS design necessitated that we elim-
inate as many discrete functions as possible.
The Radiance team leveraged several Xilinx
application notes to accomplish this. One
obstacle was the video input to the process-
ing engine, which comprised two 400
MHz serial streams. This normally requires
the use of a dedicated PHY and a parallel
interface to the processor. With the use of
the high-speed I/O in the 2VP100 FPGA,
as well as several Xilinx IP solutions, the
design team was able to completely elimi-
nate the need for an external PHY. The
Radiance Technologies design approach to
this is shown in Figure 3.

The team decided early on in the proj-
ect that DDR2 would be the best memo-
ry choice for use with the embedded

XAPP572
Over Sampling Circuit

Core Gen
Rocket I/O

Radiance
Data Framer

Core Gen
Async FIFO

Radiance
Channel Bonding

Radiance
Transport Decoder

Radiance Protocol
Decoder and Frame Buffer

XAPP262
QDR Interface

Core Gen
8b10b Decoder

Xilinx EDK

Custom PCORE Custom PCORE

Xilinx SysGen

Xilinx ChipScope Xilinx ChipScope

Xilinx Floorplanner

Xilinx ISE
Black Box

Module Contraints

System Contraints

Figure 3 – Design approach

Figure 4 – High-level system layout

October 2005 DSP magazine 71

Power PCs. Because Xilinx lacked an
available IP core for the selected memory
part, and because of the short time-to-
working-product schedule, Radiance
decided to use Xilinx Design Services to
provide the memory interface. The inter-
face was delivered and integrated into the
system in a timely manner.

FPGA System Integration Using EDK
The WWS team chose EDK to be
the overall integration tool, allowing
for quick generation of the down-
load bitstream. The FPGA design
was implemented using two Power
PCs, three MicroBlaze™ processors,
and several PicoBlaze™ processors
integrated with the System
Generator developed PCORE. The
block diagram shown in Figure 4
details the integration methodology
using EDK as the top layer.

The C programs executed on
the Power PCs and MicroBlaze
processors using a “roll-your-own”
operating system. The two
MicroBlaze processors provided an
interface to the System Generator-
rendered IPC. (During the design,
the need to have two MicroBlaze
processors connected to the IPC
became apparent.)

A simple workaround for the
System Generator limitation of only
having one MicroBlaze processor per core
is to design the core’s single MicroBlaze
interface to have multiple FSL buses. You
can then connect the additional FSL links
to other MicroBlaze processors using the
add/edit cores function in EDK.

Two MicroBlaze processors perform
dedicated processing, such as communica-
tions with the IPC, while the third served a
Java-enabled website to display system diag-
nostics. The server uses a memory file sys-

tem (MFS) library to maintain the website.
One problem we encountered was the

64 KB contiguous block RAM limit
imposed on the OPB bus. Because the Web
server required larger address space, we
solved this problem by working with the
Xilinx factory and field engineers to create
“make files” that distributed the code and
data over multiple block RAMs. This

approach allowed us to create programs
that were up to 256 KB in size running on
the MicroBlaze processor.

We implemented several PicoBlaze
processors in the design to allow the IPC
running in the fabric to communicate
with external subsystems using standard
serial protocols through transmit and
receive UARTs. Figure 5 shows a typical
connectivity of the PicoBlaze processors.
These subsystems could then inject low-

level input data, such as GPS position
updates, directly into the metadata of the
video stream.

Conclusion
The Radiance engineering team exceeded
the requirements of the next-generation
WWS and accomplished the task on an
accelerated schedule by leveraging the ben-

efits of all Xilinx development tools
– both hardware and software. Using
System Generator for the modeling
and implementation of complex
algorithms – versus hand-coding
VHDL – significantly reduced sys-
tem design and development time,
saving several man years of work.

ISE and EDK design tools pro-
vided the framework that allowed a
very complex system COTS to be
placed on a single FPGA. By acquir-
ing the Xilinx ML300 prototype
boards, we were able to work out
design issues such as critical timing
constraints. Another advantage was
the ability to determine maximum
system loading early in the process.

Employing EDK as the main sys-
tem integration tool is a viable
option to consider, especially when
several processors are employed in
the design. Exploiting all Xilinx
development tools, especially the
System Generator-MATLAB pro-

gramming model, will promote rapid
understanding and development of com-
plex system designs.

