
R

INSIDE

FPGAs for DSP:
A Fast-Growing Market

The Role of FPGAs in
Digital Radio Subsystems

Rapid Prototyping
and Verification of
MIMO Systems

Accelerate Video DSP
Co-Processing Designs

Implementing Optimal
Filters Quickly

Floating- to Fixed-Point
Conversion of MATLAB
Algorithms Targeting FPGAs

INSIDE

FPGAs for DSP:
A Fast-Growing Market

The Role of FPGAs in
Digital Radio Subsystems

Rapid Prototyping
and Verification of
MIMO Systems

Accelerate Video DSP
Co-Processing Designs

Implementing Optimal
Filters Quickly

Floating- to Fixed-Point
Conversion of MATLAB
Algorithms Targeting FPGAs

Issue 2
May 2006

Optimizing DSP
System Designs
Optimizing DSP
System Designs

DSPmagazineDSPmagazine
S O L U T I O N S F O R H I G H - P E R F O R M A N C E S I G N A L P R O C E S S I N G D E S I G N S

Enabling success from the center of technology™

1 800 332 8638
em.avnet.com

© Avnet, Inc. 2006. All rights reserved. AVNET is a registered trademark of Avnet, Inc.

Avnet Electronics Marketing designs, manufactures, sells and

supports a wide variety of hardware evaluation, development and

reference design kits for developers looking to get a quick start on

a new project.

With a focus on embedded processing, communications and

networking applications, this growing set of modular hardware kits

allows users to evaluate, experiment, benchmark, prototype, test

and even deploy complete designs for field trial.

Gain hands-on experience with these design kits and other

development tools by participating in a SpeedWay Design

Workshop™ this spring.

For a complete listing of available boards, visit

www.avnetavenue.com

For more information about upcoming SpeedWay workshops, visit

www.em.avnet.com/speedway

Support Across The Board.
™

Design Kits Fuel Feature-Rich Applications

Build your own system by
mixing and matching:

• Processors

• FPGAs

• Memory

• Networking

• Audio

• Video

• Mass storage

• Bus interface

• High-speed serial interface

Available add-ons:

• Software

• Firmware

• Drivers

• Third-party development tools

W

High-Performance DSP –
Executing to Plan
Welcome to the second edition of Xilinx® DSP Magazine. In the last issue we outlined five pillars
that underline our vision in DSP: market focus, design methodology, tailored solutions, ecosystem,
and awareness. Since publishing that issue, we have delivered many exciting tailored solutions,
such as starter and co-processing kits for video and imaging and JTRS development platforms for
software-defined radio.

With the acquisition of AccelChip and its MATLAB-to-RTL synthesis tools, we have also
increased our investment in providing you with the most capable and easiest to use design
methodology solutions. We are also continuing to work with our core DSP partners like Texas
Instruments and The MathWorks to deliver complementary solutions, as unveiled in our recent
Serial RapidIO interoperability announcement at TI’s Developer Conference in February.

For this second edition of DSP Magazine we welcome DSP industry icon Will Strauss of
Forward Concepts with snippets from his latest DSP industry research report. His insights
regarding shifts in the DSP industry are provided in his article, “FPGAs for DSP: A Fast-
Growing Market.” In addition, our partners Avnet, Lyrtech, The MathWorks, and Nuvation
highlight their latest innovations for our XtremeDSP™ platforms. Our own experts provide
tutorials on implementing floating-point DSP, optimizing filter design, and achieving high-
bandwidth simulations, among others.

I’m sure you’ll find our second edition of DSP Magazine informative and inspiring as we
endeavor to help you unlock the full capabilities of Xilinx reconfigurable signal processing.
Enjoy the read!

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124-3400
Phone: 408-559-7778
FAX: 408-879-4780
www.xilinx.com/xcell/

© 2006 Xilinx, Inc. All rights reserved. XILINX,
the Xilinx Logo, and other designated brands included
herein are trademarks of Xilinx, Inc. PowerPC is a
trademark of IBM, Inc. All other trademarks are the
property of their respective owners.

The articles, information, and other materials included
in this issue are provided solely for the convenience of
our readers. Xilinx makes no warranties, express,
implied, statutory, or otherwise, and accepts no liability
with respect to any such articles, information, or other
materials or their use, and any use thereof is solely at
the risk of the user. Any person or entity using such infor-
mation in any way releases and waives any claim it
might have against Xilinx for any loss, damage, or
expense caused thereby.

Omid Tahernia

Vice President
and General Manager
Xilinx DSP Division

PUBLISHER Forrest Couch
forrest.couch@xilinx.com
408-879-5270

EDITOR Charmaine Cooper Hussain

ART DIRECTOR Scott Blair

ADVERTISING SALES Dan Teie
1-800-493-5551

TECHNICAL COORDINATOR Narinder Lall

INTERNATIONAL Dickson Seow, Asia Pacific
dickson.seow@xilinx.com

Andrea Barnard, Europe/
Middle East/Africa
andrea.barnard@xilinx.com

Yumi Homura, Japan
yumi.homura@xilinx.com

www.xilinx.com/xcell/

DSPmagazineDSPmagazine

DaVinci™ Technology makes astounding

creativity possible in digital video devices

for the hand, home and car. The DaVinci

platform includes digital signal processor

(DSP) based SoCs, multimedia codecs,

application programming interfaces, applica-

tion frameworks and development tools, all

of which are optimized to enable innovation

for digital video systems. DaVinci products

will save OEMs months of development time

and will lower overall system costs to

inspire digital video innovation. So what are

you waiting for? You bring the possibilities.

DaVinci will help make them real.

Portable Media Player IP Set-Top Box Automotive Infotainment Digital Still Camera Digital Video Innovations Video Surveillance Video Phone & Conferencing

What is DaVinci?

Now that DaVinci products are here, your

digital video innovations are everywhere.

That’s the DaVinci Effect.

Processors: Digital Video SoCs:
- TMS320DM6446 – Video encode/decode

- TMS320DM6443 – Video decode

Tools: Validated Software
and Hardware Development
- DVEVM (Digital Video

Evaluation Module)

- MontaVista Development Tools

- Code Composer Studio IDE

IP SET-TOP BOX:
Stream and
record any
format video
from anywhere
onto your TV.

SPEED VIDEO DESIGN:
TI’s digital video
framework simplifies
development.

Digital video
evaluation module
allows for rapid
prototyping of new
designs.

Program the SoC via
industry recognized APIs.

PORTABLE MEDIA PLAYER:
Video on the go–playing
on the TV, in the car or
in your hands.

DIGITAL STILL CAMERA:
Crops photographs,
cleans up pictures and
records memories.

VIDEO SURVEILLANCE:
Intelligent system notifies
you when someone
approaches and instantly
emails you a photo.

DaVinci, Code Composer Studio IDE, Technology for Innovators and the red/black banner are trademarks of Texas Instruments. 1321A0 © 2006 TI

Performance Benchmarks: Software: Open, Optimized
and Production Tested
- Platform Support Package

- MontaVista Linux Support Package

- Industry-recognized APIs

- Multimedia frameworks

- Platform-optimized, multimedia codecs:

- H.264

- MPEG4

- H.263

- MPEG2

- JPEG

- AAC+

- AAC

- WMA9

- MP3

- G.711

- G.728

- G.723.1

- G.729ab

- WMV9/
VC1

>>> For complete technical

documentation or to get

started with our Digital Video

Evaluation Module, please visit

www.thedavincieffect.com

+ denotes available processor headroom for analytics and/or other features

STANDALONE CODECS DM6446 DM6443

MPEG-2 MP ML Decode
1080i+ (60 fields

/30 frames)
720p+

MPEG-2 MP ML Encode D1+ n/a

MPEG-4 SP Decode 720p+ 720p+

MPEG-4 SP Encode 720p+ n/a

VC1/WMV 9 Decode 720p+ 720p+

VC1/WMV 9 Encode D1+ n/a

H.264 (Baseline) Decode D1+ D1+

H.264 (Baseline) Encode D1+ n/a

H.264 (Main Profile) Decode D1+ D1+

Welcome .3

BUSINESS VIEWPOINT

FPGAs for DSP: A Fast-Growing Market .6

MULTIMEDIA, VIDEO, and IMAGING

Implementing Bluetooth CVSD Codec on an FPGA .8

Developing Video IP in a Fully Integrated Design Environment 10

Accelerate Video DSP Co-Processing Designs .13

WIRELESS

The Role of FPGAs in Digital Radio Subsystems .16

Rapid Prototyping and Verification of MIMO Systems .21

AEROSPACE AND DEFENSE

Making the Adaptivity of SDR and Cognitive Radio Affordable 25

The Design of an FPGA-Based MIMO Transceiver for Wi-Fi 28

Floating- to Fixed-Point Conversion of MATLAB Algorithms Targeting FPGAs32

CUSTOMER SUCCESS

BAE Systems Proves the Advantages of Model-Based Design 36

GENERAL PURPOSE

Achieving High-Bandwidth DSP Simulations Using Ethernet Hardware-in-the-Loop 42

Hardware DSP Analysis Techniques Using the Z-Transform .45

Implementing Optimal Filters Quickly .48

Model-Based Design .52

Accelerating FFTs in Hardware Using a MicroBlaze Processor 56

PRODUCTS

Virtex-4 SX 35 XtremeDSP Development Kit for Digital Communication Applications . . .60

EDUCATION

DSP Design Flow .62

DSP Implementation Techniques for Xilinx FPGAs .63

Designing with Multi-Gigabit Serial I/O .64

C O N T E N T S

D S P M A G A Z I N E I S S U E 2 , M A Y 2 0 0 6

by Will Strauss
President
Forward Concepts
wis@fwdconcepts.com

FPGAs employed
for DSP have
passed the half-

billion dollar mark; in fact, that market
segment is growing faster than the larger
and more mature DSP chip market. The
reasons are varied, but performance is the
prime driver, as FPGAs easily outdistance
conventional DSP chips in maximum
bandwidth and the number of communi-
cation channels or video streams that can
be processed simultaneously.

As FPGAs have become more power-
ful and cheaper through advanced
CMOS processing, stand-alone FPGA
DSP solutions are becoming practical.
In a recent survey of more than 300
DSP professionals from 30 countries,
Forward Concepts asked, “Which chip
types are employed for DSP algorithm
execution (rather than data processing)
in your applications”? The results com-
paring DSPs and FPGAs in Figure 1
clearly show that FPGAs have an
increasing and varied role in DSP.

As expected, the general-purpose
(GP) fixed-point DSP garnered the
most mentions, followed by GP float-
ing-point DSPs. But significantly,
stand-alone FPGAs for DSP showed
strength in the number of responses
garnered, equaling the number of
responses for FPGAs paired with DSPs
as an accelerator. Surprisingly, FPGAs
paired with RISCs also showed signifi-

cant strength. This provides an appropri-
ate segue to our next chart.

We also asked our survey participants,
“If a RISC core is employed (for any pur-

pose) in your DSP application, which
brand(s) is (are) used or being strongly
considered for your next design”? As
expected, of those respondents employing

a RISC core, ARM, Ltd. topped the
responses. Unexpected, though, was
the strong response for soft RISC
cores, with Xilinx® MicroBlaze™ and
PicoBlaze™ processors ranking a clear
second to ARM in popularity, as indi-
cated in Figure 2.

Although we did not explicitly ask if
a soft RISC was employed in the
“stand-alone FPGAs for DSP” in
Figure 1, we can conclude that is prob-
ably the case for such implementations.
Considering that the soft RISC is more
concerned with control code and that
the FPGA array can be significantly
devoted to DSP functions, the pairing
makes a lot of sense. Moreover, our
informal interviews after the survey
was performed (Q4/05) revealed that
there are a number of FPGA imple-
mentations employing multiple soft
RISC cores, with MicroBlaze proces-
sors mentioned most often.

It is clear that FPGAs have a strong
play in the world of DSP and Xilinx is
aggressively providing new products and
application support to meet increasing
market demand for ever-higher per-
formance DSP products in communica-
tions and professional multimedia.

The charts in this article are excerpts
from Forward Concepts’s new 322-page
market study, “DSP Strategies:
Embedded Chip Trend Continues”
(www.fwdconcepts.com).

FPGAs for DSP: A Fast-Growing Market

6 DSP magazine May 2006

A survey by Forward Concepts validates the increasing role of FPGAs in DSP applications.

DSPs and FPGAs Employed for DSP

GP Fixed-Point
DSP

GP Floating-Point
DSP

Stand-Alone
FPGA for DSP

DSP w/FPGA
Accelerator

RISC w/FPGA
DSP Engine

Responses (Multiple)

0 40 80 120 160

Source: Forward Concepts

ARM

Xilinx (Micro/PicoBlaze)

PowerPC-Freescale

Altera (Nios/Nios II)

Proprietary RISC Core

PowerPC-IBM

Intel XScale (IP)

MIPS

Freescale (ColdFire)

Tensilica

ARC

Other

1% 10% 100%

Source: Forward Concepts

RISC Core Used in DSP Application
(For Any Purpose)

Responses (Multiple)

Figure 1 – FPGAs exhibit growing roles in DSP.

Figure 2 – FPGA soft RISCs prove popular
in DSP applications.

B U S I N E S S V I E W P O I N T S

by Chirag Vishwas Vichare
Senior Engineer (VLSI)
MindTree Consulting Pvt. Ltd.
chirag_vichare@mindtree.com

Over last few years, FPGAs have evolved to
include significant DSP-centric enhance-
ments in their architectures. These
enhancements have enabled FPGAs to sup-
port many complex DSP applications in
domains such as telecommunications (base
station signal processing, radar signal pro-
cessing), multimedia processing (video pro-
cessing, audio signal processing), and other
application areas. However, implementing

such complex systems in FPGAs can be
quite time-consuming.

In most of these DSP systems, the algo-
rithms used were developed for processor-
based systems. Translating these
algorithms into hardware to achieve equal
or better performance can take months,
compared to few weeks on DSP proces-
sors. This is largely attributed to the
mature development tools available to
DSP engineers while working with DSP
processors such as TI or analog devices.
Usually these tools provide optimized
macros (in high-level language or assembly
language) for many DSP algorithms, and

these macros are a major contributor in
reducing system development time.

Including More System-Level IP Cores
To achieve similar results in terms of
development cost, time, and perform-
ance when implementing such complex
DSP systems in hardware, it is just not
enough to have only primitive macros
such as adders and multipliers already
available in a hardware designer’s library.
The hardware DSP design flow should
incorporate more and more system-level
macros for sub-blocks such as encoders,
decoders, FFTs, DCTs, trigonometric

Implementing Bluetooth
CVSD Codec on an FPGA
Implementing Bluetooth
CVSD Codec on an FPGA

8 DSP magazine May 2006

Using a Xilinx MAC FIR filter core reduces the design time.Using a Xilinx MAC FIR filter core reduces the design time.

functions, sample rate converters, and
FIR filters, which are optimal implemen-
tations in terms of area, memory, or speed
and already proven in hardware. This can
reduce development time drastically, as
the only task is to integrate these IP cores
into the system architecture and verify
the functionality of the overall system.
Even if your goal is to finally develop
your own macros and you are using the
FPGA only as an ASIC prototype or
demonstration platform, using these
macros to validate your design can give
you the opportunity and time to explore
the design space in terms of area and per-
formance (speed and power).

To illustrate the methodology, let’s use
as an example a MindTree bluetooth
CVSD codec implemented on a Xilinx®

Virtex™-II FPGA, which uses a CORE
Generator™ software MAC FIR filter as
a sub-block for interpolation and decima-
tion filtering.

The aim here was to validate the con-
tinuous variable slope delta modulation
(CVSD) codec on a Virtex-II-based ASIC
prototype platform for MindTree’s
Bluetooth baseband.

CVSD Codec Validation
Bluetooth technology has reached a stage
of maturity and is being extensively inte-
grated in many devices such as mobile
phones, PDAs, laptops, and GPS
receivers. One of the major applications

Integrating these filters into the
MindTree Bluetooth baseband core was a
fairly easy task, as the MAC FIR I/O inter-
face is clearly defined in Xilinx CORE
Generator software.

The only task was then to generate filter
coefficients for interpolation and a decima-
tion filter from SCILAB (a free scientific
software package for numerical computa-
tions), and pass them to Xilinx CORE
Generator software to produce an .edn file
for filters, which was included during place
and route.

Using a Xilinx MAC FIR filter core
helped in exploring the optimal set of
parameters (filter length, coefficients, word-
length precision) for these filters without
compromising CVSD voice quality. It also
helped in terms of reduced design time by
avoiding the design iterations to achieve the
desired voice quality. This is largely because
the design had already been proven in hard-
ware much earlier in design cycle. It also
helped in hardware optimization during
actual implementation of interpolation and
decimation filters.

An Alternative Approach
CORE Generator software also provides a
behavioral model for all of its IP cores. You
can integrate these models into the system to
be developed during the verification stage,
which can aid in analyzing the performance
and fine-tuning the design parameters.

Conclusion
Today’s FPGAs are capable of implementing
most high-performance complex DSP algo-
rithms efficiently. However, achieving your
desired performance goals and meeting tight
time-to-market constraints requires a change
from conventional DSP design flows.

Incorporating pre-verified and more
often optimized system-level IP cores at var-
ious stages in the DSP design flow can sig-
nificantly help in reducing development
time and achieving your desired performance
objectives through design space exploration.

For more information on CORE
Generator software, visit www.xilinx.com/
xlnx/xebiz/designResources/ip_product_details.
jsp?key=dr_dt_coregenerator or www.xilinx.
com/ise/products/coregen_overview.pdf.

for Bluetooth in these devices is as a car-
rier of voice data over synchronous logic
transport (SCO). The Bluetooth standard
specifies a 64 kbps log PCM (pulse code
modulation) format (A-law or µ-law) or a
64 kbps CVSD format for on-the-air
interface. CVSD encoding is considered
the more robust format for voice-over-
the-air interfaces. However, CVSD is a
complex technique, which involves adap-
tive delta pulse-code modulation, where
only two levels are used to represent the
differential in amplitude (delta). The
CVSD encoder/decoder processes 16-bit
samples (as an encoder) and single-bit
symbols at 64 kHz (as a decoder).

Figure 1 shows the block diagram of the
Bluetooth CVSD codec.

The CVSD codec requires an interpo-
lation filter in the encoder path to up-
sample the 8 KHz samples from voice
codec to 64 kHz, which is given as an
input to the CVSD encoder. Similarly,
the 64 kHz output of the decoder must
be down-sampled to 8 kHz using a low-
pass filter with negligible spectral power
density (above 4 kHz) before being
played back with the 8 kHz voice codec.

After verifying the CVSD
encoder/decoder block independently
with the golden reference model, I took
the approach of validating the CVSD
codec on the Virtex-II FPGA platform,
with the Xilinx FIR filter core used as an
interpolation and decimation filter.

May 2006 DSP magazine 9

16-bit Linear Data
from PCM Codec
every 8 kHz

16-bit Linear Data
to PCM Codec
every 8 kHz

Up
Sampler

(Xilinx MAC
FIR Core)

CVSD

Encoder

Bluetooth
Baseband
TX FIFO

Down
Sampler

(Xilinx MAC
FIR Core)

CVSD

Decoder

Bluetooth
Baseband
RX FIFO

Figure 1 – Bluetooth CVSD codec block diagram

by Sabine Lam
DSP Technical Marketing Engineer
Xilinx, Inc.
sabine.lam@xilinx.com

Often the implementation of video pro-
cessing systems requires support for various
video and audio standards and involves
converting signals from one standard to
another. Multimedia applications require
processing signals at video rates, which
means that simulation should run in real
time during the development process.

Typical video processing systems use a
microprocessor to control a video pipeline
comprising a video source and sink, a large
memory for storage of video data, and a
video processing system (Figure 1).

As you implement and debug the vari-
ous video algorithms, you will need to ver-
ify the functionality through software and
hardware simulation. Simulation of video-
processing applications creates special
challenges given the real-time nature of
video streams and the enormous amount
of video data required per frame.

Developing Video IP in a Fully
Integrated Design Environment
Developing Video IP in a Fully
Integrated Design Environment

10 DSP magazine May 2006

The Video Starter Kit is an ideal prototyping platform for multimedia, video, and imaging.The Video Starter Kit is an ideal prototyping platform for multimedia, video, and imaging.

Design Environment
The Video Starter Kit (VSK) enables rapid
development and debugging of high-per-
formance video processing systems for a
wide range of video applications. The VSK
is powered by the Xilinx® Virtex™-4
XC4VSX35 device, which is optimized for
DSP processing thanks to the high ratio of
multiply accumulate blocks (also known as
DSP48) in the fabric and supported by a
rich feature set of video interfaces such as
DVI, VGA, component (HD), composite,
S-Video, and SDI.

Typically, developing video algorithms
requires hardware to prove the video oper-
ation on real-time data streams, as well as a
simulation environment to develop and
test the video processing components. The
VSK provides both software simulation
and real-time operation for each of the
components in a video system, allowing
you to develop video IP (including filters,
video blocksets, accelerators, and video
interface conversion) or end applications
such as codecs, image enhancement,
dynamic gamma correction, and motion
estimation. The integration with the tool
kit and the I/O diversity makes it fast and
easy to get video onto the board and opti-
mize algorithms to operate on it.

Also provided with the VSK are refer-
ence designs, some in HDL and others
modeled in the Xilinx System Generator
for DSP design environment. To abstract
away the complexity of bringing data in
through the various video interfaces and
sending them down to the Virtex-4 device,
a library of video interface blocksets is
included, all controlled through a
MicroBlaze™ controller.

To highlight some of the VSK capabili-
ties, I’ll describe the MPEG-4 Part 2
decoder demonstration design.

MPEG-4 Part 2
The MPEG-4 decoder demonstration sys-
tem comprises an FPGA hardware evalua-
tion platform, Xilinx IP cores, and
embedded software operating together to
perform video decompression on industry-
standard encoded video bitstreams.

For this design, the FPGA is programmed
to perform the decompression and drive the

mented in the XC4VSX35 FPGA. The
ZBT memory, DDR memories, System
ACE™ technology, Compact Flash con-
nector, two-line LCD display, and a digital-
to-analog converter are located on the
hardware platform.

Embedded Processor
Video systems often require a control
processor. The processor is typically used to
communicate with a host system, set up
video processing operations, compute coef-
ficients, and generally operate as a low-rate
data processor.

In the MPEG-4 demonstration design,
the embedded MicroBlaze processor oper-
ates as the overall system-level controller,

video display. A Compact Flash card holds
several compressed video streams and the
FPGA configuration bitstreams. An embed-
ded processor within the FPGA reads the bit-
stream out of the Compact Flash card, writes
it to an external DDR memory, and sends it
to the MPEG-4 Part 2 decoder. The output
from the decoder is then reformatted to the
video standard of your choice for display on
an external monitor through the video I/O
daughtercard.

An overview of the system is shown in
Figure 2. The MPEG-4 decoder core,
DDR memory controller, color space con-
verter, VGA interface, macroblock format
converter, and MicroBlaze soft-core proces-
sor and associated peripherals are imple-

May 2006 DSP magazine 11

Video
Source

Video
Sink

Video
Function

Video
Memory

Micro-
processor

Host
Interface

Video

Control

Display
System Monitor

Port (to PC)

Board - Xilinx ML402

Video
DAC

Buffered
VGA

Interface

Memory Controller
with DDR Interface

DDR Memory ZBT Memory
System

ACE LCD

LCD Driver

MicroBlaze
Soft Core
Processor

UART

FIFO

FIFO

FIFO

System ACE
Interface
with DMA

Display
Controller

MPEG4
Decoder

Figure 1 – Video system diagram

Figure 2 – MPEG-4 design overview

handling such functions as the user inter-
face, reading compressed bitstreams from
Compact Flash, transmitting the bitstream
into the MPEG-4 decoder core, and mon-
itoring all system status flags.