Radiance Technologies is a 100% employ-
ee-owned small business specializing in the
application of emerging technologies to deliver
government and commercial solutions.
Radiance Technologies ranks #214 on the
2004 Inc. Magazine’s 500, and ninth among
defense contractors on the list.

Program Store
ROM

RX UART PicoBlaze 3

Dual Port
Block RAM

Image Processing Chain

TX UART

The Radiance engineering team exceeded the requirements of the next-generation

WWS and accomplished the task on an accelerated schedule by leveraging the

benefits of all Xilinx development tools – both hardware and software.

Figure 5 – Typical PicoBlaze layout

DSP10000-7-ILT (v1.0) Course Specification

DSP Design Flow

! Lab 6: Looking Under the Hood

Course Description
The DSP Design Flow course provides the advanced tools and

expertise you need to develop advanced, low-cost DSP designs.

This intermediate course in implementing DSP functions focuses on

learning how to use System Generator for DSP, as well as HDL design

flow, CORE Generatorô software, design implementation tools, and

hardware-in-the-loop verification. Through hands-on exercises, you will

implement a design from algorithm concept to hardware verification by

using Xilinx FPGA capabilities.

© 2005 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.

All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

After completing this comprehensive training, you will have the

necessary skills to:

! Describe the different design flows for implementing DSP

functions, with a large focus on System Generator

! Identify Xilinx FPGA capabilities and know how to implement a

design from algorithm concept to hardware simulation

! Implement a design from start to finish by using System

Generator

! Perform hardware-in-the-loop and HDL co-simulations and

improve productivity

! Integrate the ChipScopeô Pro block in a design and analyze the

design

! Develop a hardware co-simulation model using System Generator

Board Description Builder

! Integrate a System Generator design as a peripheral in a

MicroBlazeô processor-based system

Course Outline
Note: Target architectures include Virtexô-4, Virtex-II Pro, and

Spartanô-3E FPGAs.

Day 1: DSP Design Implementation Tools

! Introduction

! DSP Design Flows in FPGAs

! Lab 1: Creating a 12 x 8 MAC Using VHDL

! Lab 2: Creating a 12 x 8 MAC Using the Xilinx Architecture

Wizard

! Lab 3: Creating a 12 x 8 MAC Using the Xilinx System Generator

Day 2: Digital Signal Processing Functions

! Digital Filtering

! Lab 4: Designing a FIR Filter

! HDL Co-Simulation

! Lab 5: MAC FIR Filter Verification Using Simultaneous Co-

Simulations

! Looking Under the Hood

! Controlling the System

! Lab 7: Controlling the System
Level ñ Intermediate

Course Duration ñ 3 days

Price ñ $1500 USD or 15 Training Credits

Course Part Number ñ DSP10000-7-ILT

Who Should Attend? ñ System engineers/designers, logic

designers, and experienced hardware engineers who are

implementing DSP algorithms using MathWorks MATLAB and

Simulink and using Xilinx System Generator for DSP

Prerequisites

! Fundamentals of MATLAB/Simulink and Xilinx FPGAs

! Basics of digital signal processing theory for functions, such as

FIR (Finite Impulse Response) filters, oscillators and mixers,

and FFT (Fast Fourier Transform) algorithms

Software Tools

! ISEô 7.1i SP3

! System Generator for DSP

! EDK 7.1i SP2

! ChipScopeô Pro 7.1.3

! Mentor Graphics ModelSim

! The MathWorks MATLAB

Day 3: Digital Signal Processing Functions

! Multi-Rate Systems

! Lab 8: Designing a MAC-Based FIR Using the DSP48 Slice

! Advanced Features

! Lab 9: Designing Using the PicoBlaze Microcontroller

! Lab 10: Creating Parametric Designs

! Lab 11: Integrating the ChipScope Pro Analyzer

! Lab 12: A System Generator Design as an XPS Peripheral

Lab Descriptions
This lab-intensive class gives you hands-on experience by using

System Generator for DSP to visualize, simulate, verify, and implement

DSP algorithms in Xilinx FPGAs. The labs start at a descriptive level

and build on each other. You should expect each successive lessonís

challenges to increase. In addition, the labs included in the Advanced

Features module provide you experience with other tools such as the

ChipScope Pro analyzer and the Embedded Development Kit. System

Generator for DSP 7.1 features are identified, including hardware and

software co-simulation verification.

Register Today
Xilinx delivers public and private courses in locations throughout the

world. Please contact Xilinx Education Services for more information,

to view schedules, or to register online.

Visit www.xilinx.com/education, and click on the region where you

want to attend a course.

North America, send your inquiries to registrar@xilinx.com, or contact

the registrar at 877-XLX-CLAS (877-959-2527). To register online,

search by Keyword "DSP" in the Training Catalog at

https://xilinx.onsaba.net/xilinx.

Europe, send your inquiries to eurotraining@xilinx.com,

call +44-870-7350-548, or send a fax to +44-870-7350-620.

Asia Pacific, contact our training providers at:

www.xilinx.com/support/training/asia-learning-catalog.htm, send your

inquiries to education_ap@xilinx.com, or call: +852-2424-5200.

Japan, see the Japanese training schedule at:

www.xilinx.co.jp/support/training/japan-learning-catalog.htm, send your

inquiries to education_kk@xilinx.com, or call: +81-3-5321-7772.

You must have your tuition payment information available when you

enroll. We accept credit cards (Visa, MasterCard, or American

Express) as well as purchase orders and training credits.

72 DSP magazine October 2005

The VHS-ADC-V4 is a high-speed, multichannel acquisition input/output card. It is
equipped with eight phased-synchronous analog-to-digital converters that operate
at a maximum rate of 105 MHz. It also comes equipped with a Xilinx Virtex-4 FPGA for
high-speed processing. Finally, it comes with a mezzanine connector that allows you
to add eight input channels, eight output channels, or SDRAM memory to store data.

VHS-ADC-V4
HIGH-SPEED MULTICHANNEL ANALOG-TO-DIGITAL VIRTEX-4 CPCI CARD

YOUR CHALLENGE: TO CREATE STATE-OF-THE-ART EMBEDDED SOLUTIONS.
THE VHS-ADC-V4 LETS YOU DO JUST THAT.

Advanced base stations
Smart antennas, multichannel IF systems
Channelizers and multiplexers
Geolocation

High-speed multichannel recording/playback
High-speed test and measurement systems
Radar, phased-array radar, SATCOM
Medical, ultrasound, and other applications

TYPICAL APPLICATIONS

STAR CONFIGURATION

GRAPHICAL USER INTERFACE

MODULAR AND EXPANDABLE

VHS RECORD AND PLAYBACK RAID

HIGH-BANDWIDTH, MULTI I/O
INTERFACES

STAND-ALONE OPERATION
MODEL-BASED DESIGN TOOLS

VIRTEX-4 FPGA

The Virtex™-4 based family of plat-
forms provides the most advanced logic,
highest performance, highest density, and

greatest memory capacity available.

1 888 922-4644 www.lyrtech.com

Interfaces seamlessly with
other powerful Lyrtech DSP/FPGA

platforms.

Fully integrated with the
System Generator for DSP model-

based design tools.

Equipped to support a RAID stor-
age system with which you can record
data continuously, at up to 200 MBps,
for more than five hours.

Outstanding clock synchronization
capabilities, with less than a

1-picosecond delay between channels.

The only FPGA-based platform with
eight onboard inputs expandable to 16. Use
the 1-GBps, full-duplex RapidCHANNEL
ports to add processing boards such as the
SignalMaster Quad or to add a RAID storage
system.

Onboard flash memory for the
FPGA. Hot-swap capabilities and

an I2C external port.

The VHS graphical interface built on the
API SDK is ideal to control the VHS-ADC-V4

parameters in a Windows environment.

74 DSP magazine October 2005

October 2005 DSP magazine 75

Virtex-II Pro™ XtremeDSP™

Development Kit for
Digital Communication Applications

Creating extremely high-performance

digital communications signal-

processing solutions can present

significant challenges in both

design complexity and time

to market. The XtremeDSP™

Development Platform from Xilinx

provides a complete development

solution, so your designs will be

faster, easier, and earlier to market.

Virtex-II Pro FPGAs feature up

to 444 embedded 18x18 multipliers,

each capable of running at 300 MHz.

This performance makes them the

ideal co-processors for your DSP

processors and the best way to

increase your system performance

by several orders of magnitude.

The XtremeDSP Development

Platform — together with the

Xilinx System Generator for DSP

software and Xilinx DSP IP

algorithms — provide the ideal

development environment for

developing Virtex-II Pro based

signal-processing designs.