With Xilinx System Generator for DSP,
the design flow for incorporating a
MicroBlaze processor into the framework is
greatly simplified. You can use Xilinx
System Generator and the Embedded
Development Kit (EDK) software tools
together to implement and simulate a sys-
tem with a processor and FPGA video
processor functions operating on live video
streams. System Generator automatically
generates software drivers to read and write
data to the System Generator design.

Two methodologies are currently sup-
ported to integrate a MicroBlaze controller:

• A System Generator design exported
into an EDK system. When used in
pcore (processor core) export mode,
the memory map block and all other
blocks are packaged into a pcore
peripheral. Software drivers and docu-
mentation for the memory-map inter-
face are also generated and delivered
with the peripheral.

• An EDK project imported into a
System Generator design for hardware
co-simulation. When used in EDK
import mode, an EDK project file is
imported into System Generator by
running the EDK import wizard.
When the import wizard is completed,
the EDK system is pulled into the
System Generator design as a black
box. During the import process, the
EDK system is augmented with Fast
Simplex Link (FSL) interfaces that
communicate with the memory map.

Hardware Co-Simulation
Viewing the resulting output video is an
important quality measurement metric for
all video systems. The video standard input

and output sources featured on the VSK,
coupled with System Generator hardware
co-simulation capability, allow you to
quickly test and debug your system with
real-time video streams.

System Generator provides hardware
co-simulation interfaces that make it possi-
ble to compile a System Generator diagram
into an FPGA bitstream and associate this
bitstream with a new run-time hardware
co-simulation block. When the design is
simulated in Simulink, results for the com-
piled portion are calculated in hardware
instead of software.

System Generator provides high-speed
hardware co-simulation interfaces that
allow the full contents of a Simulink vec-
tor or matrix signal to be read from or
written to FPGA hardware in a single
transaction. By using these interfaces, you
can significantly reduce the number of
PC/hardware transactions during simula-
tion and further accelerate simulation
speeds beyond what is traditionally possi-
ble with hardware co-simulation.

By taking advantage of the ubiquity and
advancement of Ethernet technologies, the
interface facilitates a convenient and high-
bandwidth co-simulation to an external
FPGA device.

The VSK supports two Ethernet co-
simulation modes:

• The network-based Ethernet hardware
co-simulation interface provides co-
simulation access to an FPGA plat-
form over an IPv4 network
infrastructure. Because IPv4 networks
are widespread, the interface provides
a straightforward way to communicate
with remote hardware connected to
either a wired or wireless network.
This interface is ideal in situations
where the FPGA platform is remote
(such as across the office or across the
country) or when multiple designers
must share a single development

board. The network-based Ethernet
interface supports operations in
10/100 Mbps half/full duplex modes.

• The point-to-point Ethernet hardware
co-simulation provides a co-simulation
interface using a raw Ethernet connec-
tion. The raw Ethernet connection
refers to a Layer 2 (data link layer)
Ethernet connection, between a sup-
ported FPGA development board and
a host PC, with no routing network
equipment along the path. The point-
to-point Ethernet interface supports
operations in 10/100/1000 Mbps
half/full duplex modes. Jumbo frames
are also supported on a Gigabit
Ethernet connection, as long as it is
enabled by the underlying connection.

Conclusion
With this complete and easy-to-use solu-
tion, the Video Starter Kit is the ideal hard-
ware platform to evaluate Xilinx FPGAs in
a wide range of video and imaging applica-
tions. Fully integrated and supported by the
Xilinx System Generator for DSP software,
the VSK takes advantage of the new high-
speed Ethernet hardware co-simulation
capability and enables system integration,
development and verification of codecs, IP,
and video algorithms in real time.

The VSK comprises software, hard-
ware, camera, cables, and a detailed users
guide and reference designs. It includes a
limited edition of System Generator for
DSP, ISE™ software, and Embedded
Design Kit (EDK) FPGA design tools, as
well as a Xilinx ML402-SX35 develop-
ment board, video I/O daughtercard
(VIODC), CMOS image sensor camera,
power supply, and cables.

For more information, see the VSK
User Guide at www.xilinx.com/bvdocs/
userguides/ug217.pdf, or, for the MPEG-4
demonstration design, www.xilinx.com/
bvdocs/userguides/ug234.pdf.

12 DSP magazine May 2006

The video standard input and output sources featured on the VSK, coupled
with System Generator hardware co-simulation capability, allow you
to quickly test and debug your system with real-time video streams.

by Chris Hallahan
VP Sales & Marketing
Nuvation
chris.hallahan@nuvation.com

Did you know that you can evaluate, test,
develop, and benchmark custom video pro-
cessing applications utilizing an appropriate
mixture of FPGA and DSP processing? The
new Xilinx® Video Virtual Socket Adapter
(VSA) is designed to accelerate FPGA/DSP
video co-processing development.

The VSA is a plug-and-play system
comprising a Spectrum Digital DM642
EVM DSP evaluation board; a Spectrum
Digital XEVM642 daughtercard; a
VHDL “virtual socket” framework for the
Virtex™-4 SX FPGA; DSP firmware; a
System Generator for DSP demo module
featuring a two-dimensional 5 x 5 Video
FIR filter; user guide; application notes;
and a PC-based network streaming
MJPEG video player. With the bundled
demo system, you instantly get the infra-
structure to rapidly prototype your video
applications to accelerate FPGA/DSP co-
processing product development. The sys-
tem was developed by Nuvation, a Xilinx
Alliance Program design services firm, and
is being distributed by Xilinx.

Accelerate Video DSP
Co-Processing Designs

May 2006 DSP magazine 13

Design, develop, and test your algorithms with the Video Virtual Socket Adapter.

player server and HTTP server components.
It passes new frames to the MJPEG player
server when they are available.

MJPEG Player Server
This task awaits incoming connections
from the PC-based MJPEG player client
and streams out newly captured JPEG

Video Conversion Pipeline
This component comprises two independ-
ently running pipelined tasks. The first
receives a video stream from the FPGA
video output port through a DM642 video
input port and converts it to YUV420 for-
mat. The second compresses it into an in-
memory JPEG image for use by the MJPEG

14 DSP magazine May 2006

The VSA System
Figure 1 shows a block diagram of the
VSA system. Spectrum Digital’s DM642
EVM showcases TI’s DM642 digital
media processor (TMS320DM642). On-
board components include 32 MB
SDRAM, 4 MB Linear Flash, two video
decoders, one video encoder, two S-
Video/composite video inputs, one S-
Video/composite/VGA output, 10/100
Ethernet PHY, mic and headphone jacks,
and an off-board connector driven
through the DM642’s EMIF interface.
You can develop DSP firmware on the
DM642 EVM with TI’s Code Composer
Studio and a JTAG emulator.

XEVMDM642 Virtex-4 Daughtercard
Spectrum Digital’s XEVM642 is a Virtex-4
SX35-based daughtercard that plugs into
the DM642 EVM. In addition to the
Virtex-4 device, the XEVM has memory,
clocks, a JTAG port, and a Compact Flash
card socket. From video algorithm acceler-
ation, data compression filters, and custom
logic, the Virtex-4 FPGA is easily program-
mable with Xilinx System Generator for
DSP and ISE™ software.

VHDL and Firmware
The Video VSA includes a set of VHDL
modules and the firmware to directly con-
trol them (illustrated in Figure 2). These
modules include a generic user logic mod-
ule (the function that fits into the “virtual
socket”), a video input module, a test pat-
tern generator, a 2:1 video switch, a video
output module, and a host interface mod-
ule. All of these modules – and the firmware
that controls them – are reusable.

The Video VSA modules are connected
together in a way that provides a “virtual
socket” where the user function can reside.
Any appropriate functionality and imple-
mentation approach of the user function is
possible; the surrounding Video VSA mod-
ules are connected together to form the
infrastructure that allows you to focus your
design effort on the user function.

The demo firmware comprises four
main components, shown in Figure 3 as
shaded blocks within the overall demo
firmware framework.

SDRAM

Xilinx
XC4VSX35

Video
Decoder

Video
Decoder

TI DM642

Video
Encoder

Ethernet
PHY

DM642 EVM

XEVMDM642

PC-Based Stream Player

Note: Shaded components are
not utilized in this demo or by
the current implementation of
the Video VSA.

Video
Input

TPG
Frame
SYNC User Mode

Video
Output

Host Interface

VSA Firmware

Demo Firmware

Demo Software

Demo User
Function

(5 x 5 Filter)

Figure 2 – Video VSA system block diagram

Figure 1 – Block diagram of EVM642 and XEVM system

images while the connection is active. This
task receives notification from the video
conversion pipeline when a new JPEG
image is available.

Demo Control
The demo control component is a task
that polls the video’s locked status and
video standard for changes. This task
will re-initialize the video conversion
pipeline when video lock has been
restored. It is also used to handle
525/625 video standard changes.

During the same polling loop, the
demo’s processing window position is
updated (if movement is enabled).
This implements the window’s bounc-
ing behavior.

The remainder of the demo control
component is a series of demo-specific
functions responsible for controlling
the following demo settings:

• Processing window position, size,
enabled status, and auto move

• Filter kernel (including chroma
bypass)

• Video source selection (test pat-
tern or live video)

Web Server
The Web server is configured to use a
standard HTTP port and offers the
following content/services:

• The current video frame is made
available as a JPEG file

• A JavaScript-based player/control
console for the demo is available as
the default web page on the server;
this page also loads two static logo
images from the Web server

• Three dynamic CGI scripts
process incoming HTTP POST
configuration change requests
used by both the MJPEG player
and the default Web-based player
to control the demo

• A dynamic website for running
automated tests on the host
interface

VSA Demo Application
The system includes a filter application that
demonstrates one of many possible functions
that you can implement in the VSA. The
function is a two-dimensional 5 x 5 FIR fil-
ter with a configurable rectangular window

that filters video samples within the process-
ing window while passing all other samples
unmodified. The position and size of the
processing window is implemented to allow
uninterrupted video streaming during mod-
ification. Figure 4 shows a snapshot of a live

streaming video display featuring an
edge detect filter kernel.

The filter coefficients are repre-
sented in 16-bit signed 2’s comple-
ment fixed-point format, allowing
implementations of high-precision
video filters with gain. The coeffi-
cients are loadable at runtime and are
designed to engage without disturb-
ing the video stream. The resulting
video is normalized and clamped in
accordance with ITU-R BT.656/601
as a post-processing step in the filter.

The filter is fully implemented in
a Xilinx System Generator for DSP
workflow that operates under The
MathWorks’s Simulink environment.
System Generator for DSP provides
abstractions that enable you to devel-
op highly parallel systems in Xilinx
FPGAs, providing system modeling
and automatic code generation from
Simulink and MATLAB, also from
The MathWorks.

The purpose of the Video VSA
demo is to showcase the process to cus-
tomize Video VSA modules for your
application. A detailed application note
is included with the package, along
with a demo user guide to facilitate a
quick start to your development.

Conclusion
The new Video Virtual Socket
Adapter from Xilinx enables rapid
algorithm porting and verification for
video system development, utilizing
Xilinx Virtex-4 SX platform devices
and TI DM642 digital media proces-
sor DSPs in the System Generator for
DSP tool flow. The VSA hardware
and associated TI DSP tools are avail-
able from Spectrum Digital
(www.spectrumdigital.com). For all
other VSA inquiries, please contact
your local Xilinx representative or visit
www.nuvation.com.

May 2006 DSP magazine 15

Restart

D
em

o
P

ar
am

et
er

s

C
ap

tu
re

d
JE

P
G

 F
ra

m
e

Captured Frame

W
ra

ps
/C

al
ls

D
M

A
 D

at
a

System Initialization
(EVM inititialization, resource
allocation, and task creation)

VSA Access Macros
(connects to VSAʼs Host

Interface over EMIF)

Video Port Interface
(Captured from FPGA video

output stream)

Demo Control
(Background Task and Demo

Parameter Control)

Video Conversion Pipline
(YUV Conversion and JPEG

Compression)

Web Server
(Control CGI and

Web Based Player)

MJPEG Player Server
(MJPEG Streaming)

Network Connectivity
(TCP/IP Stack and
Network Drivers)

Figure 4 – MJPEG player
(showing live video with edge-detect function)

Figure 3 – VSA firmware component overview

by Steve Cooper
CTO
Axis Network Technology
steve.cooper@axisnt.com

A significant goal for mobile wireless infra-
structure suppliers is to develop base sta-
tions (BTS) light enough to be deployed
next to an antenna and reliable enough not
to require tower climbs for servicing. These
products ultimately will have the lowest
cost structure, both in capital expenditure
(CAPEX) and operating expenditure
(OPEX). CAPEX and OPEX are two of
the biggest issues affecting operators, and
therefore base station OEMs, today.

Hardware and site preparation are major
contributors to CAPEX costs, whereas
major OPEX costs are site leasing, backhaul,
and electricity. Products such as remote
radio heads (RRHs) or compact integrated
base stations (CiBTS) will go a long way in
improving these contributing factors.

Key to making compact integrated
products successful (in terms of size and
reliability) is reducing power consump-
tion. The power amplifier in the base sta-
tion is the component that consumes most
power. A number of DSP algorithms are
available and under development that
work to improve power amplifier efficien-
cy. FPGAs play a significant role in the
implementation of these algorithms.

The Role of FPGAs in
Digital Radio Subsystems
The Role of FPGAs in
Digital Radio Subsystems

16 DSP magazine May 2006

Digital techniques for reducing analog costs.Digital techniques for reducing analog costs.

Historically Inefficient
In some UMTS base stations, only a tiny
fraction of the total DC power consumed is
actually transmitted as useful RF power.
Around 50% of the radio frequency (RF)
power output from the cabinet is dissipat-
ed in the feeder cable running up the tower.
The remaining power is dissipated as heat,
requiring large heatsinks, air conditioning,
and large cabinets.

A base station with the enhancements
outlined in this article can benefit from a
ten-fold increase in conversion efficiency.
This significantly reduces heat dissipation in
the system, allowing convection-cooled
products to be deployed and enabling a dra-
matic size reduction. Smaller convection-
cooled products can be mounted at the
antenna, saving the cost of the feeder cable.

Leasing and installation costs are
directly linked to the size, weight, and
complexity of a base station. Small, con-
vection-cooled CiBTSs or RRHs provide
many more deployment options – and
hence a reduction in leasing costs.
Naturally, a ten-fold increase in conver-
sion efficiency causes a similarly signifi-
cant reduction in electricity costs.

For these enhancements to work, it is
critical that DSP algorithms maintain
excellent signal performance and keep the
power consumption of the transistors to a
minimum.

Crest Factor Reduction
Telecommunications standards are prolifer-
ating (UMTS, HSDPA, HSUPA,
WiMAX, DVB-T, DAB, UWB). To maxi-
mize spectral efficiency, each of these air
interfaces uses complex modulation
schemes that have a high peak-to-average
power ratio (also known as PAPR, or “crest
factor”). Figure 1 shows the different crest
factors evident in orthogonal frequency
division multiplexing (OFDM) signals.
Signals with high crest factors require a
large range of dynamic linearity from the
amplifier. This means that the power
amplifier has to be set to operate well away
(backed off) from its most efficient point.

DSP can reduce the peaks of the signal,
while some techniques in the baseband
processing of the base station can reduce

a power transistor is proportional to its peak
power handling.

An unclipped UMTS waveform, such as
3GPP-defined Test Model 1, has a 10 dB
peak-to-average ratio. Thus, a 20W UMTS
base station without a crest factor reduction
(CFR) algorithm requires 200W of peak
power handling. Using one of the crest fac-
tor algorithms discussed here can reduce the
peak requirement by half, saving significant
cost and power per transmit path.

Moving silicon (and cost) away from the

power amplifier and into the FPGA will
become more prevalent as technology
advances continue to add functionality to
FPGAs, and the cost-per-gate continues to
track the downward trend of Moore’s law.

In addition to reducing the total system
cost, CFR will also significantly improve
the power efficiency of the base station,
because not only is the price of the power
transistor proportional to its peak power,
but so is its power consumption. In today’s
UMTS base stations, the power transistor
is biased to handle its peak power.
Therefore the peak power sets the efficien-
cy of the power transistor and the overall
system power consumption.

For these reasons, CFR algorithms are
becoming commonplace in UMTS sys-
tems. It is now possible to implement a

the incidence of the peaks. For example,
code selection and tone reservation are
two approaches proposed for wideband
code division multiple access (WCDMA)
and OFDM, respectively. These
approaches typically have good perform-
ance, although they require intervention
in the baseband processing layer before
the individual codes or tones are com-
bined into a composite stream.

Fortunately, a number of peak-limiting
algorithms can be implemented on the

composite I and Q signal. In one approach
called peak windowing, the signal is atten-
uated in the region of each peak. An alter-
native method is to clip the signal using
polar or Cartesian clipping. With
Cartesian clipping, the in-phase and quad-
rature components are clipped independ-
ently. With polar clipping, the magnitude
of the signal is clipped while preserving the
phase. Although either method can be
used to limit the crest factor of the signal,
polar clipping provides better results in
terms of overall signal distortion (lower
error vector magnitude [EVM]).

By reducing the crest factor, it is possible
to obtain significantly more RF power from
the same power transistor. Alternatively,
you can use smaller transistors and achieve
the same output requirements. The cost of

May 2006 DSP magazine 17

Figure 1 – Cumulative distribution function for OFDM signals (taken from “Peak to Average
Power Ratio Reduction of OFDM Symbols” by T. Aaron Gulliver, Department of Electrical

and Computer Engineering, University of Victoria, Victoria, BC Canada)

CFR algorithm and obtain a
significant clipping reduc-
tion by using a Xilinx®

Virtex™-4 FPGA.
An unclipped UMTS sig-

nal has a cumulative distribu-
tion function, as shown in
Figure 2. If clipping is turned
on, the crest is clipped by 4
dB to 6.5 dB, as shown in
Figure 3. Figure 4 is a plot
that compares the results of
both clipped and unclipped
measurements. In the plots,
the black trace has a similar
spectral emission to the blue
trace. However, the black
trace is output from the
amplifier at 2 dB higher
average output power. You
can achieve 60% more aver-
age power with the same
power transistor using clip-
ping. Plus, the increase in
power consumption is only
marginal, leading to signifi-
cantly enhanced efficiency
numbers.

Achieving the same per-
formance in adjacent chan-
nel and spectral emissions –
but driving the amplifier
harder – has a significant
impact on amplifier effi-
ciency. An amplifier oper-
ates in its most efficient
region when it is most com-
pressed. Results on typical
UMTS 20W amplifiers
show that driving the ampli-
fier 2 dB higher results in a
power consumption increase
of only 25%.

Limitations of CFR
Unfortunately, as discussed,
clipping the peaks of a signal
degrades its purity and
increases the occurrence of
bit errors, especially in areas
of weak reception. UMTS
Release 99 uses the QPSK
modulation scheme. This

scheme is relatively tolerant of
signal impurities; the 3GPP
standard for UMTS allows as
much as 17.5% EVM degrada-
tion. As UMTS networks are
typically interference limited,
the impact of the increased
EVM is of limited importance,
as other factors dominate the
system bit error rate. Current
state-of-the-art UMTS CFR
algorithms are demonstrating
clipping to a 6 dB peak-to-aver-
age ratio while meeting 3GPP
Release 99 EVM requirements.

As modulation schemes
(shown in Figures 5 and 6,
respectively) change from QPSK
(UMTS Release 99) to higher
level schemes such as 16 and 64
QAM (used by HSDPA and
WiMAX), the tolerance of the
system to any impurity is
reduced. As Figures 5, 6, and 7
show, the relative distance
between each point on the con-
stellation diagram is reduced.
Impurities in the signal will
cause the detection points to
merge together, creating bit
errors. This error can be seen in
the constellation measurements
shown in Figures 7 and 8.
Currently algorithms are only
providing 8 dB of peak-to-aver-
age ratio levels while meeting
the tight EVM requirements for
64 QAM signals.

Clearly, clipping is of value in
those systems that can tolerate
higher levels of EVM degrada-
tion. But to improve the efficien-
cy of systems using higher level
modulation schemes, additional
techniques are required.

Digital Pre-Distortion
Another important parameter
affecting the power transistor
choice is the adjacent channel
power ratio (ACPR). The plots
shown in Figure 4 were deliber-
ately chosen to show an ampli-

18 DSP magazine May 2006

Figure 2 – Cumulative distribution of unclipped signal

Figure 3 – Clipped cumulative distribution

Figure 4 – Plot showing the comparative results of both clipped and unclipped signals

fier that was passing the 3GPP adjacent
channel and spectral emission require-
ments without linearization. Linearization
allows the operation of the amplifier even
further into its highest efficiency area. A
number of available techniques will have
this effect. These techniques originated in
the analog domain with feed-forward and

cross-cancellation and have now moved
into digital pre-distortion carried out in
the I and Q domain.

Pre-distorters have been demonstrated
that have almost perfect performance –
removing all non-linearities and minimiz-
ing the adjacent channel power down to
the noise floor of the system. However, the
algorithms that achieve this performance
are very processor-intensive and typically
deployed in very large ASICs. The algo-
rithms in the ASICs must be able to cope
with many different amplifiers and topolo-
gies to address the broadest market. This in
turn makes the ASIC more complex and
power-hungry.

Instead of an ASIC, using an FPGA to
implement pre-distortion allows you to use
the flexibility of the device and implement

a specific algorithm tailored to the specific
amplifier being pre-distorted.

This is ideal for compact integrated
products, as the transceiver, algorithm, and
amplifier are permanently integrated
together in one field-upgradable unit. It is
not necessary for the algorithm to be over-
ly complex; hence it takes less silicon space

and can compete in cost with an all-
encompassing ASIC.

By working closely with power transistor
suppliers, it is possible to develop very code-
efficient, custom digital pre-distortion algo-
rithms. During factory testing the best
algorithm for each particular amplifier can
be chosen and programmed into the FPGA.

Pre-distortion not only improves the
spectral emissions of the amplifier but can
also have a significantly positive effect on
the signal EVM. This fact will likely lead to
pre-distortion being widely used within
WiMAX systems.

The characteristics of an amplifier
change according to the signal passing
through them, temperature and frequency
effects, and device technology. To produce
consistent optimized performance, pre-dis-

tortion algorithms require the wideband
capture of the amplifier output. This ana-
log signal must be converted into the digi-
tal domain using high-performance ADCs.
Once in the digital domain, very rapid,
real-time manipulation of large mathemat-
ical arrays is required. Essentially, the
inverse of the non-linear response of the

amplifier must be applied to the input sig-
nal. This inverse response must closely
track the changes within the power transis-
tor. The mathematical processing is often
carried out by a dedicated DSP device.

As FPGA performance continues its
rapid advancement, the manipulation of
the array required for digital pre-distortion
can be carried out on the FPGA. This leads
to a one-chip solution that can interface to
the DAC for the RF transmit path and the
ADC for the pre-distortion capture receiv-
er. This same single chip can also carry out
the signal processing required for digital
upconversion, CFR, and all of the process-
ing and algorithm manipulation for digital
pre-distortion.

Combined together, digital pre-distor-
tion and CFR are the current state-of-the-

May 2006 DSP magazine 19

Figure 5 and 6 – Plots showing relative constellations of QPSK (left) and QAM16 (right) Figure 7 – Plot showing 64 QAM
constellations with good EVM

As FPGA performance continues its rapid advancement, the manipulation of
the array required for digital pre-distortion can be carried out on the FPGA.