Your Complete Devleopment Platform

Developed with Nallatech, the XtremeDSP Development Platform offers everything you

need to create high-performance signal-processing designs more quickly and efficiently.

• Exceptional Performance – The dual-channel, high-performance ADCs and DACs,

coupled with a user-programmable Virtex-II Pro FPGA, make this platform ideal for

implementing high-performance digital communication systems such as Software

Defined Radios. The 2VP30 FPGA features over 30,000 logic cells, 136 embedded

18x18 multipliers, and an integrated PowerPC™ 405 processor.

• Ease of Use – Combining the Xilinx System Generator for DSP software tool and

the XtremeDSP Development Kit provides an easy transition to using FPGAs for

high-performance signal processing—from algorithm concept to hardware verification.

The System Generator tool interfaces with MATLAB®/Simulink® and enables you to

perform hardware co-simulation on the XtremeDSP Development Platform via PCI

or JTAG. This provides simulation acceleration by an order of magnitude and allows

you to debug and verify the design on the FPGA.

• Comprehensive Support – Reduce your time to knowledge with the Xilinx DSP Design

Flow and DSP Implementation Techniques courses. You can also take advantage of

senior DSP support engineer expertise on the Xilinx Hotline.

Hardware co-simulation with the XtremeDSP Platform and Xilinx System Generator for DSP

76 DSP magazine October 2005

BenADDA DIME-II module
• Virtex-II Pro user FPGA: XC2VP30-5FF1152

• Two independent ADC channels: AD6645 ADC (14 bits up to 105 MSPS)

• Two independent DAC channels: AD9772 DAC (14 bits up to 160MSPS)

• Support for external clock, on-board oscillator, and programmable clocks

• Two banks of ZBT-SRAM (133 MHz, 512 Kx32 bits per bank)

• Multiple clocking options: internal and external

• Status LEDs

Also included with the XtremeDSP Platform
• External power supply (US Mains cable with separate UK, European

or Australian Mains adapters)

• Wide ranging input (90 - 264Vac), multiple output, power supply,

generating +5 Volts @ 5A, and +12 Volts @ 2A, -12 Volts @ 800mA

• USB v1.1-compatible cable, two meters long

• Five MCX-to-BNC cables for connecting to the ADC/DAC and external

clock connectors

• PCI back-plate and two screws

• 2x BNC jack-to-jack adapters for use in loop-back configurations

• Large carrying case

XtremeDSP Installation Pack
• Nallatech FUSE Software CD — Enables control and configuration of

FPGAs and provides tools to transfer data between the Kit and a host PC

via a GUI or a C-based API

Applications
This multi-purpose board can be used for many digital communications

applications including:

• Narrow-band systems (QAM demodulation, carrier timing recovery,

channel coding)

• Spread-spectrum systems (e.g. chip rate processing, RACH, path

profiling, TCC)

• Multi-carrier systems (e.g. OFDM, MIMO, TCC)

• And many more.

Take the Next Step
Purchase your XtremeDSP Platform at www.xilinx.com/store. For

more information, visit www.xilinx.com/dsp. To learn more about the

complete Nallatech platform offering, visit www.nallatech.com.

Price: $2,495

Finish Faster with Xilinx DSP Design Solutions

Hardware Platform Specifications
• XtremeDSP development board consisting of a motherboard

(“BenONE-Kit Motherboard”) populated with a daughter card

(“BenADDA DIME-II Module”).

BenONE-Kit Motherboard
• Supports the supplied BenADDA DIME-II module only

• Spartan-II™ FPGA for 3.3V/5V PCI or USB interface

• Host interfacing via 3.3V/5V PCI 32-bit/33-MHz or

USB v1.1 interfaces

• Status LEDs

• JTAG configuration headers

• User 0.1-inch pitch pin headers connected directly to user

programmable FPGA I/O

Corporate Headquarters

Xilinx, Inc.

2100 Logic Drive

San Jose, CA 95124

Tel: (408) 559-7778

Fax: (408) 559-7114

Web: www.xilinx.com

European Headquarters

Xilinx

Citywest Business Campus

Saggart,

Co. Dublin

Ireland

Tel: +353-1-464-0311

Fax: +353-1-464-0324

Web: www.xilinx.com

Japan

Xilinx, K.K.

Shinjuku Square Tower 18F

6-22-1 Nishi-Shinjuku

Shinjuku-ku, Tokyo

163-1118, Japan

Tel: 81-3-5321-7711

Fax: 81-3-5321-7765

Web: www.xilinx.co.jp

Asia Pacific

Xilinx Asia Pacific Pte. Ltd.

No. 3 Changi Business Park Vista, #04-01

Singapore 486051

Tel: (65) 6544-8999

Fax: (65) 6789-8886

RCB no: 20-0312557-M

Web: www.xilinx.com

Distributed By:

© 2005 Xilinx Inc. All rights reserved. The Xilinx name is a registered trademark; Virtex-II Pro, Spartan-II, and XtremeDSP are trademarks, and The Programmable Logic Company is a service mark of Xilinx Inc. PowerPC is a trademark
of International Business Machines Corp. in the United States, or other countries, or both. All other trademarks are the property of their owners.

TO
 D

IM
E-

II
M

O
TH

ER
BO

A
RD

TO
 D

IM
E-

II
M

O
TH

ER
BO

A
RD

A
ddress D

ata

ZBT SDRAM (2 Banks)

GPIO Bus

GPIO BusComm Link 2

Comm Link 2Comm Link 3

Local Bus

GPIO BusComm Link 1

Comm Link 2Comm Link 0

Adjacent OUT

Comm Link 4

Comm Link 5

CH
A

N
N

EL B

CH
A

N
N

EL A

CH
A

N
N

EL D

Analog
 Outputs ñ

DC Coupled OR
Directly Coupled

Analog
 Inputs ñ

Differential or
single-ended

External
Clock

DAC
AD9772A

DAC
AD9772A

ADC
AD6645

CH
A

N
N

EL C

ON-MODULE
XILINX VIRTEX-II Pro

FPGA
2VP30

ADC
AD6645

Clock
Management

Oscillator
OR

2nd External
Clock

Comm Link 7

Comm Link 6

Adjacent IN

Dime II module functional diagram

October 2005 DSP magazine 77

Keep up with the fl ow!

Powerful
• Virtex II Pro FPGA Processing Engine

• Large SDRAM and very fast QDR-II banks

Flexible
• Four Serial Links operating up to 3.125 Gb/s
 (Optical/Copper)

• FPGA and Flash Programming Utilities for
 easy confi guration

Innovative
• I/O and Pre-processing in a single PMC
 module

• VxWorks, Windows and Linux Host
 Software Support

• Parallel Front Panel I/O available using
 I/O modules

For more information, please visit
www.vmetro.com or call (281) 584 0728

With PMC-FPGA03
I/O and Pre-processing modules

P r o c e s s i n g a n d F P G A - I / O - D a t a R e c o r d i n g - B u s A n a l y z e r s

X xetriV xnili ™ eht edivorp sAGPF 4-

 elkcat ot ytilibixelf dna ecnamrofrep

.snoitacilppa PSD gnidnamed tsom eht

 rof detius yllaedi era secived esehT

 gnissecorp-langis ecnamrofrep-hgih

es yllanoitidart sksat CISA na yb decivr

 etaerc ot uoy elbane yehT.PSSA ro

 senigne PSD ecnamrofrep-hgih

 ruoyfo ecnamrofrep eht tsoob taht

-rep yb metsys PSD elbammargorp

gnissecorp-oc yratnemelpmoc gnimrof

latigid sa hcus snoitacilppa ni snoitcnuf

,gnigami/oediv,snoitacinummoc

.erom dna

eht si ylimaf AGPF 4-xetriV ehT

eht ot noitidda lufrewop tsom dna tsewen

PSDemertX xniliX ™ gnidivorp,noitulos

dellavirnu htiw ecnamrofrep PSD gnizalb

PSDemertX 215 ot pu htiW.ymonoce

secived eseht,zHM 005 ta gnitarepo secils

:sa hcus sksat xelpmoc tnemelpmi nac

 nwod dnabesab-ot-FIfo sderdnuH·

 slennahc noisrevnoc

-daerps rof gnissecorp etar-pihc X821·

 smetsys murtceps

4-GEPM dna 462.H noitinifed-hgiH·

smhtirogla edoced/edocne

setarelecca noitulos PSDemertX ehT

t’stcudorp ruoy hguorht tekram-ot-emi

lautcelletni,sloot ngised,secived roirepus

.secivres ngised dna,seroc ytreporp

,gningisedfo snaem tsetsaf eht uoy sevig sihT

smhtirogla PSD ruoy gniyolped dna,gniyfirev

.sAGPF ni smetsys dna

 ycneiciffE dna ecnamrofreP mumixaM srevileD ecilS PSDemertX

.ecnamrofrep dna,ycneiciffe,ytilitasrev dehctamnu sreviled ecils PSDemertX zHM 005 ehT