This leads to a one-chip solution that can interface to the DAC for
the RF transmit path and the ADC for the pre-distortion capture receiver.

art techniques for improving efficiency of
UMTS systems. The majority of existing
systems use ASICs or ASSPs. However, as
both amplifier technology and higher level
modulation schemes are implemented, the
algorithms required will need enhancement
and upgrading in the field.

Other Analog Techniques
Of course there are techniques in the ana-
log domain to improve efficiency. A tech-
nique known as Doherty has started
being deployed in UMTS systems.
Doherty uses two output stage transistors
biased at different points. One of the
transistors is on all the time; the second

only turns on as the signal approaches its
peak. This reduces current consumption
as the transistors are not turned on all the
time, and when they are on they are oper-
ating in their more efficient regions. It is
important to note that Doherty works at
its best for signals with 6 dB of peak-to-
average. In simple terms, the first ampli-
fier covers the lower 3 dB and the second
amplifier covers the upper 3 dB.
Efficiencies of 32% have been demon-
strated for signals with a 6 dB peak-to-
average ratio.

For signals with more than 6dB peak-
to-average, the two transistors are not able
to operate completely within their most

efficient regions. Therefore for signals such
as 64 QAM (currently with 8 dB PAR),
the improvements obtained with Doherty
are not as significant.

Envelope Tracking
One efficiency enhancement technique
generating significant interest is envelope
tracking, in which the drain voltage of the
transistor is varied at the same time as the
signal passing through the transistor. When
traffic is light, it continues to run efficient-
ly by reducing the current consumption of
the transistor. These techniques hold the
promise of 35% efficient power amplifiers,
even if the PAR is greater than 8 dB.

Supporting envelope tracking in the dig-
ital domain and combining it with digital
pre-distortion allows for the development
of reliable compact integrated products.
These two algorithms are similar: they both
require very fast tracking loops, processing
of the I and Q data stream, and they vary
between different amplifier designs.

Envelope tracking requires access to the
I and Q data. It is necessary for the I and
Q stream to be both delayed and processed
so that the power amplifier biasing signal
is modulated at exactly the same moment
as the composite analog waveform. This
requires different digital modules imple-
mented in the FPGA, according to the
particular efficiency technique deployed.
A diagram showing this technique at the
block level is shown in Figure 9.

Conclusion
The Virtex-4 family of FPGAs is ideally
suited to implement the existing algo-
rithms required for a digital radio modem.
In addition, the use of an FPGA within
the digital modem provides the future-
proofing necassary to allow software field
upgrades for higher efficiency and higher
level modulation systems.

For more information about how you
can implement these techniques within
digital radio systems, please contact the
author at steve.cooper@axisnt.com.

The author would like to thank Rohde and Schwarz
for the use of the test equipment (FSQ and SMU)
required to carry out the measurements.

20 DSP magazine May 2006

DSP FPGA

UMTS Complex

Baseband Signal

I2 + Q2 Adjustable
Delay

Envelope
Tracking

Processing

RF
Chain

Power Amplifier

RF Output
Digital

Predistortion

Figure 8 – Plot showing 64 QAM constellations with bad EVM caused by clipping

Figure 9 – Block diagram of envelope tracking implementation using FPGAs
to control and bias the power amplifier transistor efficiently.

by Tom Feist
Director, DSP Tools Marketing
Xilinx, Inc.
thomas.feist@xilinx.com

Spatially multiplexed multiple-input mul-
tiple-output (MIMO) transmitters and
receivers promise significant performance
gains for wireless communications systems
over their existing single-input single-out-
put (SISO) counterparts. Next-generation
wireless standards, such as 802.11n, will
support data transmission rates as high as
600 Mbps and wireless local area network
transmission rates in excess of 1 GHz.

The design of these systems, however,
forces a compromise in cost and power that
can have significant consequences for hand-
held devices running on batteries. The chal-
lenge facing design teams is to determine the
optimal balance between these design
requirements for their particular application.

At the heart of this technology is the con-
cept of multipath, which refers to the reflec-
tion of radio frequency (RF) signals in a
physical environment. Whereas multipath
degrades the performance of existing 802.11
devices, spatially multiplexed orthogonal fre-
quency division multiplexing (OFDM)
MIMO – a key element of the 802.11n stan-
dard – takes advantage of these reflections to
“tune” transmissions, minimize errors, and
improve overall performance. But at these
bandwidths, scattering, diffraction, and
absorption by objects in the transmission
path are an important consideration.
Designing a MIMO system requires that
these effects are profiled as accurately as pos-
sible in the form of a channel model.

There are three primary sources of
channel models: software-based mathemat-
ical models, often available from the stan-
dards committees; hardware-based MIMO
channel emulators, either designed in-
house or provided by companies such as
Azimuth; and, best of all, the real-world
environment that the MIMO system is
intended to operate. Verifying a MIMO
system in the real world requires the ability
to rapidly prototype the transmitter and
receiver on a MIMO-oriented FPGA hard-
ware platform, such as the VHS-ADC-V4
card from Lyrtech.

Rapid Prototyping
and Verification of
MIMO Systems

Rapid Prototyping
and Verification of
MIMO Systems

May 2006 DSP magazine 21

A practical approach to system implementation
using MATLAB and Virtex-4 FPGAs.
A practical approach to system implementation
using MATLAB and Virtex-4 FPGAs.

The MIMO Performance Advantage
The benefit of spatially multiplexed MIMO
technology is the ability to increase trans-
mission speed with the number of antennas.
The data rate of a today’s existing SISO sys-
tems is determined by the formula:

R = Es * Bw

where R is the data rate (bits/second), Es is the
spectral efficiency (bits/second/Hertz), and
Bw is the communications bandwidth (Hz).
For instance, for the 802.11a standard the
peak data rate is determined by the formula:

Bw = 20 MHz

Es = 2.7 bps/Hz

R = 54 Mbps

An additional variable “Ns” is intro-
duced into this equation when using
MIMO, which is the number of independ-
ent data streams that are transmitted simul-
taneously in the same bandwidth but in
different spatial paths. The spectral efficien-
cy is now measured as the transmission per
stream Ess, and the data rate of the MIMO
system becomes:

R = Ess * Bw * Ns

Let’s compare the previous 802.11a
example with what is obtainable with the
current 802.11n proposal, operating at a 20
MHz bandwidth and using four antennas:

Bw = 20 MHz

Ess = 3.6 bps/Hz

Ns = 4

R = 288 Mbps

The use of MIMO technology has deliv-
ered a 5.3x data rate improvement for the
802.11n proposed standard.

MIMO System Hardware Complexity
The performance gains of a spatially mul-
tiplexed MIMO system come at the
expense of hardware complexity. A trans-
mit/receive system that uses multiple
antennas not only transmits data between
the corresponding antennas but also
between adjacent antennas. As you can see
in Figure 1, data is received in the form of
a “MIMO channel matrix.”

the most efficient algorithm for a particular
application. In the case of the SVD, this may
involve choices between adaptive estimation
techniques, vector rotations, or other simpli-
fications that result from channel matrices
with special properties such as symmetry.

Once an algorithm has been finalized,
you will need to tune the hardware perform-
ance to overall system requirements.
Maximizing the performance of a MIMO
system in hardware will require that partial
parallelism of the multiplication operations
be implemented in key areas of the design
that will have the greatest impact on overall
performance. The Givens rotation algorithm
shown in Figure 2 provides a nice example of
the performance gains possible through par-
allel multiplication operations. Givens rota-

Linear algebra techniques such as singular
value decomposition (SVD) or matrix inver-
sion are required to decouple the channel
matrix in the spatial domain and recover the
transmitted data. Backwards compatibility
requirements to the 802.11g standard limit
the number of antennas
for the 802.11n standard
to either two or four,
which subsequently limits
the channel matrix size to
either a 2 x 2 or 4 x 4.

Developing a MIMO
system prototype in hard-
ware that performs at the
actual system data rates
requires the use of an
FPGA-based hardware
platform. The Xilinx®

Virtex™-4 family of
FPGAs provides far
greater performance than
a DSP processor for this
class of applications by
providing as many as 512
hardware multipliers
capable of parallel opera-
tion. In designing this
prototyping system, how-
ever, you are faced with two considerable
challenges: the first is to design something as
complex as an SVD or matrix inverse in
hardware and the second is tuning the imple-
mentation for optimal performance.

Implementing Matrix Operations on FPGAs
The specific SVD or matrix inversion algo-
rithm selected for implementation will be a
tradeoff between numerical stability and
hardware efficiency. You will need to develop
a high-level MATLAB model to determine

1

Source
2

1

h11

2
Sink

Modulation
and Coding

Modulation
and Codingh22

h21 h12

function [v, w] = givens_rotation(x, y)

r_sqr = x(1)*x(1) + y(1)*y(1);

r_inv = 1/sqrt(r_sqr);

sin_phi = y(1)*r_inv;

cos_phi = x(1)*r_inv;

vt = x*cos_phi + y*sin_phi;

wt = y*cos_phi – x*sin_phi;

if (x(1) == 0) & (y(1) == 0)

v = x;

w = y;

else

w = wt;

v = vt;

end

22 DSP magazine May 2006

Figure 1 – MIMO channel

Figure 2 – Givens rotation algorithm

tions are commonly used to solve the sym-
metric eigenvalue problem and are a key
building block of the QRD matrix inverse.

You can implement this algorithm using
either multipliers or a CORDIC approxi-
mation method. The Xilinx AccelDSP™
Synthesis tool’s design exploration features
were used to increase performance by
inserting parallelism into the architecture
without code rewrites. As shown in Table 1,
this allowed performance gains as much as
10x over the parallel CORDIC implemen-
tation. Algorithms based on Givens rota-

tions have received greater attention
recently because they lend themselves nice-
ly to a parallel implementation.

For large systems, the added hardware
that results from increased parallelism must
not exceed the resources of the target
FPGA. The number of architectural possi-
bilities you must evaluate can be consider-
able. The process of determining optimal

hardware architecture is well suited for a
high-level algorithmic synthesis tool such
as AccelDSP.

A MATLAB-Based FPGA Design Flow
MATLAB from The MathWorks provides
a truly unique environment for the design
and implementation of spatially multi-
plexed MIMO systems. The inherent lan-
guage support for loops, complex numbers,
vector and matrix operations, and mathe-
matical functions provides a highly
efficient modeling environment for the lin-

ear algebra algorithms
required for MIMO.

Figure 3 illustrates the
benefits of the AccelDSP
Synthesis tool, including
the flexibility to define
and implement custom
architectures for spatially
multiplexed MIMO sys-
tems on FPGAs using
floating-point MATLAB.

Automated floating- to fixed-point conver-
sion is provided to assist in solving the com-
plex quantization issues resulting from the
iterative nature of linear algebra functions
such as an SVD. Once you have determined
an acceptable fixed-point model, you can
rapidly explore performance-versus-hard-
ware tradeoffs using algorithmic synthesis,
quickly increasing the number of dedicated

hardware multipliers to improve perform-
ance and take full advantage of the flexibili-
ty of the Virtex-4 architecture. The
generated RTL from AccelDSP Synthesis is
automatically verified against the golden-
source MATLAB to ensure bit-true func-
tional correctness.

Conclusion
Prototyping a spatially multiplexed MIMO
system for use in real-world verification is
dramatically simplified through the adoption
of a MATLAB-based design flow for the
channel-matrix DSP hardware development.
Development and verification cycle times are
reduced by using the MATLAB algorithm as
the golden source for FPGA development
and eliminating re-writes into other lan-
guages or design environments. Additionally,
the high-level nature of MATLAB allows the
AccelDSP Synthesis tool to quickly explore
hardware alternatives for an algorithm,
including the use of DSP blocks, RAMs, and
pipelining.

The AccelDSP Synthesis tool and
Lyrtech prototyping environment both
have interfaces to the Xilinx System
Generator for DSP design environment
to provide an automated MATLAB to
prototyping design flow.

For more information about
the AccelChip solution, visit www.
accelchip.com.

May 2006 DSP magazine 23

Floating-Point
Algorithm

Fixed -Point
Conversion

Architecture
Definition

Floating-Point
Algorithm

AccelChip/
AccelWare

RTL
Synthesis

Create/Integrate
IP Blocks

Create RTL
Design

Refine
Architecture

Verify
RTL

RTL
Synthesis

Typical MATLAB DSP Design Flow

AccelDSP Design Flow

Steps Performed
by AccelDSP

Architecture DSP48s Slices Throughput

Resource Shared Multiplier 26 943 2.8 MSPS

Parallel Multipliers 46 1774 54 MSPS

Resource Shared CORDIC 0 870 1.3 MSPS

Parallel CORDIC 0 2237 5.7 MSPS

Development and verification cycle times are reduced by using the
MATLAB algorithm as the golden source for FPGA development and
eliminating re-writes into other languages or design environments.

Table 1 – The range of results obtained by synthesizing a 4 x 4 matrix
using the AccelDSP Synthesis tool and targeting a Virtex-4 device.

Figure 3 – AccelDSP Synthesis design flow

by Manuel Uhm
Senior Marketing Manager, DSP Division
Xilinx, Inc.
manuel.uhm@xilinx.com

The flexibility of software-defined radios
(SDRs) and cognitive radios (CRs) pro-
vides great value relative to interoperability,
upgradability, and future-proofing. This
flexibility also enables a highly desired
attribute in SDRs and CRs: “adaptivity.”
Adaptivity can range from a cognitive
radio’s ability to adapt to its spectral envi-
ronment to a software-defined radio’s abili-
ty to adapt a waveform to compensate for
channel fading. Like flexibility, adaptivity
is enabled by the reprogrammable and
reconfigurable processors used in
SDRs/CRs, FPGAs, DSPs, and general-
purpose processors (GPPs).

Unfortunately, this adaptivity typically
comes at a price – both in terms of power
and system cost. Recent technological
advances, however, are making adaptivity
more affordable. For example, partially
reconfigurable (PR) FPGAs that embed
GPP processors and DSP engines on plat-
form FPGAs can provide adaptivity to a
wide range of SDR and CR applications,
while lowering the power and cost penalties.

Adaptivity in SDRs and CRs
As a key capability of SDRs/CRs (particu-
larly for military or homeland security
purposes), adaptivity can take many forms
on the battlefield. With it, you can:

• Change waveforms to interoperate with
other friendly communication devices

• Choose the most appropriate commu-
nications channel or network for
transmission

• Create a mesh network through ad-
hoc networking

• Adapt to the radio frequency (RF)
environment by using spectral aware-
ness to transmit in an open area of
spectrum

• Adapt the waveform to compensate for
channel fading

• Collaborate with multiple radios to
receive a weak signal that could not oth-
erwise be detected by individual radios

• Jam or null an interfering signal

• Accommodate damage to some of a
radio’s processing resources by recon-
figuring the remaining resources to
support the most critical services

For the purposes of an SDR/CR, adap-
tivity falls into four broad classifications,
as illustrated in Figure 1. The lowest func-
tional levels include filters or transforms,
such as Kahlman filters, finite impulse
response (FIRs), and fast Fourier trans-
forms (FFTs). These low-level functions
are basic building blocks for most
SDRs/CRs. Thus, you would probably
have to adapt the parameters of a function
such as an FIR to support a waveform
with changing bit rates.

At the component level, adaptivity in
an SDR/CR is useful in digital down con-
verters (DDCs) and digital up converters
(DUCs). These components must often
adapt to waveforms that support different
bit rates or sampling rates.

In an SDR/CR, adaptivity at the func-
tion or component level is “under the
hood,” insofar as it is transparent to the
end user. At those levels, it does not mat-
ter what modifications are necessary to
support the service required. On the other
hand, the next two levels – the application
and services levels – are visible and, as
such, you may desire some form of control
over adaptivity.

Adaptivity at the application level sup-
ports modifications that occur within a

Making the Adaptivity of SDR
and Cognitive Radio Affordable
Making the Adaptivity of SDR
and Cognitive Radio Affordable

May 2006 DSP magazine 25

Going beyond flexibility to adaptivity in FPGAs.Going beyond flexibility to adaptivity in FPGAs.

given application. The most common
applications in an SDR/CR are waveforms
such as the Wideband Networking
Waveform (WNW). These waveforms
comprise various waveform components,
and depending on the mission profile, you
may require access to different waveforms
on an as-needed basis.

The highest functional level of adaptivity
is at the services level. Services like radio
services, network awareness services, ad-hoc
networking, and even anti-jam services must
be able to adapt to changing conditions by
calling on available applications as needed.

These levels of adaptivity are in many
ways interdependent because adaptivity at

offer a variety of adaptivity levels to this
environment, as depicted in Figure 2.

At the lowest level, FPGAs can be one-
time configurable (hence not reconfig-
urable). Obviously, such devices are not
ideal for SDRs/CRs, as they cannot adapt
to support new functionality after the first
time they are programmed.

The FPGA’s inherent re-configurabili-
ty, and more specifically, the capability
some FPGAs have to be dynamically
reconfigured on the fly, makes them ideal-
ly suited for SDRs/CRs. However, in
many cases these FPGAs have to be com-
pletely reconfigured, which limits the
capability of the FPGA to support adap-
tivity at the component or function level
because these levels involve more granu-
larity. As a result, support is generally lim-
ited to adaptivity at the application level.
Most reconfigurable FPGAs today,
including the Xilinx® Spartan™ family of
FPGAs, fit into this category.

PR FPGAs allow for the next level of
adaptivity. Like reconfigurable FPGAs, you
can dynamically reconfigure PR FPGAs
multiple times. However, only a portion of
the device can be configured at any given
time. This provides a level of granularity
suitable for adaptivity at the component
and even the function level. The Xilinx
Virtex™-II and Virtex-4 device families
are examples of PR FPGAs.

Finally, the “ultimate” level of reconfig-
urability is the ability to reconfigure on an
individual basis the smallest atomic pro-
grammable unit of an FPGA, the config-
urable logic block (CLB). This allows for
even finer levels of granularity for adaptiv-
ity at the function level. However, it is not
clear that the benefit of such a fine-
grained approach outweighs the cost of
implementation associated with such a
high level of sophistication.

Use Cases
SDRs/CRs can benefit from the adaptivity
of a PR FPGA in many ways, from the
function level to the service level. Two such
cases are offered here. The first is an SDR
supporting an adaptive waveform, which
demonstrates adaptivity at the application
level. The second is a multi-INT platform

each level depends on the previous levels
for implementation. For example, you
might call on the radio service to transmit
data. The service would include adapting
to available spectrum by scanning RF, and
then selecting the best waveform for send-
ing the data. If the waveform is an adaptive
waveform, then certain channel character-
istics (such as channel fading) might
require modification of waveform compo-
nents and functions to compensate.

Supporting Adaptivity in FPGAs
FPGAs provide great value as processing
platforms in today’s SDRs/CRs because of
their processing throughput. They also

26 DSP magazine May 2006

COMPONENT
(i.e., upconverter)

SERVICE
(i.e., network
awareness)

APPLICATION
(i.e., waveform)

FUNCTION
(i.e., filter)

H
ig

h
Lo

w

L
ev

el
 o

f A
d

ap
ti

vi
ty

Level of Sophistication
HighLow

CONFIGURABLE
(i.e., one time)

RECONFIGURABLE
(i.e., multiple times)

PARTIALLY
RECONFIGURABLE

(i.e., partial device)

ULTIMATELY
RECONFIGURABLE
(i.e., individual CLBs)

H
ig

h
Lo

w

L
ev

el
 o

f
C

o
n

fi
g

u
ra

b
ili

ty

Level of Sophistication
HighLow

Figure 2 – Levels of configurability in FPGAs

Figure 1 – Levels of adaptivity in an SDR/CR

providing multiple intelligence-related
applications, demonstrating adaptivity at
the service level.

In the first use case, you would transmit
voice or data on an adaptive waveform from
your SDR to another radio. At some point,
perhaps because of environmental condi-
tions, the channel starts to fade. To the
SDR, this is characterized by an increased

bit error rate beyond a certain threshold. To
maintain the channel, the radio determines
that the waveform must be adapted to the
new environmental conditions.

Adaptivity in this case could take many
potential forms, including changing the
modulation technique, changing the
method of forward error correction, or
changing the bit rate. For the example illus-
trated in Figure 3, let’s assume that the
radio has determined that a change in
modulation technique is optimal. The
modulator component is represented in
Figure 3 as a 16-QAM modulator. Hence,
this needs to be swapped out with another
available modulator component, in this
case a BPSK, QPSK, or OFDM modula-
tor. The OFDM modulator is chosen for
its resistance to multipath.

To support this type of component level
adaptivity, a regular reconfigurable FPGA

would have to be sufficiently large to load all
possible components, even if many of them
are not being used at any single point in
time. Moreover, reconfiguring the entire
device would result in losing the communi-
cations channel – an unacceptable outcome.

By contrast, a PR FPGA would only
have to load the OFDM modulator com-
ponent in an available portion of the device
and then make the switch from the 16-
QAM modulator to the OFDM modula-
tor. The 16-QAM modulator could then
be unloaded to free up resources for anoth-
er application or component. The outcome
is the same but the PR FPGA can be much
smaller – resulting in significant power and
cost savings.

The second use case, as illustrated in
Figure 4, involves a multi-INT platform
that is capable of using services to invoke
many possible applications, including
radio, spectral analysis, surveillance, jam-
ming, and anti-jamming. Although multi-
INT platforms are not commonly used
today, the advent of CR will bring about
the next revolution in communications.

In this scenario, you may be receiving
data. The radio service is being utilized to
call on two applications – the spectral
analysis application to characterize the
spectrum and identify potential threats or
signals of interest, and the radio application
to receive the data. At some point, an inter-
fering signal may be attempting to jam the
receiver, severely impairing your ability to
receive crucial intelligence.

In such a case, you may call on the
anti-jamming service to null the interfer-
ing signal. This service would characterize
the interfering signal using the spectral
analysis application, and would then load
the anti-jammer application to null the
interferer. Once the jamming signal goes
away, the anti-jammer application can be
unloaded by the anti-jamming service.
Other services could then load available
applications on an as-needed basis, such
as an ad-hoc networking application to
create a mesh network.

Conclusion
It is clear that adaptivity at all levels, from
functions to services, is a highly desired
attribute in SDRs/CRs. Although you will
primarily be exposed to adaptivity at the
service and application level, adaptivity at
the component and function level is nec-
essary for implementation.

As CRs and multi-INT platforms
become more prevalent, the need to
dynamically adapt to changing condi-
tions will increase and will ultimately
become a competitive advantage for those
vendors who are better able to accommo-
date different levels of adaptivity. PR
FPGAs are ideally suited for driving
adaptivity at all levels. PR FPGAs have
sufficient granularity to allow you to
reconfigure portions of the device down
to the size of typical functions in an
SDR/CR. They are also able to support
whole applications.

May 2006 DSP magazine 27

Q
P

S
K

 M
od

O
FD

M
 M

od
O

FD
M

 M
od

16-Q
A

M
 M

od

U
pconverter

E
ncoder

S
cram

bler

B
P

S
K

 M
od

Reconfig
via ICAP

R
adio

S
pecial A

nalysis

Jam
m

er

A
nti-Jam

m
er

Reconfig
via ICAP

A
d-H

oc N
etw

orking

Figure 4 – Adaptivity at the service level in a multi-INT platform

Figure 3 – Adaptivity at the application
level in a PR FPGA

by Sébastien Roy
Professor, Department of Electrical
and Computer Engineering
Université Laval
sebastien.roy@gel.ulaval.ca

Louis Bélanger
Executive Vice President, Product Management
and Co-Founder
Lyrtech
louis.belanger@lyrtech.com

Wireless communications, through cellular
telephony, came of age in the 1980s and
1990s, achieving as an industry a growth
rate beyond microcomputers. It seems clear
that cellular is on the verge of a major evo-
lutionary leap, as the advent of 4G will
spell the end of the connection-oriented
voice-centric paradigm in favor of a net-
work-oriented (read packet) resource-shar-
ing multiservice framework. This evolution
also implies the definitive advent of broad-
band wireless, an elusive proposition so far
in the cellular world.