,etalumucca-ylpitlum sa hcus,snoitcnuf PSD 04 revo rof ecils PSDemertX hcae erugifnoC•

 gnixelpitlum dna,noitidda,ylpitlum

 cigol suoicerp evas dna)zHM001/wm32(%29 yb noitpmusnoc rewop PSD ecudeR•

 rofsecruoser sksat rehto

 dna sretlif xelpmoc dliub ot deeps metsys lluf ta secils PSDemertX elpitlum edacsaC•

 snoitcnuf noisicerp-itlum

 snoitacilppA PSD ruoY rof tsoC dna ecnamrofreP dezimitpO

sedivorp taht ecived eht esoohC.seitilibapac PSDemertX reffo smroftalp 4-xetriV eerht llA

.noitacilppa euqinu ruoy rof ecnamrofrep PSDfo oitar lamitpo eht

-hgih-artlufo noitatnemelpmi evitceffe-tsoc tsom eht reffo secived XS 4-xetriV•

 — secils PSDemertXfo oitar tsehgih eht htiw,ytilanoitcnuf PSD ecnamrofrep

 ecnamrofrep *SCAMG 652 ot pu gnireviled secils 215 ot pu

,yromem,cigol erom dda dna secils PSDemertX elpma reffo secived XL 4-xetriV•

 secruoser O/I dna

CPrewoP deddebme dda secived XF 4-xeriV• ™ OItekcoR dna srossecorp ™ tibagig-itlum

 sreviecsnart

 PSD desab-AGPF rof snoituloS ngiseD esu-ot-tseisaE

 dna tnempoleved PSD dipar rof snoitulos etelpmoc edivorp srentrap sti dna xniliX

.noitatnemelpmi

PSD rof rotareneG metsyS htiw emit ngised ecudeR•

yrarbil PI PSD hcir a htiw smhtirogla dezimitpo ylhgih,tsaf tnemelpmI•

secivres PSD dna troppus lacinhcet gninniw-drawa htiw retsaf tekram ot stcudorp gnirB•