The Fast-Moving Wi-Fi World
Upstart wireless LAN (WLAN) technolo-
gies under the 802.11 (Wi-Fi) umbrella

have leapfrogged cellular and other efforts
edging towards broadband wireless (such as
802.16/WiMAX) and have led to the first
widespread, commercially successful broad-
band wireless access technology. In fact, Wi-
Fi is a runaway success around the globe.

However, all is not perfect in the WLAN
world. Offering nominal bit rates of 11
Mbps (802.11b) and 54 Mbps (802.11a
and 802.11g), the effective throughputs are
actually much lower – owing to packet col-
lisions, protocol overhead, and interference
in the increasingly congested unlicensed
bands at 2.4 GHz and 5 GHz.
Furthermore, operation in these bands
entails a strict regulatory transmit power
constraint, thus limiting range and even bit
rates beyond a certain distance. Compare
this with Gigabit Ethernet, and you will see
that a huge rate gap exists between the
wired and wireless portions of the network.

MIMO Techniques and 802.11n
Enter MIMO (multiple input multiple
output), a wireless technology allowing
huge increase in bit rates without consum-
ing additional bandwidth. It is currently a
very hot trend in the wireless industry, and

with good reason. It basically works by
having multiple antennas at both trans-
mitter and receiver and performing appro-
priate signal processing at both ends. This
can be used to effectively create a plurality
of channels in space sharing the same
bandwidth, a feat referred to as spatial
multiplexing. MIMO happens to be the
means through which the 802.11n work-
group plans to boost Wi-Fi nominal bit
rates to hundreds of megabits per second,
perhaps as much as 600 Mbps over a max-
imum bandwidth of 40 MHz.

Compliant terminals and access points
would be equipped with anywhere from
one to four antennas. In principle, having
four antennas at both ends enables a four-
fold rate increase within a given band-
width. Wi-Fi channels have a nominal
bandwidth of 20 MHz. 802.11n proposals
advocate a combination of spatial multi-
plexing, advanced modulation, beam-
forming, and space-time coding, as well as
channel bonding (merging two adjacent
channels to form a 40 MHz aggregate
channel) to achieve the highest bit rates.

One recent specification proposal by the
Enhanced Wireless Consortium details the

The Design of an FPGA-Based
MIMO Transceiver for Wi-Fi
The Design of an FPGA-Based
MIMO Transceiver for Wi-Fi

28 DSP magazine May 2006

We implemented a Virtex-based layered space time algorithm on a Laval University 802.11 MIMO testbed. We implemented a Virtex-based layered space time algorithm on a Laval University 802.11 MIMO testbed.

802.11n transmitter structure shown in
Figure 1. The data from the MAC layer is
first scrambled and then demultiplexed into
a number NES of streams, which are routed
to NES forward-error correction (FEC)
encoders. These encoders can be either bina-
ry convolutional coders with puncturing or
low-density parity check (LDPC) coders.
The encoder outputs are then divided into a
number NSS of spatial streams, each being
interleaved and mapped onto a QAM con-
stellation. Collectively, the spatial streams
are then optionally subjected to space-time
block coding (STBC), a form of two-dimen-
sional linear coding generally intended to
improve reliability and not necessarily bit
rate (see sidebar, “Space-Time Techniques”).

Another optional feature is spatial map-
ping (beamforming), which relies on fore-
knowledge of the MIMO channel obtained
through a priori sounding. This mecha-
nism aims to maximize energy delivery to
the receiving array. In general, the SNR at
the receiver is influenced by spatial map-
ping and the STBC, while the bit rate is a
function of the number of bitstreams and
the size of the QAM constellation.

Whether you use the optional features
or not, the receiver must somehow separate
the superimposed spatial streams. This can
be accomplished through spatial filtering,
provided there are at least as many anten-
nas as there are streams. One effective
receiver architecture exploits both spatial
filtering and successive interference cancel-
lation (SIC) in a layered structure. Such a

layered space-time (LST) receiver was
recently the object of an FPGA implemen-
tation at Laval University, in collaboration
with Lyrtech as part of an 802.11n-orient-
ed research testbed under construction.

Part of this testbed is shown in Figure 2.
It comprises a custom-built RF front-end
supporting as many as four antennas at
2.4 GHz and 5 GHz, Skycross printed
antennas, and Lyrtech SignalMaster Quad
platforms with integrated multichannel
ADC and DAC modules.

The structure of the LST receiver is
shown in Figure 3. Our implementation
constructs the covariance matrix from vec-
tor channel estimates according to

were ĉn is the vector channel estimate asso-
ciated with the nth spatial stream, <.>H is
the conjugate transpose (Hermitian) opera-
tor, I is the identity matrix, and σ2

n is the
thermal noise power on each antenna.

Co-author Sébastien Roy and colleague
I. Laroche developed a novel matrix inver-
sion circuit specifically for this application.
The covariance matrix structure is exploit-
ed to jointly perform the inversions at all
layers simultaneously, a complexity/speed
gain of order NSS.

May 2006 DSP magazine 29

Rxx = ˆ c n ˆ c n
H + Iσ n

2

n=1

N

∑

S
cr

am
bl

er

E
nc

od
er

 P
ar

se
r

S
tre

am
 P

ar
se

r

FE
C

 E
nc

od
er

FE
C

 E
nc

od
er

Interleaver QAM
Mapping

Interleaver QAM
Mapping

Interleaver QAM
Mapping

S
tre

am
 P

ar
se

r

S
pa

tia
l M

ap
pi

ng
 (O

pt
io

na
l)

Interleaver

Nss Spatial
Streams

Nss Space Time
Streams

Nss Transit
Chains

QAM
Mapping

CS

CS

CS

CSIFFT

IFFT

IFFT

IFFT

CS

CS
Analog
and RF

Insert GI
and

Windows

Analog
and RF

Insert GI
and

Windows

Analog
and RF

Insert GI
and

Windows

Analog
and RF

Insert GI
and

Windows

Layered Space Time (LST) Decoder

Ve
ct

or
iz

at
io

n

Covariance
Matrix

Estimator

Matrix
Inversion

Channel
Buffer

Frame
Buffer

Detection /
FEC Decoding

Inference
Reconstruction

Inference
Removal

Data Out
Optimum

Combining

Stream
Ordering

MMSE Weight
Computation

Vector
Channel
Estimator

Fr
om

 F
FT

s

Figure 1 – Transmitter block diagram

Figure 2 – Laval University MIMO testbed
using Lyrtech VHS hardware

Figure 3 – LST decoder

Implementation Results
The entire receiver was implemented in
VHDL on a Xilinx® Virtex™-II
XC2V8000 FPGA. It achieves a top fre-
quency of 88 MHz while utilizing 27%
of the slices and 95% of the dedicated
18x18 multipliers. Implementation
results for the matrix inversion unit by
itself are listed in Table 1, also showing
results on a Xilinx Virtex-4 XC4VFX140
device while consuming 8% of the slices
and 52% of the dedicated DSP48 multi-
ply and accumulate (MAC) units with a
top speed of 140 MHz.

Conclusion
MIMO techniques for 802.11 wireless
LAN promise huge increases in bit rates.
Several different approaches are still
being debated by industry standardiza-
tion bodies.

In collaboration between Laval
University and Lyrtech, we implemented
the LST technique, which exploits both
spatial filtering and successive interfer-
ence cancellation (SIC), in Virtex-II and
Virtex-4 FPGAs on an 802.11n-oriented
testbed. The next steps will be to opti-
mize and test the LST implementation
extensively over 2.4 GHz and 5 GHz
channels, while the testbed will be
extended to encompass other aspects of
the upcoming 802.11n standard, includ-
ing hardware-efficient LDPC codecs and
beamforming techniques.

30 DSP magazine May 2006

Given a single transmit antenna and two or more receive antennas, it is well known that
spatial diversity can be exploited to improve link quality. Provided that the two receive
antennas are sufficiently spaced, each will observe the received signal through a different
multipath channel. Therefore, the probability that both channels experience a deep fade
simultaneously is very low, and you can exploit this diversity advantage in a number of
ways. One simple method is to utilize a linear weight-and-sum structure, which co-phas-
es and weighs each branch in proportion to its SNR before adding them up. This is
called maximal-ratio combining (MRC) and it results in an optimal SNR in the presence
of white noise only, without other sources of interference.

Space-Time Coding
The first and simplest of the space-time block coding schemes was proposed in 1998 by
Alamouti as a clever means to procure the same diversity advantage as MRC when the
antenna array is situated at the transmitter instead of the receiver.

The original code is designed for twin antennas at the transmitter and a single antenna
at the receiver, although various generalizations exist for arbitrarily sized antenna arrays at
both ends. A pair of symbols is combined and sent twice in succession over two signaling
intervals as two vectors, which are spatially orthogonal. This allows the single antenna to
decode each symbol with a diversity order of two.

Given a pair of symbols s1 and s2, the transmitter/coding matrix is:

where each column corresponds to a signaling interval and each row to an antenna.
The received signal during the first and second signaling intervals are given by:

where hn is the channel (expressed as a complex gain according to baseband equivalent con-
ventions) between the nth transmit antenna and the receiver, and {n1,n2} are thermal white-
noise components.

The receiver estimates h1 and h2 and decodes the first symbol by performing the follow-
ing combination:

where v1 = h1
*n1 + h2n2

* is the noise component after combining.
Likewise, the second symbol is estimated as:

Because each symbol’s amplitude is proportional to the sum of the individual channel
powers, this is indeed equivalent to MRC.

y2 = −h2r1
* + h1

*r2

= h1

2
+ h2

2()s2 + v2 .

y1 = h1
*r1 + h2r2

*

= h1

2
s1 − h1

*h2s2
* + h1

*h2s2
* + h2

2
s1 + h1

*n1 + h2n2
*

= h1

2
+ h2

2()s1 + v1,

r1 = h1s1 − h2s2
* + n1

r2 = h1s2 + h2s1 + n2

X =
s1 −s2

*

s2 s1
*

⎡

⎣
⎢

⎤

⎦
⎥

Space-Time Techniques

XC2V6000 XC2V8000 XC4VFX140

Slices 17% 12% 8%

Four-Input LUTs 12% 8% 5%

Block RAM 2% 2% N/A

FIFO16/RAMB16 N/A N/A 0%

MULT18x18 70% 60% N/A

DSP48 N/A N/A 52%

GCLK 6% 6% 3%

Max Clock
Frequency (MHz) 108.3 92.1 140.0

Table 1 – Implementation results for the matrix
inversion unit on Virtex-II and Virtex-4 FPGAs

May 2006 DSP magazine 31

Layered Space-Time Architecture
The LST architecture was originally proposed by Foschini. With N

antennas at both transmit and receive ends, this scheme allows the

spatial multiplexing of N streams, while the receiver complexity

grows only linearly with N.

Little or no processing is required at the transmitter. In the variant

designated V-BLAST (Vertical Bell Labs LAyered Space-Time), each

stream is simply assigned to a transmit antenna, so that for N=4 the

transmission matrix is:

where xk
n is the kth symbol in the nth stream.

D-BLAST (Diagonal BLAST) adds temporal staggering of the

streams:

Although D-BLAST can improve performance when combined

with FEC of individual streams, it is spectrally inefficient because of

the zeros introduced. Threaded space-time (TST) eliminates this

problem by simply rotating the assignment of streams:

The received signal vector at a given instant is:

r = Hx + v

where H is the NxN channel matrix, x is a column of X and v is

the thermal noise vector. The received vectors corresponding to a

whole frame are stored in a buffer for multi-pass processing. The

individual received signals are then ordered according to their rel-

ative power. For the sake of simplicity and without loss of gener-

ality, the V-BLAST variety will be assumed henceforth, where

each of the received signals corresponds directly to one of the

streams at the transmitter.

X =

x1
1 x1

4 x1
3 x1

2

x2
1 x2

3 x2
4 x2

3

x3
1 x3

2 x3
1 x3

4

x4
1 x4

1 x4
2 x4

1

...

...

...

...

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

X =

x1
1 x1

2 x1
3 x1

4

0 x2
1 x2

2 x2
3

0 0 x3
1 x3

2

0 0 0 x4
1

...

...

...

...

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

X =

x1
1 x1

2 x1
3 x1

4

x2
1 x2

2 x2
3 x2

4

x3
1 x3

2 x3
3 x3

4

x4
1 x4

2 x4
3 x4

4

...

...

...

...

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Thus, the most powerful stream is detected first by passing the

buffer contents through a linear combiner:

where <.>H denotes complex conjugate transposition of the

weight vector w(1) is typically chosen according to the zero-forc-

ing criterion, which forces to zero the interfering contributions

of the N-1 signals in y(1) . The vector is given as:

where <.>+ denotes the pseudo-inverse, and

is the interference covariance matrix from the point-of-view of the

first stream denoted by the subscript (1).The symbols can then be

detected with a high degree of reliability.

Given an estimate of the corresponding channel , the

first signal’s contribution can be subtracted from the received

signal buffer. Processing then moves on to the next layer, which

targets the second most powerful signal. The buffer contents

are then , where is an estimate of and

is an estimate of the corresponding transmitted stream .

It follows that . The process

continues until, at the last layer, only the weakest signal xN is left

in the buffer. The contents are

.

Because in the absence of detection errors no interference is

left at this point, MRC is used:

w(N) = h(N)

Only the interference nulling capacity of the zero forcing

array combining is used for the strongest signal. On the other

hand, detection of the weakest signal relies on successive

interference cancellation. A combination of nulling and can-

celling applies for the intermediate signals. An interesting

aspect of this approach is that the weakest signal enjoys the

highest degree of spatial diversity.

r − ĥ(n)x̂(n)
n=1

N −1

∑ ≈ r − h(n)x(n) =
n=1

N −1

∑ h(N)x(N) + v

y(2) = w(2)
H r − ĥ(1) x̂(1)()

x(1)

x̂(1)h(1)ĥ(1)r − ĥ(1)x̂(1)

ĥ(1)

R I(1)
= h(2) h(3) ... h(N)⎡⎣ ⎤⎦

h(2)

h(3)
.
.
.

h(N)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

*

w(1) = R I(1)

+ h(1)

y(1) = w(1)
H r

by Tom Hill
Technical Marketing Engineer, DSP Tools Marketing
Xilinx, Inc.
tom.hill@xilinx.com

In a recent survey conducted by AccelChip
Inc. (recently acquired by Xilinx), 53% of
the respondents identified floating- to
fixed-point conversion as the most difficult
aspect of implementing an algorithm on an
FPGA (Figure 1).

Although MATLAB is a powerful algo-
rithm development tool, many of its ben-
efits are reduced during the fixed-point
conversion process. For example, new
mathematical errors are introduced into
the algorithm because of the reduced pre-
cision of the fixed-point arithmetic. You
must rewrite code to replace high-level
functions and operators with low-level
models that reflect the actual hardware
macro-architecture. And simulation run
times can be as much as 50 times longer.
For these reasons, MATLAB, the over-
whelming choice for algorithm develop-
ment, is often abandoned in favor of
C/C++ for fixed-point modeling.

Floating- to Fixed-Point
Conversion of MATLAB
Algorithms Targeting FPGAs

Floating- to Fixed-Point
Conversion of MATLAB
Algorithms Targeting FPGAs

32 DSP magazine May 2006

Accelerating fixed-point model generation and verification using the AccelDSP Synthesis tool.Accelerating fixed-point model generation and verification using the AccelDSP Synthesis tool.

Generating Fixed-Point Models
The fixed-point representation of a floating-
point MATLAB algorithm will not truly
reflect the response of the final hardware if
the high-level functions and operators are
not replaced with hardware-accurate macro-
architectures (Figure 2).

This is highlighted in Figure 3, which
compares the fixed-point response of a
MATLAB divide operator against a hard-
ware-implementable CORDIC divide

growth without incurring additional
numeric error. This is a tremendous advan-
tage for applications such as radar, naviga-
tion, and guidance systems that require a
high degree of numeric precision.

In most cases bit growth rules are
straightforward and well understood. The
result of an addition, for example, grows by
one bit and the result of a multiplication
grows to a length equal to the sum of the
input word lengths (Figure 5). Making these
determinations for variables in an actual
design, however, is a highly iterative process.
Allowing unchecked bit growth to occur is
expensive in hardware and generally unnec-
essary. If you’re savvy, you can employ a vari-
ety of techniques to minimize word lengths
while preserving numerical accuracy.

The process of determining an initial
quantization value for a variable and the
subsequent refinement of that value is well
suited for automation. The AccelDSP
Synthesis tool includes automated floating-
to fixed-point conversion in which the
floating-point MATLAB model is analyzed
during simulation to determine the

dynamic range requirements of
the input data and constants.
These values provide the start-
ing points to an auto-quantiza-
tion process that then draws
upon a wealth of built-in expe-
rience, gained from more than
6,000 designs, to determine
optimal word lengths for the
downstream variables.

The initial fixed-point
model obtained through auto-
quantization provides a good
starting point, but refinements

algorithm using a random set of input vec-
tors quantized to 8-bit signed twos com-
plement. Depending on the data values, a
significant divergence exists between the
calculated outputs.

During the fixed-point generation
process, the AccelDSP™ Synthesis tool’s IP
Explorer™ technology will automatically
replace high-level MATLAB functions and
operators with hardware-accurate represen-
tations (Figure 4). This step is transparent
and does not require MATLAB code modi-
fications. You can redefine the initial
macro- and micro-architecture selections by
using a synthesis directive.

Once these operations have been
replaced with hardware-accurate macro-
architectures, the process of quantization
may begin.

Graphically Assisted Auto-Quantization
The FPGA fabric, unlike a fixed-point DSP
processor, allows for variable, fixed-point
word lengths. By not limiting a variable to a
fixed 16- or 24-bit boundary, you can per-
form arithmetic calculations requiring bit

May 2006 DSP magazine 33

Using Third-Party IP

Floating-Point
to Fixed-Point
Conversion

* Source: AccelChip Survey

RTL
Generation

Test Bench
Generation

Divide
Operation

a

b

inout

MATLAB "/" Operator CORDIC

y = a/b;

Lookup Table

Bipartite Tables

Library of Hardware Macro-Architectures

Divide Operation
IP Explorer

a/b

CORDIC

Newtin-Raphson

Goldschmit

+

+

*
Fixed [10 7]

Fixed [10 7]

Fixed [10 7] Fixed [11 7]

Fixed [12 7]

Fixed [22 7]

Constant "1.3" quantized to unfixed [11 10]

Figure 5 – Fixed-point bit growth

Figure 4 – Automatic hardware-accurate IP insertion

Figure 3 – Fixed-point response of the
MATLAB “/” versus CORDIC

Figure 2 – Replacing built-in operators
and functions

Figure 1 – AccelChip DSP design challenges survey

to the model are generally necessary. This
process is highly iterative and tightly cou-
pled to analysis of the data effects. To min-
imize this iteration cycle time, the
AccelDSP Synthesis tool provides an accel-
erated fixed-point simulation flow.

Analyzing Fixed-Point Data Effects
MATLAB provides a highly efficient envi-
ronment for developing the mathematics of
an algorithm that you can generally accom-
plish with a small set of simulation vectors.
When targeting that algorithm to fixed-
point hardware, however, you will need
increased data sets to accurately determine
the real-world environment response.
MATLAB, which is an interpreted simula-
tor, may not provide the necessary per-
formance for these larger, more
CPU-intensive fixed-point simulations.
For this, developers often turn to C/C++.

Accelerated Fixed-Point Simulation
The AccelDSP Synthesis tool’s M2C-
Accelerator automatically generates a hard-
ware-accurate fixed-point C++ model and

test bench to accelerate fixed-point simula-
tions. Eliminating the manual recoding step
saves development time and minimizes the
introduction of errors. Because C++ is com-
piled, it can provide as much as a 1000x sim-
ulation performance advantage (Figure 6).

This level of performance is often necessary
for the large vector sets required to under-
stand fixed-point data effects.

If you wish to continue using the MAT-
LAB visualization environment, including
the plotting features, M2C-Accelerator also
generates a fixed-point C/C++ dll that can
be simulated with the original MATLAB
test bench script file.

When you have obtained the initial
fixed-point results, the process of analysis
and refinement can begin. The AccelDSP
Synthesis tool provides a set of graphical
aids, including tabulated reports, variable
probes, and plots to assist in this process.

Observing Fixed-Point Bit Growth
A design must be considered in its entire-
ty to effectively convert a floating-point

algorithm into a fixed-point model. If
left unchecked early in the datapath, bit
growth can quickly escalate to produce
unreasonable hardware, while overly
constrained bit growth may result in an
unacceptable loss of numeric accuracy. A
common technique to gain better
observability into bit-growth progression
is to enter the variables into a spread-
sheet. The AccelDSP Synthesis tool pro-
vides this same level of observability by
generating a tabular, formatted Fixed
Point Report (Figure 7).

Before optimizing the hardware, you
must obtain an acceptable fixed-point
response. If the signal-to-noise ratio (SNR)
of an output is not above a desired specifica-
tion, then adjustments to the inferred quan-
tization values are required. This process
typically starts by looking for gross errors
caused by variable overflows and underflows.

Overflows and Underflows
Poor assumptions about the dynamic range
of the input data can lead to large fixed-
point errors caused by overflowing the most
significant bit (MSB) and (to a lesser degree)
underflowing the least significant bit (LSB)
of a variable. You will need to address these
errors first before observing and correcting
more subtle fixed-point errors.

Overflow and underflow reporting,
inherent to MATLAB fixed-point data
types, are not native to C/C++ and are often
sacrificed during the model rewrite. The
C++ models generated by M2C-Accelerator,
however, include quantization routines that
report all overflows and underflows encoun-
tered during a simulation. When these con-
ditions occur, they are summarized in the
“Verify FixedPoint Report” (Figure 8).

Once you have addressed any overflow
and underflow issues, the refinement of
the fixed-point model becomes more
dependent on visualization. If additional
fixed-point numeric errors persist, then

34 DSP magazine May 2006

Time in Seconds

100000

MATLAB Script & Model
AccelChip Quantizer

10000

1000

100

10

Simulation Model Format

MATLAB Script & Model
& Quantizer

MATLAB Script, AccelChip
M2C & Quantizer

C++ Script, AccelChip M2C
& Quantizer

MATLAB provides a highly efficient environment for
developing the mathematics of an algorithm that you can generally

accomplish with a small set of simulation vectors.

Figure 6 – FFT example simulation run times

you must analyze the effects of constants.
Otherwise, you can continue the process of
refining the hardware by reducing variable
bit widths. In both cases, knowing the
fixed-point error introduced by the quanti-
zation of a particular variable is a valuable
aid in the refinement process.

Fixed-Point Visualization
Determining the appropriate fixed-point
response of an algorithm to a given set of
data is generally not an exact science. You
will often have to make compromises in
numerical accuracy to improve hardware
efficiency. This process is highly iterative
and tightly coupled to a visual analysis of
the fixed-point effects displayed in plots.
Observing an unacceptable SNR on an
output signal, however, does not always
indicate where a quantization value has
been incorrectly specified. For that, addi-
tional analysis is necessary.

To assist in this process, AccelDSP
Synthesis’s AccelProbe graphically compares
the floating- and fixed-point values for any
variable during a given simulation (Figure
9). If you are using AccelProbe, you will
quickly gain a sense of the magnitude that a
particular variable’s contribution makes to
the cumulative error of the final result. You
can “probe” a variable by adding the state-
ment, “accel_probe(variable_name)” to the
MATLAB source.

The “Fixed-Point Histogram” plot gives
you a sense of how often a value may be
encountered during simulation. The addi-
tional hardware required to store a value in
the upper or lower dynamic range may be
of little value if that value rarely occurs.

Conclusion
When inventing the mathematics of a DSP
algorithm, MATLAB is the natural choice
and should be used unencumbered by hard-
ware considerations. Converting an algo-
rithm into a fixed-point model for
implementation on an FPGA is an involved
process that benefits greatly from the
automation, acceleration, and visualization
offered by the AccelDSP Synthesis tool.

For more information about the
AccelDSP Synthesis tool, visit www.
xilinx.com/dsp.

May 2006 DSP magazine 35

Figure 9 – Accel probe plot for a variable

Figure 8 – AccelDSP Verify FixedPoint Report

Figure 7 – AccelDSP Synthesis Fixed Point
Report for an adaptive filter

GetonTarget

Is your marketing
message reaching
the right people?

Hit your target audience by
advertising your product or service

in DSP Magazine. You’ll reach more
than 30,000 engineers, designers,

and engineering managers worldwide.

We offer very attractive advertising
rates to meet any budget!

Call today:
(800) 493-5551
or e-mail us at

xcelladsales@aol.com

by Jack Wilber
Technical Writer
The MathWorks

Engineers at BAE Systems, engaged in the
design and development of embedded sys-
tems involving FPGAs, are highly skilled
in the well-established, traditional design
process based on hand-coded VHDL.

Recently, they seized a rare opportunity
to directly compare their process with a
new approach built on model-based
design. While developing a software-
defined radio (SDR) waveform for MIL-
STD-188 satellite communications, they
ran two development efforts in parallel –
one using the traditional approach, the
other using model-based design with
MathWorks and Xilinx® tools. They dis-
covered that model-based design reduced
development time by more than 80%.

BAE Systems Proves
the Advantages of
Model-Based Design

BAE Systems Proves
the Advantages of
Model-Based Design

36 DSP magazine May 2006

BAE Systems achieved
an 80% reduction in
software-defined
radio development time
with The MathWorks
and Xilinx tools.

BAE Systems achieved
an 80% reduction
in software-defined
radio development
time with MathWorks
and Xilinx tools.

Traditional Design Flow vs. Model-Based Design
The traditional design flow at BAE Systems
involves three distinct phases (Figure 1):

• The system engineering phase involves
translating a set of system requirements
to a system architecture and a waveform
design to be implemented, for which a
model is constructed and performance is
verified against system requirements.

• The hardware engineering phase pro-
duces a second model of the algorithm,
this time by hand-coding in VHDL, and
requires a second round of simulation,
debugging, and analysis to verify that
this implementation matches the system
engineering model.

• The physical design phase involves con-
verting the VHDL behavioral model to
an FPGA-compatible netlist, integrating
onto the FPGA hardware and verifying
that operation on the part matches
expected behavioral performance.

Ideally, all of the information and detail
defining the algorithm is carried forward
from the system engineers to the hardware
engineers who will implement the design,
but there is inevitably some loss in this
transfer. Engineers attempt to fully capture
the detail of the design as a hardware speci-
fication and as input/output test vectors.
Not only is this process quite lengthy, but it
is also prone to error.

To overcome these limitations, engi-
neers used model-based design with
Simulink from The MathWorks and Xilinx
System Generator to build a model that
becomes an executable specification of the
system for development teams to follow.
This approach eliminates the need to pass
written documentation to a software team
for VHDL coding and reduces the three
phases of the traditional design approach
to two phases (Figure 2):

• The system and algorithm design phase
now encompasses both the system and
hardware engineering phases of the orig-
inal process.

• The physical design phase, as before,
focuses on integration and verification
of performance on the hardware.

May 2006 DSP magazine 37

1. Specification

2. Model

3. Simulate

4. Analyze

8. Synthesis

9. Place and Route

10. Static Timing Analysis

5. HDL Coding

6. HDL Simulation

7. HDL Analysis

11. System Integration

12. System Test

First Design and Debug

Second Design and Debug

• Harware Spec
• Test Vectors

System Engineering

Physical Design

Hardware Engineering

Model-Based Design Flow

1. Specification

2. Model

3. Simulate

4. Analyze

5. Synthesis

6. Place and Route

7. Static Timing Analysis

8. System Integration

9. System Test

Design and Debug

System & Algorithm Design

Physical Design

Figure 2 – Model-based design eliminates hand-coding in VHDL.

Figure 1 – The three phases of the traditional design flow at BAE Systems

An Experiment in Concurrent Development
Two groups worked in parallel to develop
the SDR waveform’s signal-processing
chain, hardware interfaces, and clocking.
One group, led by Robert Regis, a senior
engineer at BAE Systems with more than
15 years of experience in VHDL develop-
ment, used the traditional workflow. The
other, led by Sean Gallagher, a senior engi-
neer at Xilinx, used model-based design.

Each group tracked the hours spent on
the following tasks:

• Algorithm interface specification and
documentation

• Module design definition

• Modeling, simulation, and design
verification

• VHDL coding

• VHDL code behavioral verification

• Hardware integration and lab testing

Regis and Gallagher each implement-
ed the same subset of MIL-STD-188-
165a (Figure 3). In this design, the
transmitted data passes through a scram-
bler, differential encoder, Reed-Solomon
encoder, matrix interleaver, convolutional

encoder, and quadrature amplitude mod-
ulation (QAM) modulator to produce
baseband complex samples, which in the
transmitter are passed to a pair of digital-
to-analog converters (DAC) through
low-voltage differential signal (LVDS)
serial links.

The receive chain reverses these steps:
the complex baseband samples received by
a pair of analog-to-digital converters
(ADC) pass through a QAM demodulator,
Viterbi decoder, matrix deinterleaver,
Reed-Solomon decoder, differential
decoder, and descrambler to produce a seri-
al bitstream. A sync detect function identi-
fies Reed-Solomon block boundaries.

Both groups had access to an equiva-
lent set of pre-validated components (IP
cores): Regis used existing VHDL code for
the Reed-Solomon encoder, while
Gallagher used a Reed-Solomon encoder
block available within System Generator.
Similarly, both had access to a Reed-
Solomon decoder, Viterbi decoder, and
interleavers. In Regis’s case these were
available as IP cores, and in Gallagher’s
case they were incorporated through the
inclusion of an associated System
Generator block that, in turn, referenced
and instantiated a Xilinx IP core.

38 DSP magazine May 2006

LVDS Serial
Bitstream
and Clock

LVDS Serial
Bitstream
and Clock

Scrambler

Descrambler

Differential
Encoder

Differential
Decoder

Bit
to
Int

Bit
to
Int

Int
to
Bit

Int
to
Bit

RS
Encoder

RS
Decoder

Frame
Sync
Word

Matrix
Interleaver

Convolu-
tional

Encoder

QAM
Modulator

Matrix De-
Interleaver

Sync
Detect

Viterbi
Decoder

QAM De-
Modulator

DAC

ADC

LVDS

LVDS

Buffer

Scrambler Differential
Encoder

Bit to Integer
Converter

Zero Pad

RS Encoder

Integer-Input
RS Encoder

Selector

Satcom Modem Model

U U(E)
Integer to Bit

Converter
Matrix

Interleaver
To

Sample

-C-

To
Frame

SyncWord

Frame Status
Conversion2

Frame Status
Conversion1

Convolutional
Encoder Rectangular

QAM

Unbuffer

Descrambler Differential
Decoder

Integer to Bit
Converter

Selector1 En

U(E) U

Errors Corrected

Integer-Output
RS Decoder

RS Decoder

Zero Pad1

Bit to Integer
Converter

Matrix
Deinterleaver

Constant

CC*8*COL+32+32

Sync Word Location

Sync Detect Indicator

Add
Sync Generation

Out1

Out4

In2

Out z-iU(E) U
In

Delay Viterbi Decoder
Rectangular

QAM

Error Rate
Calculation

Error Rate Calculation

Tx

Rx

Selector2
Variable

Integer Delay

Random
Integer

Random Integer
Generator

+

–

DOC

Text

0

0

66

1

-1

5.505e+004

Figure 4 – Simulink model of the satellite communications transceiver

Figure 3 – A generic satellite communications transceiver

Model-Based Design with
Simulink and System Generator
BAE Systems engineers modeled and simu-
lated the transceiver waveform using
Simulink and the Communications
Blockset (Figure 4). They used frame-based
processing in the model to increase simula-
tion speed. (Frame-based connections
cause the model to pass an entire frame, or
packet of data, between blocks, thereby
reducing block execution management
overhead and increasing simulation speed.)

The Simulink model gave engineers the
flexibility to implement the waveform on a
range of targets – for example, they could
have used Real-Time Workshop from The
MathWorks to automatically generate code
for a DSP implementation that met the
performance requirements of the original
specification. To ensure a valid comparison
with the traditional design flow, however,
they implemented the design on an FPGA.

The Simulink model was handed off to
Gallagher, who used it as a reference design
in building the equivalent model in Xilinx
System Generator. Gallagher used existing
Xilinx blocks for Reed-Solomon encoding,
matrix interleaving, and Viterbi decoding.
He built other high-level blocks for which
there was no direct substitute using lower-
level Xilinx blocks (Figure 5).

Gallagher used scopes and bit-error-rate
meters to debug the model and verify oper-
ational performance before using Xilinx
System Generator to automatically gener-
ate VHDL and synthesize the FPGA.

The waveform involves the processing
of single bits or scalar, complex values pro-
duced by the QAM modulator. In the
receiver, real soft symbols produced by the
QAM demodulator are represented using
finite precision values. Therefore, unlike
the floating-point double-precision values
that exist in the Simulink model, in the
System Generator model it was necessary
to select the scaling to be used to represent
these values. Gallagher selected the scaling
parameters based on trial and error, until
bit widths were as small as possible without
a significant impact to performance.

Regis’s team required 645 hours to com-
plete the design and development of the sig-
nal-processing chain (Table 1). Gallagher
needed only 46 hours, a reduction in devel-
opment time greater than 10 to 1. Factoring
in equal amounts of hardware integration
and lab testing – estimated at 137 hours –
the end-to-end improvement is still greater
than 4 to 1.

David Haessig, a senior BAE Systems
technical staff member who was involved
in both efforts, points out that in addition

to the obvious time savings provided by
automatic code generation, model-based
design accelerated the project by shifting
debugging and analysis forward in the
schedule. “When following the traditional
design flow process, a large portion of the
simulation and debugging work tends to
occur later in the design, during VHDL
coding,” Haessig says. “With model-based
design the model defines the code, and you
are therefore obliged to include in the
model every detail needed to define the
waveform.

“Typically the model is built and test-
ed incrementally, and you deal with the
bugs and the algorithmic issues as they
occur. Debugging is handled almost
entirely during the modeling phase of the
design, with a bit-true, cycle-true model.
With access to Similink and MATLAB
data visualization tools, bugs are much
easier to identify and fix prior to VHDL.
The alternative, debugging the VHDL
code, is more difficult and tedious.”

Further Advantages of Model-Based Design
BAE Systems identified three additional
factors that contributed to the substantial
reduction in development time achieved
using model-based design: clocking, defect
discovery, and component interfaces.

May 2006 DSP magazine 39

In1 Out1

Stretcher

din

en
dout

Scrambler_Encoder

fpt dbl

dout1

fpt dbl

dout

dbl fpt

din

xlviterbi

din1

din2

din1din1din1din1din1din1din1

vin

dout

voutvoutvoutvoutvout

usamp 8

Up Sample

Sine Wave

giste
d

en
q

Register1

z-1
d

en
q

Register

xlrsencode
(126, 112)

dout

vout

info

rfd

din

vin

start

bypass

RS Encoder

xlrsdecode
(126,112)

dout

vout

info

fail

err_cnt

din

vin

start

RS Decoder

Q_in

I_in

Q_out

I_out

QPSK_ Mod

Q_in

I_in

Q_out

I_out

QPSK Demod

Pulse
Generator

Product

xlp2sp s

Parallel
to Serial

xlinterleaver

din dout

vout

vin

en

Interleaver
Deinterleaver1

xlinterleaver

din
dout

vout

vin

en

Interleaver
Deinterleaver

K-

Gain

din

dout

Deint_start

RS_start

Frame Aligner

Error

 Monitor
data

en

dout

Descrambler

Differential
Decoder

z-2

z-1

Delay7

z-24

z
-201

Delay2

z-1
en

Delay1

z-1

Delay

din dout1

dout2

voutvin

Convolutional Encoder

lconvertcast

Convert2

1

Constant2

0

Constant1
1

Constant

din

dout

start

start_I

Attach
ASM1

|u|

Abs

System

Generator

lconvencoder

xlregister
rre

Figure 5 – Simulink model of the satellite communications transceiver using Xilinx blocks.

In the traditional design flow, Regis
spent substantial time hand-calculating a
combination of clock enables and multiple
clock domains necessary for generating the
odd sample rates associated with Reed-
Solomon encoding and decoding. In con-
trast, Gallagher relied on Xilinx System
Generator to automatically derive a com-
mon clock at the highest rate and build
enabling logic to throttle multiple rates.

As reflected in the time logged for veri-

fication in each approach, finding and
repairing defects was greatly simplified in
the approach using model-based design.
“With Simulink and System Generator, the
model is directly connected to the resulting
code, which enables you to discover bugs at
the modeling stage using source and sink
blocks, not at the VHDL behavioral test
stage using test benches,” Haessig explains.

Regis notes that while he had to carefully
read the interface specifications of each

block he used, Gallagher could wire blocks
together with relative ease. “With System
Generator, it is amazing how easily the IP
blocks are connected together. There is no
need to study data sheets or clocking and
control options. This may be the most
underrated aspect of model-based design.”

Looking Ahead: SCA-Compliant SDR
Based on the results of the experiment,
Haessig expects model-based design with
MathWorks tools to become an integral
part of the BAE Systems software develop-
ment process.

In addition, BAE Systems is exploring
ways to use model-based design tools to
enable waveform portability by automati-
cally generating software communications
architecture (SCA)-compliant software
and firmware. Joint Tactical Radio System
(JTRS) radios must follow SCA as a stan-
dard for achieving waveform portability.
Responding to a request from the Joint
Program Executive Office (JPEO), BAE
Systems is involved in the deployment of
waveforms that JPEO can use in current
and future radio systems without redevel-
oping the waveform components. The
same SDR code will be able to run on new
hardware platforms without modification.

BAE Systems is also working with The
MathWorks, Virginia Tech, Xilinx, and
Zeligsoft to create an interface that will
enable code generated by Real-Time
Workshop and System Generator to be
directly incorporated into SCA-compliant
radios. According to Haessig, “This initia-
tive holds great potential for reducing time
to market and the cost of JTRS radio
development, allowing seamless transition
from simulation to an SCA-compliant
implementation; increasing reusability and
portability of components; and expanding
the lifespan of source code.”

For more information, please visit the
aerospace and defense (www.mathworks
.com/industries/aerospace/) and communi-
cations (www.mathworks.com/industries/
comms/) sections of The MathWorks web-
site, or contact Dan Raun at dan.raun@
mathworks.com, (508) 647-7098 or Mike
McHenry at mike.mchenry@mathworks.com,
(508) 647-7858.

40 DSP magazine May 2006

Algorithm
Interface

Specification/
Documentation

Module
Design

Definition

Modeling,
Simulation,
and Design
Verification

VHDL
Coding

VHDL Code
Behavioral
Verification

Hardware
Integration &
Lab Testing Notes

Algorithm
Interface

Specification/
Documentation

Module
Design

Definition

Modeling,
Simulation,
and Design
Verification

VHDL
Coding

VHDL Code
Behavioral
Verification

Hardware
Integration &
Lab Testing

Traditional Approach (hours worked)

Reed-Solomon RS Encode 40 40 0 40 60 20 Integrate
purchased IP

Reed-Solomon Decode 20 80 0 60 100 20 Integrate
purchased IP

Scrambler / Descrambler 1 1 0 1 6 3

Convolutional Encode 1 1 0 1 1 1

Viterbi Decode 8 8 0 8 16 24 Integrate inhouse
IP, development

not shown

Differential Encoder / Decoder 1 1 0 1 4 2

Interleaver / Deinterleaver 40 16 0 16 36 60

PSK Modulator (2,4,8) 5 5 0 4 3 3

RS Frame Sync 4 6 0 4 6 4

TOTALS: 120 158 0 135 232 137 782

Rapid Development Approach (hours worked)

Reed-Solomon RS Encode 1 0.25 2 0 0 *

Reed-Solomon Decode 1 0.5 3 0 0 *

Scrambler / Descrambler 0 0.25 3 0 0 *

Convolutional Encode 0 0.25 1.5 0 0 *

Viterbi Decode 0 0.5 2 0 0 *

Differential Encoder / Decoder 0 0.25 1 0 0 *

Interleaver / Deinterleaver 0 0.5 2 0 0 *

PSK Modulator (2,4,8) 1 0.5 4 0 0 *

RS Frame Sync 1 4 16 0 0 *

TOTALS: 4 7 34.5 0 0 45.5

Table 1 – Table of results

Now, There’s A Flow You Could Get Used To.

©2006 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. MATLAB and SimuLink are registered trademarks of The MathWorks, Inc.
All other trademarks are the property of their respective owners.

www.xilinx.com/dsp

Sidestep tedious hardware development tasks with Xilinx
System Generator for DSP and AccelDSP design tools. When combined with
our library of algorithmic IP and hardware platforms, Xilinx XtremeDSP
Solutions get you from design to verified silicon faster than ever.

Visit www.xilinx.com/dsp today and speed your design with AccelDSP and
System Generator for DSP.

by Ben Chan
Software Engineer II
Xilinx, Inc.
ben.chan@xilinx.com

Nabeel Shirazi
Senior Staff Software Engineer
Xilinx, Inc.
nabeel.shirazi@xilinx.com

Jonathan Ballagh
Staff Software Engineer
Xilinx, Inc.
jonathan.ballagh@xilinx.com

Designers often struggle with lengthy simu-
lation times when designing large FPGA sig-
nal-processing systems. FPGA design tools
such as Xilinx® System Generator for DSP
aim to address this challenge by providing
robust hardware-in-the-loop interfaces that
allow you to bring FPGA hardware directly
into your design simulations.

By emulating a portion of your design
in hardware, these interfaces enable consid-
erable simulation acceleration – typically
by an order of magnitude or more. Using
hardware-in-the-loop also brings you real-

time FPGA hardware debugging and veri-
fication capabilities.

System Generator for DSP offers hard-
ware-in-the-loop interfaces for many types
of FPGA development platforms. These
platforms typically expose different types of
physical interfaces through which the PC
communicates with the FPGA hardware.
For example, a JTAG co-simulation inter-
face allows any FPGA board with a JTAG
header and Xilinx FPGA to be co-simulat-
ed inside System Generator for DSP. Other
boards, such as the XtremeDSP™
Development Kit, communicate over a
PCI bus connection. Until recently, co-
simulation of systems with high memory
bandwidth and throughput requirements
(such as video and image processing) were
limited exclusively to development boards
that connected directly to a PC using PCI
or PCMCIA interfaces.

Co-Simulation over Ethernet
System Generator for DSP 8.1 includes a
new Ethernet co-simulation interface that
for the first time brings high-bandwidth
co-simulation capabilities to the Xilinx

ML402 Evaluation Platform. The ML402
board connects to your PC either directly
using a standard Ethernet cable or remote-
ly across a network.

At the heart of the interface is the Xilinx
tri-mode Ethernet MAC core, which sup-
ports operation in 10/100/1000 Mbps half-
and full-duplex modes. When you generate
a design using the Ethernet hardware co-
simulation interface, System Generator for
DSP automatically wraps your design with
the logic necessary to communicate with
the FPGA over an Ethernet connection
during simulation (Figure 1).

You may generate a design for Ethernet
hardware co-simulation by double-clicking
on the System Generator block in any
design to open its configuration parame-
ters box. From the compilation menu,
select the ML402/Ethernet compilation
(see Figure 2) under the hardware co-simu-
lation menu. You can choose between two
different modes of Ethernet co-simulation.

Network-Based Co-Simulation
A network-based interface allows you to
co-simulate FPGA hardware that is

Achieving High-Bandwidth DSP
Simulations Using Ethernet
Hardware-in-the-Loop

Achieving High-Bandwidth DSP
Simulations Using Ethernet
Hardware-in-the-Loop

42 DSP magazine May 2006

System Generator v8.1 offers a new Gigabit Ethernet
hardware-in-the-loop interface that enables high-bandwidth
co-simulation using the Xilinx ML402 FPGA platform.

System Generator v8.1 offers a new Gigabit Ethernet
hardware-in-the-loop interface that enables high-bandwidth
co-simulation using the Xilinx ML402 FPGA platform.

nications on a local Ethernet segment. Co-
simulation data is transmitted across a stan-
dard UTP Ethernet cable that connects the
ML402 board directly to the PC. This
means that you must have an available
Ethernet jack exposed on your PC to make
the connection.

The point-to-point interface supports
the Gigabit Ethernet standard, which when
configured to use jumbo frames substan-
tially bolsters the performance of large data
transfers. Using this interface allows you to
co-simulate even the most bandwidth-
intensive applications.

Device Configuration
Both Ethernet co-simulation interfaces sup-
port a novel approach to device configura-
tion, using the Xilinx System ACE™
solution to support configuration over an
Ethernet cable. The configuration process is
performed over the same Ethernet connec-
tion used for co-simulation, thus eliminat-
ing the need for a second programming
cable (such as a Xilinx Parallel Cable IV or
Platform Cable USB). A CompactFlash
card is installed on the ML402 board and
contains a special boot-loader image that is
automatically loaded into the FPGA at
power up. This image allows the FPGA to
be reconfigured with new FPGA co-simula-
tion bitstreams that are transferred over the
Ethernet cable at the start of a simulation.
The entire configuration process is handled
transparently by System Generator for DSP.

Design Example
A 5x5 filter operator design model named
conv5x5_video_ex is included with the
System Generator for DSP 8.1 software
tool. This design shows how a 2D image fil-
ter can be realized efficiently using n-tap
MAC FIR filters. The System Generator for
DSP top-level design is shown in Figure 4.

Also included with the design is a hard-
ware co-simulation test bench for streaming
a looped video sequence through the 5x5
kernel at real-time frame rates. During each
simulation cycle, individual video frames
are transmitted to the FPGA for processing.
Once in the FPGA, each frame is filtered
using a 5x5 kernel, and then transmitted
back to the PC for analysis in Simulink.

attached to a standard IPv4
network. Because these net-
works are virtually ubiqui-
tous, the network-based
interface provides a conven-
ient way to reach a remote
FPGA development board
connected to a wired or wire-
less network. The interface
manages the details of com-
munication and error han-
dling (retransmissions after
packet loss) behind the
scenes. System Generator for
DSP uses the IP address of
an ML402 board to deter-
mine which platform to
communicate with during
co-simulation (Figure 3).

Point-to-Point
Co-Simulation
The second Ethernet co-sim-
ulation mode is a point-to-
point interface that uses raw
Ethernet frames to enable
high-bandwidth communi-
cation with the ML402
board over the data link
layer. In contrast to the net-
work-based counterpart, the
point-to-point interface
focuses on low-level commu-

May 2006 DSP magazine 43

User Design

FPGA Fabric

Hardware Co-Simulation Interface

System ACE
MPD Interface

Ethernet
PHYIO

B
U

F
s

External
I/Os

Ethernet PHY
Interface

System ACE
Reconfiguration

Controller

Tri-Mode
Ethernet

MAC

Ethernet
Co-Simulation

Processor

Figure 3 – Specifying the IP address of an ML402 board
for Ethernet hardware co-simulation

Figure 2 – Selecting Ethernet hardware co-simulation
as the System Generator compilation type

Figure 1 – Block diagram of FPGA fabric using Ethernet hardware co-simulation interface

Two Simulink Matrix Viewer blocks display
the unfiltered and filtered images during
simulation. Data flow through the test
bench is shown in Figure 5.