 rotalumucca tib-84,stib 81x81*

October 2005 DSP magazine 79

 ro,reirrac-itlum,murtceps-daerps htiw gnikrow era uoy rehtehW

.eciohc laedi eht era sAGPF 4-xetriV,smetsys noitacinummoc dnabworran

noitats esaB sseleriW:elpmaxE

secilS PSDemertX zHM 005 elitasreV

:egnellahC ehT smhtirogla PSD ecnamrofrep-hgih tnemelpmI

.ylevitceffe-tsoc erom

:noituloS 4-xetriV ehT secils PSDemertX wen 215 ot pU

)ecnamrofrep llarevo SCAMG 652(tuphguorht zHM 005 •

 55XSV4 ni

snoitcnuf citemhtira +04•

sAGPF noitareneg-suoiverp ot derapmoc rewop eht ht21/1•

deeps ni ssol tuohtiw elbaedacsac yltceriD•

dnabworraN

murtcepS daerpS
)2PPG3.ge(

reirraC-itluM

 secafretnI lellaraP dna laireS lufrewoP

:egnellahC ehT smetsys rehto dna,yromem,srossecorp PSD ot ecafretni ot deeN

:noituloS 4-xetriV ehT secafretni O/I elbixelf ylemertxE

& srossecorP PSD
 sCAD dna sCDA

OIdipaR laireS•

.cte FIME•

.cte SDVL•

seiromeM lanretxE
MARD

RDD,2RDD•

II MARDLR,MARDS•

IIMARCF•

MARS

TBZ,IIRDQ•

secafretnI metsyS
OIdipaR laireS•

sserpxE ICP•

ICP•

IDS-DH•

 aroruA•

 IASBO,IRPC•

 draC dnabesaB
MAQ•

QE evitpadA•
gnimiT/reirraC•

yrevoceR
nomoloS deeR•

ibretiV•
 revaelretnI/eD•

etaR pihC•
xR HCAR•

reliforP htaP•
CCT•

ibretiV•

MDFO•
OMIM•

CCT•
CPDL•

PSDemertX wen eht esU

yltneiciffe ot secils

:tnemelpmi

snoitcnuF oidaR latigiD•

snoitcnuF dnabesaB•

era secils PSDemertX

htap eviecer eht ni desu

eht dna)tnecajda nwohs(

rof htap timsnart

timsnart gnidnopserroc

.snoitcnuf

draC oidaR latigiD
murtcepS

noitazilennahC

CDD•

mrofsnarT esahpyloP•

retliF dehctaM•

80 DSP magazine October 2005

 srossecorporciM tfoS dna draH detargetnI

:egnellahC ehT .noitatnemelpmi SOTR dna lortnoc xelpmoC

:noituloS 4-xetriV ehT corporcim tib-23 ot -8fo noitceles daorb A troppus metsys gnitarepo dna smetsys rosse

).cte,xuniL,ytirgetnI,skroWxV(

 decnavda gnitnemelpmi rof smroftalp XF ni seroc 504 CPrewoP MBI tib-23 draH•

 denifed-erawtfos rof)sACS(serutcetihcrA snoitacinummoC erawtfoS sa hcus skrowemarf

 snoitacilppa oidar

ezalBociP xniliX• ™ ezalBorciM dna ™ stiucric lortnoc rof srossecorporcim tfos

& beW
noitacilppA

srevreS

sreilpitlumeR
)sexuMtatS(

srevreS oediV

rotaludoM

retuoR STMC

B
ac

kp
la

n
e

(e
.g

. F
ib

re
 C

h
an

n
el

)

metsyS dne-daeH elbaC:elpmaxE

tenretnI

VT
tsacdaorB

srevieceR

 :sretemaraP kcolB
redocnE GEPM

 gnilacS•
 4/1 ro 2/1(noitamitse noitoM•

)noituloser lexip
gnikcolbeD•

)CLV(redoc htgnel elbairaV•
 TCD•

lennahC-elgniS
 detacilpeR redocnE nomoloS deeR

)s61LRS gnisu tuohtiw(semit 61

 redocnE-SR lennahc-61 tneiciffE
61LRS elgniS a gnisu

 lennahc-61 a,61LRS elgnis a gnisU

ylno semusnoc redocne nomoloS-deeR

a ot derapmoc aera nocilis ehtfo %01

elgnis a setacilper ylpmis taht ngised

.semit 61 noisrev lennahc

s61LRS gnisu sngiseD lennahC-itluM tcapmoC

:egnellahC ehT lennahc-itlum rof nwod rewop dna tsoc peeK

sngised gnissecorp-langis

:noituloS 4-xetriV ehT eveihca ot uoy elbane s61LRS euqinU

.secils cigolfo esu tneiciffe ekam dna ytisned etupmoc hgih yrev

October 2005 DSP magazine 81

 sretrauqdaeH etaroproC
.cnI,xniliX

evirD cigoL 0012

42159 AC,esoJ naS

8777-955)804(:leT

4117-955)804(:xaF

moc.xnilix.www:beW

 sretrauqdaeH naeporuE
.dtL,xniliX

 supmaC ssenisuB tsewytiC

,traggaS

 nilbuD.oC

dnalerI

 1130-464-1-353+:leT

 4230-464-1-353+:xaF

 moc.xnilix.www:beW

 napaJ
.K.K,xniliX

F81 rewoT erauqS ukujnihS

ukujnihS-ihsiN 1-22-6

oykoT,uk-ukujnihS

napaJ,8111-361

1177-1235-3-18:leT

5677-1235-3-18:xaF

pj.oc.xnilix.www:beW

 cificaP aisA
cificaP aisA,xniliX

yawetaG,6 rewoT,1021 tinU

 daoR notnaC 9

,noolwoK,iustahsmisT

 gnoK gnoH

 0025-424-2-258:leT

 9517-494-2-258:xaF

 moc.xnilix@capaisa-ksa:liam-E

orciM dna,ezalBociP,PSDemertX,OItekcoR,4-xetriV;kramedart deretsiger a si eman xniliX ehT.devreser sthgir llA.cnI xniliX 5002 © es a si ynapmoC cigoL elbammargorP ehT dna;skramedart era ezalB lanoitanretnIfo kramedart a si CP rewoP.cnI xniliXfo kram ecivr