Benchmarking
The 5x5 filter design example was com-
piled for point-to-point Ethernet hardware
co-simulation and co-simulated using the
Xilinx ML402 development board. The
simulation speed in hardware was com-
pared against the simulation speed in soft-

ware. Specifically, the benchmark consid-
ers the number of processed frames being
read back per second, and the results are
compared to the software simulation time
of the filter operation on a single frame.

Figure 6 summarizes the simulation
speedup achieved through Ethernet co-
simulation with respect to a pure software
simulation. The results show a significant
speedup in simulation by a factor of
approximately 50 to 1,000 times. In reali-
ty, the achievable speedup may vary based
on different factors: design complexity,
number of I/O ports, and volume of I/O
data. The figure also reflects two other
important factors regarding the Ethernet
settings – the link speed and maximum
frame size – that can affect co-simulation
performance.

With the increase of link speed, we see a
dramatic reduction in simulation time
because more bandwidth is available for co-
simulation data. With jumbo frames enabled
on a gigabit connection, the co-simulation
performance is further bolstered by increas-
ing the maximum frame size to ensure the
greatest efficiency of burst data transfers.

Conclusion
The System Generator for DSP Ethernet
hardware co-simulation interfaces provide
convenient, high-bandwidth solutions for
simulating video and image processing
applications on the Xilinx ML402 plat-
form. These interfaces make it possible to
simulate remote FPGA platforms, or for
higher performance, a board attached
directly to the host PC using an Ethernet
cable. By using the SystemACE solution,
device configuration is accomplished over
an Ethernet connection, eliminating the
need for a second programming cable. As
shown from the benchmark results, the
interface can enable simulation speedups
by several orders of magnitude.

Both the Ethernet co-simulation inter-
faces and video processing reference design
are distributed with the Xilinx System
Generator v8.1 software tool.

To learn more about System
Generator and Ethernet co-simulation,
see the User Guide at www.xilinx.com/
system_generator.htm.

44 DSP magazine May 2006

Unfiltered
Video

Display

Matrix Viewer

Filtered
Video

Display

Matrix Viewer

Looped
128x128

Video
Sequence

5x5
Image
Kernel

FPGA Fabric

ML402 Board

Ethernet Cable Simulink

Ethernet Co-Simulation Performance
(5x5 Filter Operation of 128x128 Video Frames)

Ethernet Setting (Link Speed, Maximum Frame Size)

1400

1200

1000

800

600

400

200

0

10 Mbps,
1514 Bytes

46x

345x

809x

928x

1237x

1114x

100 Mbps,
1514 Bytes

1 Gbps,
1514 Bytes

1 Gbps,
2048 Bytes

1 Gbps,
4096 Bytes

1 Gbps,
8192 Bytes

S
im

u
la

ti
o

n
 S

p
ee

d
u

p
 w

.r
.t

. S
o

ft
w

ar
e

Figure 6 – System Generator for DSP 5x5 filter benchmark results

Figure 5 – System Generator for DSP 5x5 filter streaming video test bench

Figure 4 – System Generator for
DSP 5x5 filter operator example

by Luc Langlois
Global Technical Marketing Manager, DSP
Avnet
luc.langlois@avnet.com

Crafting DSP algorithms for optimum
performance in hardware often requires
sophisticated design techniques, such as
pipelining and overclocked control logic.
Such is the case for implementations using
the Xilinx® Virtex™-4 DSP48 slice,
which attains maximum efficiency when
operating at its peak clock rate of 500
MHz with internal registers enabled.

However, synchronizing calculations in
a structure of overclocked pipeline registers
can be daunting when using traditional
time-domain analysis of waveforms to
visualize dataflow. The z-transform is a
viable alternative. In this article, I’ll present
a simple, efficient methodology for analyz-
ing high-performance DSP algorithms
using the z-transform to obtain predictable
results without guesswork. My examples
will demonstrate quick pencil-and-paper
calculation techniques of key performance
metrics (such as latency) using three differ-
ent structures of finite impulse response
(FIR) filters, with an emphasis on Virtex-4
DSP48-based implementations.

Hardware DSP Analysis Techniques
Using the Z-Transform
Hardware DSP Analysis Techniques
Using the Z-Transform

May 2006 DSP magazine 45

Harness the power of the
Virtex-4 DSP48 architecture
without guesswork.

Harness the power of the
Virtex-4 DSP48 architecture
without guesswork.

The Z-Transform
DSP uses the z-transform to operate on
sampled signals in discrete time, as opposed
to the Laplace and Fourier transforms used
for analog signals in continuous time.
Hardware designers will recognize the stan-
dard notation, z-1 for a unit-sample delay,
commonly implemented with a register.
This refers to an important property of the
z-transform: a delay in the time domain
corresponds to the z-transform of the signal
without delay, multiplied by a power of z in
the frequency domain. The expression of
this relationship between a signal delayed
by k unit samples and its z-transform is:

x[n-k]�� z-k X(z)

The Signal Flow Graph
The signal flow graph is a time-tested tool
for visualizing DSP algorithms. Figure 1
is the signal flow graph of a direct-form
FIR filter.

Three elements comprise a signal flow
graph:

• Branch node: sends a copy of the
input signal to several output paths

• Summing node: outputs the
sum of all signals flowing into it

• Delay element: stores a delayed
sample of the input signal

Pipelining for Performance
Applying the analysis method previously
discussed to a high-performance FIR filter
structure known as the parallel systolic
form results in Figure 2. It is derived by
pipelining the time-skew buffer and the
adder chain of the direct form, producing a
structure that maps naturally to the Virtex-
4 DSP48 slice (for more details, see
Chapter 4 of the XtremeDSP User Guide).

A glance at this structure would suggest
extra latency compared to the direct form
of Figure 1, but how can you quickly deter-
mine the exact amount of latency without
the time-consuming exercise of actually
building a model for simulation? With
pencil and paper, a three-step analysis
process using z-transforms will answer this
in no time.

1. The z-transform annotated time-skew
buffer is shown in Figure 2. Note the
even powers of z in the time-skew
buffer because of the double registers.

2. Derive the output by tracing the signal
through the graph. The trick here is to
recognize that each signal crossing of a
register from left to right in the adder
tree causes a z-1 to multiply the entire
bracketed expression thus far:

Y(z) = {[(b0z
-1X + b1z-2X)z-1 + b2z-4X]z-1 +

b3z-6X}z-1

3. Simplify:

Again the familiar FIR filter sum-of-
products appears, revealing a latency of
four sample periods when factored out.

Splitting the Unit Delay
The semi-parallel FIR filter is a structure of
time-shared DSP48s, each operating on a
subset of coefficient taps at an overclocked
computation rate fclk relative to the data
sampling rate fs (also referred to as
throughput). Extensive pipelining (dis-
played as red squares) allows clocking of
the DSP48 at its maximum computation
rate (500 MHz in a Virtex-4 -12 speed
grade device), for an optimal trade-off of

Y(z) = z-4 ∑ bkz-k X
N-1

k=0

Note the filter coefficients b0...3, which
multiply the signal flowing through each
branch. For simplicity, multipliers are not
explicitly shown.

Analysis
Referring to Figure 1, I recommend the fol-
lowing method to analyze the signal flow
graph using z-transforms:

1. Annotate each node of the time-skew
buffer with the z-transform of the
input signal, multiplied by increasing
negative powers of z as the signal
moves through delay elements.

2. Derive the output by tracing the sig-
nal through the graph, multiplying
the input signal by the coefficient in
each branch, and summing the result-
ing products in the summing nodes:

Y(z) = b0X + b1z-1X + b2z-2X + b3z-3X

3. Simplify:

The result is the familiar FIR filter sum-
of-products, equivalent to discrete-time
convolution in the time domain:

y[n] = x[n]*b[n].

Y(z) = ∑ bkz-k X
N-1

k=0

46 DSP magazine May 2006

Z
-1x[n]

y[n]

z
-1XX

b0 b1 b2 b3

Z
-1 z

-2X
Z

-1 z
-3X

Z
-1 Z

-1x[n]

y[n]

z
-2X

X

b0 b1

Z
-1

Z
-1 Z

-1
z

-4X

b2

Z
-1

Z
-1 Z

-1
z

-6X

b3

Z
-1 Z

-1

Figure 1 – Signal flow graph of direct-form FIR filter

Figure 2 – Signal flow graph of parallel systolic FIR filter

throughput versus filter order. The defining
quantity is taps/DSP48 = fclk / fs = number
of computation phases required to com-

pute each output value Y (Chapter 5 of the
XtremeDSP User Guide).

Figure 3 shows an 8-tap semi-parallel
FIR structure using DSP48s, with 4x over-
clocking. The time-skew buffer is a cascade
of addressable shift registers with shift
enable, known as SRL16E, in FPGA fabric.
The enable signal (not shown) is asserted
every 1/fs to shift data through the time-
skew buffer at the sampling rate, resulting
in unit-delays (whole powers of z).

At each of four computation phases, shift
register addressing operating at fclk = 4fs (not
shown) selects one of four data samples in
each SRL16E and presents it to the DSP48
input register, while the corresponding coef-
ficient, denoted bk, is fetched from distrib-
uted memory. The four computation phases
are summed sequentially to produce the
output Y in the accumulator, which is then
cleared to start calculation of the next out-
put. Overclocking all registers at fclk = 4fs

accounts for the fractional-delays z-1/4.
Aligning the computation phases to

ensure proper synchronization of these
operations can be a daunting task using
time-domain waveforms to visualize

dataflow in simulation. Z-transforms
reduce the job to simple algebra by group-
ing unit and fractional delays as lumped
sums in the exponent, as follows:

1. The z-transform annotated time-skew
buffer is shown in Figure 3 for the first of
four computation phases. Note the com-
bination of fractional and whole powers of
z in the time-skew buffer.

2. Each 4x overclocked register causes the
signal to accumulate a z-1/4 delay. The
post-adder register applies its z-1/4 delay by
multiplying the entire bracketed signal
expression thus far. The first computation
phase Yph_0 is :

The full output expression of the 8-tap
FIR filter is the accumulated sum of the
four consecutive computation phases,

each of which is shown delayed an extra
1/(4fs) from the previous phase in the
sequence:

The accumulator has the effect of
“realigning” each computation phase to
produce the sequentially accumulated
sum Y at the next 1/fs boundary. This is
accounted for with extra fractional delay:

3. Simplify:

Again the familiar FIR filter sum-of-
products appears, revealing a latency of
two sample periods when factored out.

Conclusion
With a simple, efficient methodology
using the z-transform for the analysis of
DSP algorithms, you can easily apply
high-performance techniques such as
pipelining and overclocked control logic
to your hardware DSP designs.

The techniques described in this arti-
cle were presented at Speedway 2005
DSP sessions. The Spring 2006 Speedway
Design Workshop Series features two new
DSP-related workshops: “Xilinx DSP
Development Workshop” and “Xilinx
DSP for Video Workshop.” For more
information, visit http://em.avnet.com/
xlxspringspeedway.

Y(z) = z-2 ∑ bkz-k X
N-1

k=0

May 2006 DSP magazine 47

z
-1/4X

z
-1/2 z

-4X

b0

b3

0

DSP48

SRL16E SRL16E

DSP48 DSP48

Accumulator

X

X

Yph_0+ + +

.

.

b4

b7

.

. X

Yph_0 = (b0z-1X + b4 z-5) z-1/4

effect of post-adder register

(1st computation phase)

(2nd computation phase)

(3rd computation phase)

(4th computation phase)

Y = (b0z-1X + b4 z-5) z-1/4

+ z-1/4 (b1z-2X + b5 z-6X) z-1/4

 + z-1/2 (b2z-3X + b6 z-7X) z-1/4

 + z-3/4(b3z-4X + b7 z-8X) z-1/4

computation phases re-aligned in the accumulator

Y = z-3/4 (b0z-1X + b4 z-5X) z-1/4

+ z-1/2 z-1/4(b1z-2X + b5 z-6X) z-1/4

+ z-1/4 z-1/2(b2z-3X + b6 z-7X) z-1/4

+ z0 z-3/4(b3z-4X + b7 z-8X) z-1/4

With a simple, efficient methodology using the z-transform for the analysis of DSP
algorithms, you can easily apply high-performance techniques such as pipelining

and overclocked control logic to your hardware DSP designs.

Figure 3 – Eight-tap, semi-parallel FIR filter with 4x overclocking (fclk/fs = 4)

by Niall Battson
DSP Technical Marketing Manager
Xilinx, Inc.
niall.battson@xilinx.com

Although the well-known finite impulse
response (FIR) filter algorithm is extremely
simple, the number of variants in the
implementation specifics is immense.
These implementation specifics have kept
research institutions busy and DSP hard-
ware engineers struggling to reach opti-
mal performance and usage of the silicon
available to them.

Introduced in September 2004, Xilinx®

Virtex™-4 devices demonstrated that 400
MHz DSP designs (in the slowest speed
grade) were feasible, especially for designs
that had an abundance of FIR filters. This is
certainly the case in wireless and defense sys-
tems today, especially in the radio portion.

Implementing Optimal
Filters Quickly
Implementing Optimal
Filters Quickly

48 DSP magazine May 2006

You can obtain high performance
with minimal resources in Virtex-4
FPGAs using the new FIR Compiler.

You can obtain high performance
with minimal resources in Virtex-4
FPGAs using the new FIR Compiler.

Figure 1 shows a typical three-carrier
UMTS digital up converter, of which
about 60% of the design is consumed by
the FIR filters. This significant 2x perform-
ance improvement over Virtex-II Pro
FPGAs enables DSP designs to shrink in
resource utilization significantly – often
more than 50% – allowing support for
more channels, functionality, and a lower
power or cost solution.

At the forefront of this performance
leap is the XtremeDSP™ slice (also

referred to as the DSP48). The XtremeDSP
slice is a unique high-performance multi-
plier and arithmetic unit with great flexi-
bility, laid out in a column structure in the
FPGA with dedicated cascade routing
between each slice.

However, to take advantage of the sig-
nificant improvements in Virtex-4 DSP,
hardware engineers must adopt a new
implementation style for their FIR filters.
This implementation is based on an adder
chain architecture and takes specific advan-
tage of the XtremeDSP slice. But as the

The more traditional adder tree-based
MACFIR architecture is still an excellent
fit for low-cost Spartan™ devices, as these
devices do not have the XtremeDSP slice.
The DAFIR is extremely valuable for low-
bit-width applications and logic-slice-
heavy FPGAs.

These easy trade-offs give you the ability
to select the most resource- and power-effi-
cient solutions.

Trade-Offs and Optimizations
One of the fundamental trade-offs that the
FIR Compiler enables is data rate versus
area. For example, a 16-bit single-rate 64-tap
filter will yield three very different results,
depending on the data rate required.
Comfortable with the knowledge that high
clock frequencies of 400 MHz are easily
obtainable with the FIR Compiler, Figures
2, 3, and 4 illustrate the most optimum
structures for 6.35 MHz, 25 MHz, and 100
MHz data rates, respectively.

Note how the available clock cycles in
the lower data rate designs are exploited to
result in the smaller resource solutions. Also
note how the XtremeDSP slice is used and
the cascade routing exploited by the adder
chain structures for more than single multi-
plier implementations.

(For more detailed information on these
architectures, please refer to the Virtex-4
XtremeDSP Slice User Guide.)

The trade-off between data rate and area is
very simply made in the FIR Compiler tool
through the sample frequency parameter in
the GUI interface (see Figure 5). The struc-
tures and size of the filter that can be imple-
mented are very different based on the data
rate requirement. The FIR Compiler makes
automatic decisions about whether to use a
block memory or distributed memory struc-
ture, as well as the amount of multipliers
required to meet the sample frequency
entered. These automatic capabilities keep
resource usage to a minimum and greatly
reduce design time for filter implementations.

FIR filter is one of the most ubiquitous and
fundamental building blocks in DSP sys-
tems, the amount of time spent under-
standing and reworking old designs can
easily become very significant. To alleviate
this impact to hardware engineers and
accelerate time to market for those adopt-
ing DSP in FPGAs, Xilinx has created the
FIR Compiler.

The FIR Compiler v1.0 is a new line of
powerful and comprehensive IP from
Xilinx. The FIR Compiler allows hardware

engineers and DSP algorithm engineers to
rapidly generate the high-performance fil-
ters that Virtex-4 devices promise.
Furthermore, the FIR Compiler allows you
to make trade-offs between differing high-
performance hardware implementations of
your FIR filter specification.

• Adder-chain based multiply accumu-
late FIR (MACFIR)

• Adder tree-based MACFIR

• Distributed arithmetic FIR (DAFIR)

May 2006 DSP magazine 49

RRC Filter

X

Complex

Baseband

Channel 0

Gain

0

exp (jα0t)

Interp-By-3

Filter

Halfband

Interpolator

X

RRC Filter

X

Complex

Baseband

Channel 1

Gain

1

exp (jα1t)

Complex

Composite

Output at

Fs = 46.08 Msps

Interp-By-3

Filter

Halfband

Interpolator

X

+

RRC Filter

X

Complex

Baseband

Channel 2

Fs = 3.84 MSPS

(Fs = Fchip)

Fs = 46.08 MSPS

(Fs = 12xFchip)

Fs = 15.36 MSPS

(Fs = 4xFchip)

Fs = 7.68 MSPS

(Fs = 2xFchip)

Gain

2

exp (jα2t)

Interp-By-3

Filter

Halfband

Interpolator

X

FIR Filters of

Differing Data

Figure 1 – FIR filters consume the majority of digital radio designs.

The FIR Compiler v1.0 is a new line of powerful and comprehensive IP from Xilinx.
The FIR Compiler allows hardware engineers and DSP algorithm engineers to rapidly

generate the high-performance filters that Virtex-4 devices promise.

Higher Clock Performance, Smaller Designs
Clearly, one of the most valuable aspects
of the FIR Compiler is its ability to shrink
the size of a design by exploiting the per-
formance on the silicon in the FPGA.
Figures 2, 3, and 4 demonstrate that
resources are kept to a minimum by
achieving high clock frequencies. It also
means a higher data-rate capability for the
parallel filter shown in Figure 4.

Figure 6 really emphasizes this point,
adjusting the clock frequency for a 33-tap
filter while maintaining a constant sample
rate of 10 MSPS. It also compares the dif-
ferences between symmetrical and non-
symmetrical coefficient sets, emphasizing
the benefits offered by both. Overall, you
should aim to maximize clock frequency, as
the significant reduction in area cannot be
overlooked.

The Complexity of the FIR Compiler
FIR filter specifications are, however, more
complex than what I have discussed so far.
As shown in Figure 1, both interpolation
and multi-channel capabilities are critical in
designing the system. Multiple channels of
data are very common in video (red, green,
and blue); wireless communications (anten-
na diversity, adaptive antenna arrays); and
general DSP processing (complex data).

You can exploit these multiple streams
of data and use a single FIR filter structure
in a time-division multiplexed fashion to
filter the channels. This provides a signifi-
cant resource utilization reduction over
multiple instances of the same filter.
However, the clock frequency must run
faster for a multi-channel filter versus a sin-
gle-channel filter; specifically, the number
of channels multiplied by the clock fre-
quency. The promised high-performance
clock capabilities of the FIR Compiler
make implementing these multi-channel
filters feasible, easy to generate in the tool,
and greatly reduce resource utilization.

Multi-rate filters are also extremely
common in DSP designs, especially in dig-
ital radios (demonstrated in Figure 1).
With these filters, the input and output
data rates are not the same. For an inter-
polation filter, the output is larger by a fac-
tor of the interpolation ratio; in a
decimation filter, the output is smaller by
a factor of the decimation ratio. You can
exploit these differences in input and out-
put frequencies by using a well-known
technique that creates what is known as a

50 DSP magazine May 2006

+X

DSP48 Slice
opmode = 0100101

Input Data
64 x 18

Coefficients
64 x 18

Control

xn

yn
CE

Loadz-3

DData Addr
WE

Coef Addr

Q
40

16

opmode = (5)

+

x(n)

DSP48 Slice
opmode = 0000101

0

16

y(n)
40

X

+
DSP48 Slice

opmode = 0010101
DSP48 Slice

opmode = 0010010

X

+

X

+

Coefficients
16 x 16

SLR16E
Storing 16 Coefficients

X

+ CE
D Q

Coefficients
16 x 16

Coefficients
16 x 16

Coefficients
16 x 16

+
DSP48 Slice

opmode = 0000101
DSP48 Slice

opmode = 0010101

0

K0
X

+

K1
X

+

K2
X

+

K62
X

+

K63
X

x(n)

y(n)

16

40

Figure 4 – 400 MSPS single-rate 64-tap FIR filter

Figure 3 – 25 MSPS single-rate 64-tap FIR filter

Figure 2 – 6.35 MSPS single-rate 64-tap FIR filter

polyphase filter to reduce the computa-
tional requirement. This polyphase filter
technique, added to the high clock fre-
quency performance and automatic gener-
ation, means that the FIR Compiler can
rapidly create extremely resource- and
power-efficient multi-rate filters. The tool
even has the ingenuity to optimize the
structure even further if the filter is a half-
band multi-rate filter, as required in digital
radios. Any hardware engineer implement-
ing digital radios will take advantage of
these capabilities.

In addition to the filter types I’ve
described, the FIR Compiler also offers
the ability to change coefficients in the fil-
ter on the fly. This is very important in
video filtering and agile digital radio
receivers. You can select a fully reloadable
coefficient filter or a filter that contains as
many as 16 different coefficient sets; a
control port selects the set being
employed. Once again, the FIR Compiler
can make an optimal choice between
block memory or distributed memory.

Furthermore, you can combine all of
these capabilities to provide a very wide
range of possible filters, with the most
complicated being multiple channel, mul-
tirate FIR filters with reloadable coeffi-
cients. Table 1 shows performance and
resource utilization for numerous compli-
cated FIR filters, including the filters in
Figure 1, and demonstrates the capabilities
of the FIR Compiler.

Conclusion
The FIR Compiler is available in both
System Generator and Core Generator™
software and is an extremely valuable tool
for both DSP algorithm and hardware
engineers. It provides rapid generation of
difficult-to-implement, high-performance
FIR filters and positively impacts design
time and risk.

Most importantly, the filters generated
take full advantage of the FPGA; conse-
quently, their performance reaches the
maximum 400 MHz offered by a Virtex-4
device (-10 slowest speed grade) with
extremely efficient resource utilization.

For more information about the FIR
Compiler, visit www.xilinx.com/ipcenter.

Clock and Sample
Frequency Parameters

Slice / Block RAM Utilization for a 33-Tap Filter

79 / 1
122 / 2

74 / 2
124 / 1

119 / 0
155 / 0

140 / 0
160 / 0

154 / 0
208 / 0

202 / 0
252 / 0

218 / 0
282/ 0

250 / 0
321 / 0

335 / 0
509 / 0

60 / 0
576 / 0

Non-Symmetric
Symmetric

Performance Goal

Cl
oc

k
Fr

eq
ue

nc
y (

M
H

z)

 V
irt

ex
-4

 S
X5

5-
10

0

0

50

100

200

250

300

350

400 1.400

3.300

4.150
3.150

3.100

4.70

5.50

6.30
7.20 10.15

Symmetric FIR

17.10

10.40
12.30 18.20 Non-Symmetric FIR

5.100

6.70
8.50

1.300

150

5 10 15 20 25 30 35

The higher the clock

frequency, the smaller

the FIR filter.