nwo riehtfo ytreporp eht era skramedart rehto llA.htob ro,seirtnuoc rehto ro,setatS detinU eht ni noitaroproC senihcaM ssenisuB .sre

ynapmoC cigoL elbammargorP ehT MS

 PSD rof rotareneG metsyS xniliX

oitulos reimerp s’yrtsudni ehT selbane ngised PSD desab-AGPF rof n

:ot uoy

 a morf sAGPF ni smhtirogla PSD ecnamrofrep-hgih etareneG•

knilumiS ni noitacificeps elbatucexe level hgih ®

 tegrat ruoy gnisu edutingamfo sredro yb snoitalumis etareleccA•

miSledoM roknilumiS htiw”pool eht ni“ erawdrah ®

 a gnisu knilumiS otni yltcerid seludom golireV dna LDHV tropmI•

 ecafretni noitalumis-oc miSledoM

BALTAM gnisu cigol rehto dna enihcam etats yficepS• ® si taht edoc

 LDH LTR otni delipmoc yllacitamotua

 seroC PI sa smhtiroglA gnissecorP langiS deifirev-erP
rof dezimitpo seroc PI PSDfo egnar a edivorp srentrap dna xniliX

:tsoc dna deeps

srehto dna,sCCT,ibretiV,nomoloS-deeR:CEF•

srehto dna,sretliF,sTFF•

srehto dna,sCAM,reilpitluM,CIDROC:snoitcnuf htaM•

srehto dna gnilacs noisserpmoC—PI oediV•

,ICP,OIdipaR laireS htiw ytivitcennoc PSD dradnats-yrtsudnI•

FIME dna

snoituloS ngiseD PSD xniliX htiw retsaF hsiniF

sAGPF 4-xetriV rof troppuS dna secivreS PSD
secivreS noitacudE PSD

,cilbup htiw egdelwonk-ot-emit ruoy ecudeR

:gnidulcni sesruoc enilno dna,etavirp

)esruoc yad-eerht(wolF ngiseD PSD•

 xniliX rof seuqinhceT noitatnemelpmI PSD•

)esruoc yad-eerht(sAGPF

secivreS troppuS PSD
 htiw tcejorp PSD ruoyfo sseccus eht erusnE

:gnidulcni,troppus lacinhcet gninniw-drawa

etis bew troppus tseb s’yrtsudnI•

troppus eniltoh PSD eerF•

troppus eniltoh PSD munitalP•

troppus EA etis-no muinatiT•

secivreS ngiseD PSD
ruo gniwolla yb ksir tcejorp ruoy ecudeR

:htiw uoy pleh ot sreenigne

gnitcetihcra metsyS•

noitatnemelpmi AGPF•

noitacifidom eroc PI•

ngised metsys yeknruT•

 petS txeN eht ekaT
 ta enilno su tisiV.ymonoce dellavirnu htiw ecnamrofrep PSD gnizalb gniveihca tuoba erom nraeL 4xetriv/moc.xnilix.www

82 DSP magazine October 2005

Turbocharge your
DSP performance

Achieve high-definition, higher frame rates or multiple video streams

When complimenting a TI DSP, Xilinx XtremeDSP co-processing offers the performance,
versatility, and economy for today’s high-end video and imaging applications.
Whether it’s high-definition, motion estimation, video scaling, or any number of
compute intensive functions, a Xilinx Virtex-4 or Spartan-3/3E FPGA can boost
your DSP performance. XtremeDSP co-processing delivers higher resolution,
higher frame rate video processing than a standalone DSP processor, plus the
ability to handle multiple video streams.

Reduce power and cost per channel in wireless systems

For implementing custom wireless functions, such as multi-carrier crest factor reduction
(CFR), digital pre-distortion (DPD), MIMO and other advanced antenna processing,
our FPGAs lower your costs and power per channel. With up to 256 GMAC/s performance,
you have the advantage of offloading compute intensive tasks from a TI DSP to a
Xilinx FPGA while increasing channel density in your wireless system.

Visit us at www.xilinx.com/dsp/coprocessing to learn more about the highest-
performance DSP in the industry, and download your FREE evaluation copy of
XtremeDSP software.

www.xilinx.com/dsp/coprocessing

© 2005 Xilinx, Inc., All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc.
All other trademarks are the property of their respective owners.

PN 0010886