May 2006 DSP magazine 51

Resource Utilization

Filter Type Clock Frequency Slices DSP48 Block RAM
(MHz)

395 MSPS, 128-Tap, Decimate by 4,
Single-Channel, 16-Bit-Data FIR Filter 395 500 33 0

3.5 MSPS, 196-Tap, Interpolate by 2,
8-Channel 12-Bit-Data FIR Filter 399 300 15 14

22 MSPS, 20-Tap, Single-Rate,
3-Channel, 18-Bit-Data FIR Filter 400 123 5 0

3.84 MSPS, 47-Tap, Interpolate by 2 RRC,
6-Channel, 16-Bit-Data FIR Filter 305 234 4 0

7.68 MSPS, 23-Tap, Half-Band Interpolator,
6-Channel, 16-Bit-Data FIR Filter 333 119 1 2

Table 1 – Designs generated using the FIR Compiler.

Figure 6 – 33-tap 10 MSPS FIR filter resource utilization for differing clock performance

Figure 5 – First page of FIR Compiler GUI

by Ali Behboodian
Applications Engineer
The MathWorks
ali.behboodian@mathworks.com

Embedded systems have transformed tech-
nology products – from everyday consumer
electronic devices to complex industrial sys-
tems. As hardware and memory become
less expensive and more powerful, embed-
ded systems will become even more perva-
sive. At the same time, the designs will
become more complex. To meet this
demand, engineers must find ways to effi-
ciently develop software and hardware at an
even faster rate. A methodology that
addresses this is model-based design.

The MathWorks Simulink product
family enables you to apply model-based
design in a graphical, interactive envi-
ronment, where you can visualize your
system models and subsystem designs
using intuitive block diagrams. The
models are hierarchical and you can par-
tition the system into functional units.
The graphical environment allows you to
understand the design and the interac-
tions of the subsystems more easily than
text-based models.

In this article, I’ll present a model-based
design methodology in the context of the
design and implementation of the Sobel
edge-detection algorithm on an FPGA.
Note that you can readily apply these con-
cepts for embedded designs in a wide range
of applications in different industries, such
as aerospace and defense, automotive,
communications, consumer electronics,
and medical electronics.

Model-Based Design

52 DSP magazine May 2006

A methodology that addresses today’s growing challenges of designing embedded systems.

Figure 1 shows the elements of model-
based design. The center focus of this
design methodology is a model, whose four
main elements are:

• Executable specifications

• Design with simulation

• Implementation with code generation

• Continuous test and verification

I’ll explain the above four elements and
apply them to the design and implementa-
tion of the Sobel edge-detection algorithm.
For a more comprehensive application of
model-based design, see the article, “The
Design and Implementation of a GPS
Receiver Channel” from Issue 1 of DSP
Magazine (www.xilinx.com/publications/
magazines/dsp_01/dsp_gps01.htm).

Executable Specification
As designs become larger and more com-
plicated, it becomes necessary to first
describe them at a high level of abstrac-
tion. Simulink, together with application-
specific blocksets such as the Signal
Processing Blockset, the Communications
Blockset, and the Video and Image
Processing Blockset, provides an excellent
graphical environment for a high-level
description of embedded algorithms.
System engineers usually develop this
high-level description.

A high-level Simulink model serves
several purposes:

• It enables designers to perform simula-
tions by directly executing the
Simulink model

• It is used throughout the development
process for testing, verification, and
implementation

• It allows developers to identify bugs
early on and avoid costly bug discovery
towards the end of development

• It eliminates the need for paper-based
specification, which is easily prone to
misinterpretations, and replaces it with
the executable specification

• Each member of a design team can
understand and execute the model and

model is the start for a path that will lead all
the way to an FPGA implementation.

Figure 2 also shows the input image to
the algorithm as well as the output of the
algorithm. In the Simulink environment,
you can also examine and visualize every
signal throughout the model.

Note that the input and output images
in the executable specification are test
vectors for the algorithm. You can use
these test vectors throughout the design
process to validate your design against the
executable specification. Because the
entire design is performed in the
Simulink environment, there is no need
for extra overhead in porting the test vec-
tors into different applications, or creat-
ing test harnesses in HDL that are prone
to human errors. The test harness used in
the executable specification is used
throughout the design.

Design with Simulation
When designing the executable specifica-
tion, the system engineer generally does not
keep the implementation details in mind,
but rather designs the algorithm to match
the behavioral requirements for the system.
Once the system engineer submits the exe-

can focus further in developing parts of
the main model

We call this high-level model the exe-
cutable specification, or golden reference.

The executable specification for the
Sobel edge-detection algorithm is illustrated
in Figure 2. The algorithm comprises two
2D filters, each with a 3 x 3 kernel (one fil-
ter estimating the edges at the x direction
and one in the y direction), two square
operations, and a threshold operation. The

May 2006 DSP magazine 53

Figure 2 – Executable specification/golden
reference for the Sobel edge-detection algorithm

Figure 1 – Elements of model-based design

cutable specification to the development
team, the team may need to make modifi-
cations to it to fit the design into a real-time
embedded system that may have limited
resources, such as memory or processing
power. These modifications may cause the
output of the new design to deviate from
the original design. Design engineers
should decide if the deviation is acceptable.

In this section, I’ll make two modifica-
tions to the algorithm to make it suitable
for hardware implementation and demon-
strate how to continuously verify the
design against the executable specification.

Redesigning the Algorithm
Let’s say that the developers decide to
eliminate the square operations in Figure
2 and replace them with the absolute
value operations for more efficient hard-
ware implementation. Generally, such
changes in the model are required for
hardware implementation and are mostly
done by experienced engineers in a design
team. Simulink provides an environment
where you can redesign an algorithm and
validate your designs in a relatively short
time. After switching the square opera-
tions with the absolute value operations,
the final result does not exactly match the
output of the executable specification,
but the difference is quite small and in
this case acceptable.

Fixed-Point Implementation
Because the ultimate goal is to implement
the algorithm in an FPGA, for my example
I must convert my double-precision design
to a fixed-point design. This can be done
easily using Simulink. I used the double-
precision model I developed to directly
develop a fixed-point model without intro-
ducing any new blocks.

Simulink allows you to determine the
number of bits and scaling for data as well
as mathematical operations, and provides a
great environment for analyzing the fixed-
point operation of a system.

In the fixed-point design, the inputs to
the filters are signed 9-bit integers and the
outputs of the filters are signed 11-bit inte-
gers. The developers can tune the bit width
and scaling related to the internal compu-

tations of the blocks. This gives huge lever-
age to the designer to compromise between
matching the output of the executable
specification while using the least number
of bits necessary to save area on the device.

Figure 3 shows the new fixed-point
design after replacing the square opera-
tions with absolute value operations. In
this figure, the new design is compared to
the executable specification and the dif-
ference is shown both visually as well as
numerically. Continuous test and verifi-
cation is a key part of model-based design
and is crucial to the success of a project.
Simulink provides an excellent environ-
ment for this purpose.

Elaboration of the Design
In my example, the input to the edge-
detection algorithm has been a two-dimen-
sional image of 200 x 100 pixels. In a
real-time system, the input is most likely

not a matrix but a serial stream of data; for
example, this serial stream of data can be
generated by a charge-coupled device
(CCD). Therefore, I need to modify the
structure of the design such that the edge-
detection algorithm accepts and performs
2D filtering on a serial stream of data.

To this extent, I first serialized the input
image. Then I performed the 2D filtering
on this serial data. I later de-serialized the
stream of data to be able to compare the
output to the executable specification. This
operation is done only for the bottom filter.
I also added two delay elements to com-
pensate for the buffering in the serializer
block. As expected, the new design is still
producing the same exact results as before.

This design also showcases the multi-
rate capability of Simulink. The output
rate of the serializer block is 20,000 times
higher than the input rate. (Remember
that the image size is 200 x 100. Because
the image rate is 1 image per second, the
sample rate after serialization is 20,000
samples per second.) Figure 4 illustrates
the elaborated design.

Implementation
Now that I’ve elaborated the design of one
of the 2D filters in the Sobel edge-detec-
tion algorithm, I can now hand the elabo-
rated design to the hardware designers for
HDL implementation. There are two dif-
ferent approaches to consider in this sec-

54 DSP magazine May 2006

Figure 4 – Elaborated design. A serializer and
deserializer are designed and the 2D filter is

operating on a stream of 1D data.

Figure 3 -The image on the left shows the
output of the executable specification. The one

in the middle shows the output of the new
design, including fixed-point design, and

replaces the square operations of Figure 2 with
absolute value operations. The one on the right
depicts the difference between the two designs.

The mean difference is 2.793%.

tion. The first approach assumes that the
hardware designers will hand-code the fil-
ter algorithm in VHDL or Verilog. The
second approach assumes that the develop-
ers will translate the Simulink model from
the last section to a Simulink model based
on Xilinx System Generator blocks and
automatically generate HDL code. In both
cases, the developers will verify their design
against the executable specification and
check the validity of their design in the
Simulink environment.

Manual HDL, Co-Simulation,
and Verification
The HDL designer on the development
team can use the 2D filter design depict-
ed in the bottom window of Figure 4 to
write the corresponding VHDL or
Verilog code. Once the code is written,
the HDL designer can use Link for
ModelSim, also from The MathWorks, to
simulate the HDL design using
ModelSim in the Simulink environment
and compare the output of the HDL
design to the output of the executable
specification. Note that in this process,
there is no need to generate an HDL test
bench. The Simulink model feeds the
input test vector to ModelSim through
Link for ModelSim and extracts the data
from ModelSim back to the Simulink
environment. The HDL designer can

readily verify whether the HDL code runs
in accordance with the specifications. The
model in Figure 5 co-simulates ModelSim
and Simulink and allows you to verify the
validity of the VHDL code. As you can
see, the mean difference is the same as the
previous model.

Automatic HDL Generation,
Xilinx System Generator
Using Xilinx System Generator, you can
build and debug DSP systems in
Simulink using the Xilinx blockset. You
can also automatically generate VHDL or
Verilog code and run hardware-in-the-
loop simulations. Figure 6 illustrates a fil-
ter design (using Xilinx System Generator
blocks) that is equivalent to the filter
depicted in the bottom window of Figure
4. The simulation in the Simulink envi-
ronment is bit-true and cycle-true. Once
you have verified the results of the System
Generator design against the executable
specification, you can automatically gen-
erate synthesizable VHDL or Verilog
code for the filter.

Conclusion
Model-based design helps you create better
embedded software and hardware by
increasing the accuracy and speed of system
development. You can confidently begin
integration, test, and deployment of your
embedded application knowing that you
have identified design errors and met your
requirements.

Model-based design provides a proven
solution that reduces development time
and cost and fosters quality and innovation
in the development of embedded systems.
For more information, visit www.
mathworks.com/applications/dsp_comm/.

May 2006 DSP magazine 55

Figure 6 – Modeling of the 2D filter depicted
in the bottom window of Figure 4 using

Xilinx System Generator

Figure 5 – Co-simulation with ModelSim

GetPublished

Would you like
to be published

in DSP Magazine?

It's easier than you think!

Submit an article draft for our Web-based

or printed DSP Magazine and we will

assign an editor and a graphic artist

to work with you to make your work

look as good as possible.

For more information on this

exciting and highly rewarding program,

please contact:

Forrest Couch

Publisher, Xcell Publications

xcell@xilinx.com

by John Williams, Ph.D.
CEO
PetaLogix
john.williams@petalogix.com

Scott Thibault, Ph.D.
President
Green Mountain Computing Systems, Inc.
thibault@gmvhdl.com

David Pellerin
CTO
Impulse Accelerated Technologies, Inc.
david.pellerin@impulsec.com

FPGAs are compelling platforms for hard-
ware acceleration of embedded systems.
These devices, by virtue of their massively
parallel structures, provide embedded sys-
tems designers with new alternatives for
creating high-performance applications.

There are challenges to using FPGAs as
software platforms, however. Historically,
low-level hardware descriptions must be

written in VHDL or Verilog, languages
that are not generally part of a software
programmer’s expertise. Other challenges
have included deciding how and when to
partition complex applications between
hardware and software and how to struc-
ture an application to take maximum
advantage of hardware parallelism.

Tools providing C compilation and
optimization for FPGAs can help solve
these problems by providing a new level of
programming abstraction. When FPGAs
first appeared two decades ago, the pri-
mary method of design for these devices
was the venerable schematic. FPGA appli-
cation developers used schematics to
assemble low-level components (registers,
logic gates, and larger blocks such as coun-
ters and adders/subtractors) to create
FPGA-based systems. As FPGA devices
became more complex and applications
targeting them grew larger, schematics
were gradually replaced by higher level

methods involving hardware description
languages like VHDL and Verilog. Now,
with ever-higher FPGA gate densities and
the proliferation of FPGA embedded
processors, there is strong demand for
even higher levels of abstraction. C repre-
sents that next generation of abstraction,
allowing you to access the resources of
FPGAs for application acceleration.

For applications that involve embedded
processors, a C-to-hardware tool such as
Impulse C (Figure 1) can abstract away
many of the details of hardware-to-soft-
ware communication, allowing you to
focus on application partitioning without
having to worry about the low-level details
of the hardware. This also allows you to
experiment with alternative software/hard-
ware implementations.

Although such tools can dramatically
improve your ability to create FPGA-
based applications, for the highest per-
formance you still need to understand

Accelerating FFTs in Hardware
Using a MicroBlaze Processor

56 DSP magazine May 2006

A simple FFT, generated as hardware from C language, illustrates how quickly a software concept can be
taken to hardware and how little you need to know about FPGAs to use them for application acceleration.

tively, through an analysis of how the appli-
cation is being compiled to the hardware
and through the experimentation that C-
language programming allows.

Graphical tools (see Figure 2) can help
to provide initial estimates of algorithm
throughput such as loop latencies and
pipeline effective rates. Using such tools,
you can interactively change optimization
options or iteratively modify and recompile
C code to obtain higher performance. Such
design iterations may take only a matter of
minutes when using C, whereas the same
iterations may require hours of even days
when using VHDL or Verilog.

Case Study: Accelerating an FFT
The Fast Fourier Transform (FFT) is an
example of a DSP function that must
accept sample data on its inputs and gener-
ate the resulting filtered values on its out-
puts. Using C-to-hardware tools, you can
combine traditional C programming meth-
ods with hardware/software partitioning to
create an accelerated DSP application. The
FFT developer for this example is compati-
ble with any Xilinx® FPGA target, and
demonstrates that you can achieve results
similar to hand-coded HDL without resort-
ing to low-level programming methods.

Our FFT, illustrated in Figure 3, uti-
lizes a 32-bit stream input, a 32-bit stream
output, and two clocks, allowing the FFT
to be clocked at a different rate than the
embedded processor with which it com-
municates. The algorithm itself is
described using relatively straightforward,
hardware-independent C code, with some
minor C-level optimizations for increased
parallelism and performance.

The FFT is a divide and conquer algo-
rithm that is most easily expressed recur-
sively. Of course, recursion is not possible
on the FPGA, so the algorithm must be
implemented using iteration instead. In
fact, almost all software implementations
are written iteratively (using a loop) for
efficiency. Once the algorithm has been
implemented as a loop, we are able to
enable the automatic pipelining capabilities
of the Impulse compiler.

Pipelining introduces a potentially high
degree of parallelism in the generated

certain aspects of the underlying hardware.
In particular, you must understand how
partitioning decisions and C coding styles
will impact performance, size, and power
usage. For example, the acceleration of crit-
ical computations and inner-code loops
must be balanced against the expense of
moving data between hardware and soft-
ware. Fortunately, modern tools for FPGA
compilation provide various types of analy-
sis tools that can help you more clearly
understand and respond to these issues.

Practically speaking, the initial results of
software-to-hardware compilation from C-
language descriptions will not equal the
performance of hand-coded VHDL, but
the turnaround time to get those first results
working may be an order of magnitude bet-
ter. Performance improvements occur itera-

May 2006 DSP magazine 57

Impulse C
Compiler

Hardware Accelerator

MicroBlaze

PERIPHERALS

M
E

M
O

R
Y

FSL

Clk2
Clk1

32 32

3232

Software
Application

Hardware
Process

FSL

FFT

Figure 1 – Impulse C custom hardware
accelerators run in the FPGA fabric to

accelerate µClinux processor-based applications.

Figure 2 – A dataflow graph allows C programmers to analyze the generated hardware and
perform explorative optimizations to balance tradeoffs between size and speed. Illustrated in

this graph is the final stage of a six-stage pipelined loop. This graph also helps C programmers
understand how sequential C statements are parallelized and optimized.

Figure 3 – The FFT includes a 32-bit stream input, a 32-bit stream output, and two clocks,
allowing the FFT to be clocked at a different rate than the embedded processor.

logic, allowing us to achieve the best pos-
sible throughput. Our radix-4 FFT algo-
rithm on 256 samples requires
approximately 3,000 multiplications and
6,000 additions. Nonetheless, using the
pipelining feature of Impulse C, we were
able to generate hardware to compute the
FFT in just 263 clock cycles.

We then integrated the resulting FFT
hardware processing core into an embed-
ded Linux (µClinux) application running
on the Xilinx MicroBlaze™ soft-proces-
sor core. MicroBlaze µClinux is a free
Linux-variant operating system ported at
the University of Queensland and com-
mercially supported by PetaLogix.

The software side of the application
running under the control of the operating
system interacts with the FFT through data
streams to send and receive data, and to ini-
tialize the hardware process. The streams
themselves are defined using abstract com-
munication methods provided in the
Impulse C libraries. These stream commu-
nication functions include functions for
opening and closing data streams and read-
ing and writing those streams. Other func-
tions allow the size (width and depth) of
the streams to be defined.

By using these functions on both the soft-
ware and hardware sides of the application, it
is easy to create applications in which hard-
ware/software communication is abstracted
through a software API. The Impulse com-
piler generates appropriate FIFO buffers and
Fast Simplex Link (FSL) interconnections
for the target platform, thereby saving you
from the low-level hardware design that
would otherwise be needed.

Embedded Linux Integration
The default Impulse C tool flow targets a
standalone MicroBlaze software system. In
some applications, however, a fully featured
operating system like µClinux is required.
Advantages of embedded Linux include a
familiar development environment (appli-

cations may be prototyped on desktop
Linux machines), a feature-rich set of net-
working and file storage capabilities, a
tremendous array of existing software, and
no per-unit distribution royalties.

The µClinux (pronounced “you-see-
Linux”) operating system is a port of the
open-source Linux version 2.4. The µClinux
kernel is a compact operating system appro-
priate for a wide variety of 32-bit, non-mem-
ory management unit (MMU) processor
cores. µClinux supports a huge range of
microprocessor architectures, including the

Xilinx MicroBlaze processor, and is deployed
in millions of consumer and industrial
embedded systems worldwide.

Integrating an Impulse C hardware core
into µClinux is straightforward; the Impulse
tools include support for µClinux and can
generate the required hardware/software
interfaces automatically, as well as generate a
makefile and associated software libraries to
implement the streaming and other func-
tions mentioned previously. Using the
Xilinx FSL hardware interface, combined
with a freely available generic FSL device

58 DSP magazine May 2006

/* example 1 – simple use of ImpulseC-generated HW coprocessor and
* Linux FSL driver
* /

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

#define BUFSIZE 1024

void main(void)
{

unsigned int buffer[BUFSIZE];

/* Open the FSL device (Impulse HW coprocessor)*/
int fd = open(“/dev/fslfifo0”,O_RDWR);

while(1)
{

/* Get incoming data – application dependent*/
get_input_data(buffer);

/* Send data to ImpulseC HW processor on FSL port */
write(fd, buffer,BUFSIZE*sizeof(buffer[0]);

/* Read the processed data back from the HW coprocessor */
read(fd, buffer,BUFSIZE*sizeof(buffer[0]));

/* Do something with the data – application dependent */
send_output_data(buffer);

}
}

The Impulse compiler generates appropriate FIFO buffers and Fast
Simplex Link (FSL) interconnections for the target platform, thereby saving

you from the low-level hardware design that would otherwise be needed.

Figure 4 – Simple communication between µClinux applications and
ImpulseC hardware using the generic FSL FIFO device driver

driver in the MicroBlaze µClinux kernel,
makes the process of connecting the software
application to the Impulse C hardware accel-
erator relatively easy.

The generic FSL device driver maps the
FSL ports onto regular Linux device nodes,
named /dev/fslfifo0 through to fslfifo7, with
the numbers corresponding to the physical
FSL channel ID.

The FIFO semantics of the FSL channels
map naturally onto the standard Linux soft-
ware FIFO model, and to the streaming pro-
gramming model of Impulse C. An FSL port
may be opened, read, or written to, just like
a normal file. Here is a simple example that
shows how easily a software application can
interface to a hardware co-processing core
through the FSL interconnect (Figure 4).

You can easily modify this basic structure
to further exploit the parallelism available.
One easy performance improvement is to
overlap I/O and computation, using a dou-
ble-buffering approach (Figure 5).

From these basic building blocks, you
are ready to tune and optimize your appli-
cation. For example, it becomes a simple
matter to instantiate a second FFT core in
the system, connect it to the MicroBlaze
processor, and integrate it into an embed-
ded Linux application.

An interesting benefit of the embedded
Linux integration approach is that it allows
developers to take advantage of all that
Linux has to offer. For example, with the
FFT core mapped onto FSL channel 0, we
can use MicroBlaze Linux shell commands
to drive and test the core:

$ cat input.dat > /dev/fslfifo0 &; cat /dev/fslfifo0
> output.dat;

Linux symbolic links permit us to alias
the device names onto something more
user-friendly:

$ ln -s /dev/fslfifo0 fft_core

$ cat input.dat > fft_core &; cat fft_core >
output.dat;

Conclusion
Although our example demonstrates how
you can accelerate a single embedded applica-
tion using one FSL-attached accelerator,
Xilinx Platform Studio tools also permit mul-
tiple MicroBlaze CPUs to be instantiated in
the same system, on the same FPGA. By con-
necting these CPUs with FSL channels and
employing the generic FSL device driver
architecture, it becomes possible to create a
small-scale, single-chip multiprocessor system
with fast inter-processor communication. In
such a system, each CPU may have one or
more hardware acceleration modules (gener-
ated using Impulse C), providing a balanced
and scalable multi-processor hybrid architec-
ture. The result is, in essence, a single-chip,
hardware-accelerated cluster computer.

To discover what reconfigurable cluster-
on-chip technology combined with C-to-
hardware compilation can do for your
application, visit www.petalogix.com and
www.impulsec.com.

May 2006 DSP magazine 59

/* example 2 – Overlapping communication and computation to exploit
* parallelism
* /

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

#define BUFSIZE 1024

void main(void)
{

unsigned int buffer1[BUFSIZE],buffer2[BUFSIZE];
unsigned int *buf1=buffer1;
unsigned int *buf2=buffer2;
unsigned int *tmp;

/* Open the FSL device (Impulse HW coprocessor)*/
int fd = open(“/dev/fslfifo0”,O_RDWR);

/* Get incoming data – application dependent*/
get_input_data(buf1);

while(1)
{

/* Send data to ImpulseC HW processor on FSL port */
write(fd, buf1,BUFSIZE*sizeof(buffer[0]);

/* Read more data while HW coprocessor is working */
get_input_data(buf2);

/* Read the processed data back from the HW processor */
read(fd, buf1,BUFSIZE*sizeof(buffer[0]));

/* Do something with the data – application dependent */
send_output_data(buf1);

/* Swap buffers */
tmp=buf1;
buf1=buf2;
buf2=tmp;

}
}

Figure 5 – Overlapping communication and computation for greater system throughput

Virtex™-4 SX 35 XtremeDSP™

Development Kit for
Digital Communication Applications

Creating extremely high-performance

digital communications signal-

processing solutions can present

significant challenges in both

design complexity and time

to market. The XtremeDSP™

Development Platform from Xilinx

provides a complete development

solution, so your designs will be

faster, easier, and earlier to market.

Virtex-4 SX FPGAs feature up

to 512, XtremeDSP slices, each

capable of running at 500 MHz. This

performance makes them the ideal

co-processors for your DSP proces-

sors and the best way to increase

your system performance by sever-

al orders of magnitude.

The XtremeDSP Development

Platform — together with the

Xilinx System Generator for DSP

software and Xilinx DSP IP

algorithms — provide the ideal

development environment for

developing Virtex-II Pro based

signal-processing designs.

Your Complete Devleopment Platform

Developed with Nallatech, the Virtex-4 SX XtremeDSP Development Platform offers

everything you need to create high-performance signal-processing designs more quickly

and efficiently.

• Exceptional Performance – The dual-channel, high-performance ADCs and DACs,

coupled with a user-programmable Virtex-4 SX-10 FPGA, make this platform

ideal for implementing high-performance digital communication systems such as

Software Defined Radios. The SX 35 FPGA features over 55,000 logic cells, 192

XtremeDSP slices.

• Ease of Use – Combining the Xilinx System Generator for DSP software tool and

the XtremeDSP Development Kit provides an easy transition to using FPGAs for

high-performance signal processing—from algorithm concept to hardware verification.

The System Generator tool interfaces with MATLAB®/Simulink® and enables you to

perform hardware co-simulation on the XtremeDSP Development Platform via PCI

or JTAG. This provides simulation acceleration by an order of magnitude and allows

you to debug and verify the design on the FPGA.

• Comprehensive Support – Reduce your time to knowledge with the Xilinx DSP Design

Flow and DSP Implementation Techniques courses. You can also take advantage of

senior DSP support engineer expertise on the Xilinx Hotline.

Hardware co-simulation with the XtremeDSP Platform and Xilinx System Generator for DSP

60 DSP magazine May 2006

BenADDA DIME-II module
• Virtex-4 SX 35 user FPGA: XC4VSX35

• Two independent ADC channels: AD6645 ADC (14 bits up to 105 MSPS)

• Two independent DAC channels: AD9772 DAC (14 bits up to 160MSPS)

• Support for external clock, on-board oscillator, and programmable clocks

• Two banks of ZBT-SRAM (133 MHz, 512 Kx32 bits per bank)

• Multiple clocking options: internal and external

• Status LEDs

Also included with the XtremeDSP Platform
• External power supply (US Mains cable with separate UK, European

or Australian Mains adapters)

• Wide ranging input (90 - 264Vac), multiple output, power supply,

generating +5 Volts @ 5A, and +12 Volts @ 2A, -12 Volts @ 800mA

• USB v1.1-compatible cable, two meters long

• Five MCX-to-BNC cables for connecting to the ADC/DAC and external

clock connectors

• PCI back-plate and two screws

• 2x BNC jack-to-jack adapters for use in loop-back configurations

• Large carrying case

XtremeDSP Installation Pack
• Nallatech FUSE Software CD — Enables control and configuration of

FPGAs and provides tools to transfer data between the Kit and a host PC

via a GUI or a C-based API

Applications
This multi-purpose board can be used for many digital communications

applications including:

• Narrow-band systems (QAM demodulation, carrier timing recovery,

channel coding)

• Spread-spectrum systems (e.g. chip rate processing, RACH, path

profiling, TCC)

• Multi-carrier systems (e.g. OFDM, MIMO, TCC)

• And many more.

Take the Next Step
Purchase your XtremeDSP Platform at www.xilinx.com/store. For

more information, visit www.xilinx.com/dsp. To learn more about the

complete Nallatech platform offering, visit www.nallatech.com.

Price: $2,495

Finish Faster with Xilinx DSP Design Solutions

Hardware Platform Specifications
• XtremeDSP development board consisting of a motherboard

(“BenONE-Kit Motherboard”) populated with a daughter card

(“BenADDA DIME-II Module”).

BenONE-Kit Motherboard
• Supports the supplied BenADDA DIME-II module only

• Spartan-II™ FPGA for 3.3V/5V PCI or USB interface

• Host interfacing via 3.3V/5V PCI 32-bit/33-MHz or

USB v1.1 interfaces

• Status LEDs

• JTAG configuration headers

• User 0.1-inch pitch pin headers connected directly to user

programmable FPGA I/O

Corporate Headquarters

Xilinx, Inc.

2100 Logic Drive

San Jose, CA 95124

Tel: (408) 559-7778

Fax: (408) 559-7114

Web: www.xilinx.com

European Headquarters

Xilinx

Citywest Business Campus

Saggart,

Co. Dublin

Ireland

Tel: +353-1-464-0311

Fax: +353-1-464-0324

Web: www.xilinx.com

Japan

Xilinx, K.K.

Shinjuku Square Tower 18F

6-22-1 Nishi-Shinjuku

Shinjuku-ku, Tokyo

163-1118, Japan

Tel: 81-3-5321-7711

Fax: 81-3-5321-7765

Web: www.xilinx.co.jp

Asia Pacific

Xilinx Asia Pacific Pte. Ltd.

No. 3 Changi Business Park Vista, #04-01

Singapore 486051

Tel: (65) 6544-8999

Fax: (65) 6789-8886

RCB no: 20-0312557-M

Web: www.xilinx.com

The Programmable Logic CompanySM

Distributed By:

© 2005 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners.

TO
 D

IM
E-

II
M

O
TH

ER
BO

A
RD

TO
 D

IM
E-

II
M

O
TH

ER
BO

A
RD

A
ddress D

ata

ZBT SDRAM (2 Banks)

GPIO Bus

GPIO BusComm Link 2

Comm Link 2Comm Link 3

Local Bus

GPIO BusComm Link 1

Comm Link 2Comm Link 0

Adjacent OUT

Comm Link 4

Comm Link 5

CH
A

N
N

EL B

CH
A

N
N

EL A

CH
A

N
N

EL D

Analog
 Outputs ñ

DC Coupled OR
Directly Coupled

Analog
 Inputs ñ

Differential or
single-ended

External
Clock

DAC
AD9772A

DAC
AD9772A

ADC
AD6645

CH
A

N
N

EL C

ON-MODULE
XILINX VIRTEX-II Pro

FPGA
2VP30

ADC
AD6645

Clock
Management

Oscillator
OR

2nd External
Clock

Comm Link 7

Comm Link 6

Adjacent IN

Dime II module functional diagram

May 2006 DSP magazine 61

DSP10000-8-ILT (v1.0) Course Specification

© 2006 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

DSP Design Flow

Course Description
The DSP Design Flow course provides the advanced tools and
expertise you need to develop advanced, low-cost DSP designs.
This intermediate course in implementing DSP functions focuses on
learning how to use System Generator for DSP, design implementation
tools, HDL co-simulation, and hardware-in-the-loop verification.
Through hands-on exercises, you will implement a design from
algorithm concept to hardware verification by using Xilinx FPGA
capabilities.

After completing this comprehensive training, you will have the
necessary skills to:

� Describe the different design flows for implementing DSP
functions, with a large focus on System Generator

� Identify Xilinx FPGA capabilities and know how to implement a
design from algorithm concept to hardware simulation

� Implement a design from start to finish by using System
Generator

� Perform hardware-in-the-loop and HDL co-simulations and
improve productivity

� Integrate the ChipScope Pro block in a design and analyze the
design

� Develop a hardware co-simulation model using System Generator
Board Description Builder

� Integrate a System Generator design as a peripheral in a
MicroBlaze™ processor-based system

� Utilize timing analyzer block to improve design performance

Course Outline
Note: Target architectures include Virtex™-4, Virtex-II Pro, and
Spartan™-3E FPGAs.

Day 1
� Introduction

� DSP Design Flows in FPGAs

� Lab 1: Creating a 12 x 8 MAC Using the Xilinx System Generator

� Digital Filtering

� Lab 2: Designing a FIR Filter

� HDL Co-Simulation

� Lab 3: MAC FIR Filter Verification Using Simultaneous Co-
Simulations

Day 2
� Looking Under the Hood

� Lab 4: Looking Under the Hood

� Controlling the System

� Lab 5: Controlling the System

� Multirate Systems

� Lab 6: Designing a MAC-Based FIR Using the DSP48 Slice

Day 3
� Advanced Features

� Lab 7: Integrating the ChipScope Pro Analyzer

� Lab 8: A System Generator Design as an XPS Peripheral

� Lab 9: Multiple Clock Domains Design Using Shared Memories

� Lab 10: Improving Design Performance Using Timing Analyzer

� Lab 11. Designing Using the PicoBlaze™ MicroController

� Lab 12. Creating Parametric Designs

Lab Descriptions
This lab-intensive class gives you hands-on experience by using
System Generator for DSP to visualize, simulate, verify, and implement
DSP algorithms in Xilinx FPGAs. The labs start at a descriptive level
and build on each other. You should expect each successive lesson’s
challenges to increase. In addition, the labs included in the Advanced
Features module provide you experience with other tools such as the
ChipScope Pro analyzer and the Embedded Development Kit. System
Generator for DSP 8.1 features are identified, including hardware and
software co-simulation verification.

Register Today
Xilinx delivers public and private courses in locations throughout the
world. Please contact Xilinx Education Services for more information,
to view schedules, or to register online.

Visit www.xilinx.com/education, and click on the region where you
want to attend a course.

North America, send your inquiries to registrar@xilinx.com, or contact
the registrar at 877-XLX-CLAS (877-959-2527). To register online,
search by Keyword "DSP" in the Training Catalog at
https://xilinx.onsaba.net/xilinx.

Europe, send your inquiries to eurotraining@xilinx.com,
call +44-870-7350-548, or send a fax to +44-870-7350-620.

Asia Pacific, contact our training providers at:
www.xilinx.com/support/training/asia-learning-catalog.htm, send your
inquiries to education_ap@xilinx.com, or call: +852-2424-5200.

Japan, see the Japanese training schedule at:
www.xilinx.co.jp/support/training/japan-learning-catalog.htm, send your
inquiries to education_kk@xilinx.com, or call: +81-3-5321-7772.

You must have your tuition payment information available when you
enroll. We accept credit cards (Visa, MasterCard, or American
Express) as well as purchase orders and training credits.

Level – Intermediate

Course Duration – 3 days

Price – $1500 USD or 15 Training Credits
Course Part Number – DSP10000-8-ILT
Who Should Attend? – System engineers/designers, logic
designers, and experienced hardware engineers who are
implementing DSP algorithms using MathWorks MATLAB and
Simulink and using Xilinx System Generator for DSP
Prerequisites

� Fundamentals of MATLAB/Simulink and Xilinx FPGAs

� Basics of digital signal processing theory for functions, such as
FIR (Finite Impulse Response) filters, oscillators and mixers,
and FFT (Fast Fourier Transform) algorithms

Software Tools

� ISE™ 8.1i

� System Generator for DSP 8.1

� EDK 8.1

� ISIM Simulator 8.1

� ChipScope™ 8.1

� Mentor Graphics ModelSim PE 6.0c

� MATLAB with Simulink R14 SP1

62 DSP magazine May 2006

DSP20000-7-ILT (v1.0) Course Specification

DSP Implementation
Techniques for Xilinx FPGAs

! Memory aspect ratios and their manipulation

Course Description
This course shows you how to take advantage of the features available
in the Xilinx FPGA architecture, including the Virtexô-4 FPGA, and
describes how DSP algorithms can be implemented efficiently. The
techniques also demonstrate which decisions at the system level have
the greatest impact on the implementation process and product costs.

© 2005 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

After completing this comprehensive training, you will have the
necessary skills to:

! Describe how DSP algorithms can be implemented efficiently by
using Xilinx FPGA technology

! Identify the capabilities and features of the various Xilinx FPGA
families to implement efficient DSP algorithms

! Establish methods for the accurate estimation of silicon area
consumption and cost

! Evaluate which algorithms are best suited for FPGA
implementation and identify which algorithms are less desirable

! Assess how system-level decisions impact hardware
implementation and how hardware implementation can enhance
results at the system level

Course Outline
Day 1
! On the Same Wavelength

! Basic terminology and acronyms used in DSP design

! Sample rates and bit widths used in DSP applications

! DSP building blocks and processing requirements

! Some Bits About Numbers

! Numbering formats, range, and precision

! Mathematical operations using a variety of formats

! Tuning the Receiver

! Structure and Resources of Xilinx Devices

! Estimating DSP building block sizes

Day 2
! Tuning the Receiver (continued)

! Implementing the multiplication function

! Bit-width impact on system-level decisions

! Memories are Made of This

! Block versus distributed memory

! SRL16E and the delay function

! Selective Filters

! FIR filter specifications and implementation

! Selecting a technique for a given specification

! Effects of halfband and interpolated filters

Day 3
! One Filter Does Not Make a System

! Options to be considered with multiple channels

! Interpolation and decimation

! Rate changing and its effect on FIR filter choice

! Filtering algorithms that exploit device architecture

! Importance of connectivity versus isolated functions

! Do Not Block the Datapath Level ñ Advanced
Course Duration ñ 3 days
Price ñ $1800 USD or 18 Training Credits
Course Part Number ñ DSP20000-7-ILT
Who Should Attend? ñ Engineers and designers who have an
interest in developing products that use digital signal processing
Prerequisites
A fundamental understanding of digital signal processing theory,
including an understanding of the following principles:

! Sample rates

! Finite Impulse Response (FIR) and Infinite Impulse Response
(IIR) filters

! Oscillators and mixers

! Fast Fourier Transform (FFT) algorithm

! Numeric controlled oscillators and mixers

! Strategies for FFT implementation

! Achieving bandwidth requirements of the FFT

! Using the FPGA as an efficient co-processor

Course Exercises
! MAC Rates and Memory Requirements

! Constructing a 128-Tap FIR Filter

! Fractional Number Formats

! Twos Complement Arithmetic

! Summation by Addition Tree

! Summation by Addition Chain

! Full Adder: How Many Slices?

! Summation Structure Sizes

! Serial Summation Structure

! 8-Bit by 12-Bit Multiplier

! KCM Multipliers

! Distributed RAM for FIFO

! Size Estimates for Delay Structures

! Using the SRL16E as a FIFO

! Creating Larger RAM Structures

! Selecting a MAC FIR Technique

! Parallel FIR Filter Size

! Symmetry, Interpolation, and Phases

! Decimation Filter

! ìfs/4î Mixing and Decimation

! Designing a Numeric Controlled Oscillator (NCO)

! FFT: Benchmarks and Transform Time

! Collection Time = Processing Time

! 128-Point FFT in 1.28 !s

Register Today
Xilinx delivers public and private courses in locations throughout the
world. Please contact Xilinx Education Services for more information,
to view schedules, or to register online.

Visit www.xilinx.com/education, and click on the region where you
want to attend a course.

North America, send your inquiries to registrar@xilinx.com, or contact
the registrar at 877-XLX-CLAS (877-959-2527). To register online,
search by Keyword ìDSPî in the Training Catalog at
https://xilinx.onsaba.net/xilinx.

Europe, send your inquiries to eurotraining@xilinx.com,
call +44-870-7350-548, or send a fax to +44-870-7350-620.

Asia Pacific, contact our training providers at:
www.xilinx.com/support/training/asia-learning-catalog.htm, send your
inquiries to education_ap@xilinx.com, or call: +852-2424-5200.

Japan, see the Japanese training schedule at:
www.xilinx.co.jp/support/training/japan-learning-catalog.htm, send your
inquiries to education_kk@xilinx.com, or call: +81-3-5321-7772.

You must have your tuition payment information available when you
enroll. We accept credit cards (Visa, MasterCard, or American
Express) as well as purchase orders and training credits.

May 2006 DSP magazine 63

RIO22000-8-ILT (v2.0) Course Specification

© 2006 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Designing with
Multi-Gigabit Serial I/O

Course Description
Learn how to employ RocketIO™ MGT serial transceivers in your
Virtex™-II Pro design. Understand and utilize the features of the
RocketIO transceiver blocks, such as CRC, 8b/10b encoding, channel
bonding, clock correction, and comma detection. Additional highlighted
topics include debugging techniques, use of the Architecture Wizard,
synthesis and implementation considerations, and standards
compliance. This course balances lecture modules and practical
hands-on labs.

After completing this comprehensive training, you will have the
necessary skills to:

� Effectively use all of the advanced RocketIO features, such as
CRC, channel bonding, clock correction, comma detection,
8b/10b encoding/decoding, programmable termination, and pre-
emphasis

� Utilize the ports and attributes of RocketIO transceivers that
control the RocketIO features

� Use the Architecture Wizard to instantiate RocketIO primitives in
your design

� Achieve compatibility with high-speed I/O standards by using
RocketIO transceivers

Course Outline

Day 1
� Introduction

� Clocking and Resets

� 8b/10b Encoder and Decoder Details

� Lab 1: 8b/10b Disparity and Bypass Lab

� Commas and Deserializer Alignment Details

� Lab 2: Commas and K-Characters Lab

� Cyclical Redundancy Check Details

� Lab 3: Cyclical Redundancy Check Lab

� Clock Correction Details

� Lab 4: Clock Correction Lab

Day 2
� Channel Bonding Details

� Lab 5: Channel Bonding Lab

� Architecture Wizard Overview

� Implementing a RocketIO Design

� Lab 6: Synthesis and Implementation Lab

� IP Overview: Aurora Reference Design

� Lab 7: Aurora Protocol Engine Lab

� Common Serial I/O Standards Compliance

� Physical Media Attachment Overview

Lab Descriptions
� Lab 1: 8b/10b Disparity and Bypass Lab – Utilize the 8b/10b

encoder/decoder and manipulate running disparity. Learn how to
bypass the 8b/10b encoder/decoder

� Lab 2: Commas and K-Characters Lab – Use programmable
comma detection to align a serial data stream

� Lab 3: CRC Lab – Modify a design to use the CRC feature for
both the user mode and the Fiber Channel mode of CRC

� Lab 4: Clock Correction Lab – Utilize the clock correction logic to
compensate for frequency differences on the TX and RX side of a
link

� Lab 5: Channel Bonding Lab – Modify a design to use two
transceivers bonded together to form one virtual channel

� Lab 6: Synthesis and Implementation Lab – Use the Architecture
Wizard to instantiate RocketIO primitives, synthesize a design,
and implement the design.

� Lab 7: Aurora Protocol Engine Lab – Use the Aurora reference
design to send and receive data

Register Today
Xilinx delivers public and private courses in locations throughout the
world. Please contact Xilinx Education Services for more information,
to view schedules, or to register online.

Visit www.xilinx.com/education, and click on the region where you
want to attend a course.

North America, send your inquiries to registrar@xilinx.com, or contact
the registrar at 877-XLX-CLAS (877-959-2527). To register online,
search by Keyword "High-Speed" in the Training Catalog at
https://xilinx.onsaba.net/xilinx.

Europe, send your inquiries to eurotraining@xilinx.com,
call +44-870-7350-548 or send a fax to +44-870-7350-620.

Asia Pacific, contact our training providers at:
www.xilinx.com/support/training/asia-learning-catalog.htm, send your
inquiries to education_ap@xilinx.com, or call: +852-2424-5200.

Japan, see the Japanese training schedule at:
www.xilinx.co.jp/support/training/japan-learning-catalog.htm, send your
inquiries to education_kk@xilinx.com, or call: +81-3-5321-7772.

You must have your tuition payment information available when you
enroll. We accept credit cards (Visa, MasterCard, or American
Express) as well as purchase orders and training credits.

Level – Intermediate
Course Duration – 2 days
Price – $1000 USD or 10 Training Credits
Course Part Number – RIO22000-8-ILT
Who Should Attend? – FPGA designers and logic designers
Prerequisites

� Verilog or VHDL experience (or the Introduction to Verilog or
the Introduction to VHDL course)

� Synthesis and simulation experience

� FPGA design experience or the Fundamentals of FPGA Design
course

� Knowledge of high-speed serial I/O protocols and standards
(SONET, Gigabit Ethernet, InfiniBand) is a plus

Software Tools

� ISE 8.1i
� ModelSim PE 6.0

64 DSP magazine May 2006

A series of compelling, highly technical DSP product demonstrations, presented

by Xilinx DSP experts, is now available on-line. These comprehensive DSP videos

provide excellent, step-by-step tutorials and quick refreshers on a wide array of

key topics. The videos are segmented into short chapters to respect your time

and make for easy viewing.

Ready for viewing, anytime you are

A complete on-line archive is easily accessible at your fingertips. Also, a free DVD

containing all the all of the demonstrations is available at www.xilinx.com/dod.

Order yours today!

©2006 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners.

FREE on-line training
Demos On Demand

Pb-free devices
available now

with

www.xilinx.com/dod

� DSP Video Starter Kit
� DSP Video Co-processing Kit
� System Generator for DSP
� Algorithm to Hardware in 60 Minutes

� XtremeDSP Slice
� FPGAs for Signal Processing
� Designing QAM Demodulators
� Spectrum Channelization

Turbocharge your
DSP performance

Achieve high-definition, higher frame rates or multiple video streams

When complimenting a TI DSP, Xilinx XtremeDSP co-processing offers the performance,
versatility, and economy for today’s high-end video and imaging applications.
Whether it’s high-definition, motion estimation, video scaling, or any number of
compute intensive functions, a Xilinx Virtex-4 or Spartan-3/3E FPGA can boost
your DSP performance. XtremeDSP co-processing delivers higher resolution,
higher frame rate video processing than a standalone DSP processor, plus the
ability to handle multiple video streams.

Reduce power and cost per channel in wireless systems

For implementing custom wireless functions, such as multi-carrier crest factor reduction
(CFR), digital pre-distortion (DPD), MIMO and other advanced antenna processing,
our FPGAs lower your costs and power per channel. With up to 256 GMAC/s performance,
you have the advantage of offloading compute intensive tasks from a TI DSP to a
Xilinx FPGA while increasing channel density in your wireless system.

Visit us at www.xilinx.com/dsp/coprocessing to learn more about the highest-
performance DSP in the industry, and download your FREE evaluation copy of
XtremeDSP software.

www.xilinx.com/dsp/coprocessing

© 2005 Xilinx, Inc., All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc.
All other trademarks are the property of their respective owners.

PN 0010925

	p01_2dsp-cover.pdf
	p02_2dsp-avnet ad.pdf
	p04_2dsp-TI ad.pdf
	p06_2dsp-strauss.pdf
	p07_2dsp-synplicity ad.pdf
	p08-09_2dsp-mindtree.pdf
	p10-12_2dsp-video.pdf
	p13-15_2dsp-nuvation.pdf
	p16-20_2dsp-radio.pdf
	p21-23_2dsp-mimo.pdf
	p24_2dsp-Nuho ad.pdf
	p25-27_2dsp-sdr.pdf
	p28-31-2dsp-lyrtech.pdf
	p32-35_2dsp-float.pdf
	p41_2dsp-xlx dsp ad.pdf
	p42-44_2dsp-loop.pdf
	p45-47_2dsp-avnet.pdf
	p48-51_2dsp-filter.pdf
	p52-55-2dsp-mbd.pdf
	p56-59_2dsp-impgreen.pdf
	p60-61_2dsp-sellsht.pdf
	p62_2dsp-dsp design.pdf
	p63_2dsp-dsp impl.pdf
	p64_2dsp-multi gig.pdf
	p65_2dsp-DOD ad.pdf
	p66_2dsp-innovative ad.pdf
	p67_2dsp-traquair ad.pdf
	p68_2dsp-xlx turbo ad.pdf

