
R

INSIDE
Accelerating PowerPC
Software Applications

Nucleus Integration with
Xilinx FPGA System Design

Take Electronic Motor Drives
to the Next Level

Build and Optimize a MicroBlaze
Soft-Processor System Your Way

Building Reliable and Upgradable
Software-Defined Radios

Issue 2
September 2005

Unlock the
Power of Xilinx
Programmability

E M B E D D E D S O L U T I O N S F O R P R O G R A M M A B L E L O G I C D E S I G N S

EmbeddedEmbedded
magazinemagazine

Enabling success from the center of technology™

1 800 332 8638
www.em.avnet.com

© Avnet, Inc. 2005. All rights reserved. AVNET is a registered trademark of Avnet, Inc.

Xilinx® is revolutionizing the fundamentals of FPGA economics with

the Virtex-4™ family. To help you get a jumpstart on your next design,

Avnet Electronics Marketing has created the Virtex-4 FX Evaluation Kit.

This evaluation kit delivers a low-cost, feature-rich platform to develop

and test designs targeted to the Virtex-4 FX subfamily.

Special Offer Available Exclusively
to Qualified ESC Boston Attendees

Visit the Xilinx booth [#501] to learn how you can qualify for special

ESC pricing on a Virtex-4 FX12 Evaluation Kit from Avnet. Use this kit

to get hands-on experience with the powerful embedded processing

solutions presented at the Xilinx booth.

For more information about the kit,
go to em.avnet.com/virtex4fxesc

To learn how to qualify for special pricing,
visit Booth #501 at ESC Boston.

Support Across The Board.
™

Get Started Now with Xilinx® Virtex-4™ FPGAs

Virtex-4™ FPGA Features:

• Multi-platform FPGA family

• Support for three application domains

• 90 nm process technology

• Reduced power consumption

• Reduced cost per function

Virtex-4™ FX12 Evaluation Kit Features:

• Virtex-4™ FX12 FPGA

• 4 MB Flash and 32 MB DDR SDRAM

• 128x64 OSRAM® graphical display

• National Semiconductor® DP83847

 10/100 Ethernet PHY

• VHDL source code for sample design

Welcome ...4

ARTICLES

Faster and More Flexible Embedded Systems..5

Accelerating PowerPC Software Applications..8

Hardware/Software Co-Verification ..14

Moving Embedded Systems onto FPGAs..17

Tracing MicroBlaze Processors with a Logic Analyzer20

Nucleus Integration with Xilinx FPGA System Design.......................................24

Building Reliable and Upgradable Software-Defined Radios30

Take Electronic Motor Drives to the Next Level ..34

CUSTOMER SUCCESS

Xilinx and Birger Engineering ...38

Xilinx and LG Electronics ...40

Xilinx and Photonic Bridges..42

APPLICATION NOTES

Embedded Application Notes ..46

TechOnLine

Build and Optimize a MicroBlaze Soft-Processor System Your Way...................50

PRODUCT BRIEFS

PowerPC and MicroBlaze DK for Virtex-4 FX12 Edition54

MicroBlaze DK Spartan-3 SP305 Edition ...56

BOARDS

More Integration, Easier Development ...58

EDUCATION

Embedded Systems Development..62

Advanced Features and Techniques of Embedded Systems Development............63

C O N T E N T S

E M B E D D E D M A G A Z I N E I S S U E 2 , S E P T E M B E R 2 0 0 5

S
Unlock the Power of Xilinx Programmability
Strategic shifts in market dynamics are one of the most important aspects to consider when
designing new products. I’ve experienced a number of situations where our teams were ahead of
the curve and able to exploit these shifts to market advantage. One example that comes to mind
is the adoption of surface-mount packages. We built surface-mount devices and justified this to
management for a number of quarters while waiting for customers to appear. When the shift
occurred, it was as though every customer made the change on the same day.

Embedded processing FPGAs are another fundamental strategic shift in market dynamics that will
have profound effects for both FPGA and embedded processor vendors, and the basis of major
growth for both Xilinx® and our customers.

Three key forces are driving the opportunity for embedded processing in FPGAs. First, customers
are increasingly requiring CPU functionality in our offerings. Second, pure-play embedded sup-
pliers are finding that they can no longer serve all of the needs customers have for their products
due to rising development costs. Third, processor vendors have realized that performance improve-
ments can no longer come from simply increasing clock rate, and must deploy parallelism, an
inherent FPGA capability.

One of the greatest appeals of our FPGA embedded solution is the ability to easily stitch together
the CPU, buses, and common-commodity peripherals, creating a “just-what-I-need” processor sub-
system that “just works.” The customer can then concentrate on the secret sauce that differentiates
their products.

To win the hearts and minds of customers and capitalize on the embedded strategic market
dynamic, the development tools and complete embedded solution must be closely tied to the
typical environment our customers are used to. This includes OSs, compilers, debuggers, devel-
opment boards, software development kits (SDKs), and board support packages (BSPs), which
all must be in a familiar framework.

With that said, in our second issue of Embedded Magazine we have included a collection of articles
from Xilinx and our partners that provide insight to our progress in the strategic shift of the market
dynamics I’ve discussed. Partners such as Impulse C, Accelerated Technologies, QNX, and Altium
highlight the latest advances of both their well-known and new solutions for our embedded plat-
forms. We’ve also included a discussion of the latest advances with our 32-bit MicroBlaze™ soft
processor and its new integrated option for an IEEE-compatible floating-point unit.

The latest application advances with the Virtex™-4 FX FPGA and immersed PowerPC™ are con-
tained in the APU accelerator piece, as well as summaries of two remarkable Xilinx application
notes. Multiple articles describe various aspects of the integrated design environment with Xilinx
Platform Studio and the Embedded Development Kit (EDK).

Finally, we have aligned the release of Embedded Magazine with the Embedded Systems Conference.
We have another exciting lineup at the conference, featuring free hands-on workshops for you to get
familiar with our Platform Studio tool suite, PowerPC, and MicroBlaze solutions as well as our
industry-leading silicon of Spartan™-3 and Virtex-4 families. Be sure to visit us at the Hynes
Convention Center, booth 501, in Boston from September 12-14 to meet our embedded experts.

I believe that we are in the midst of the next strategic shift with embedded processing FPGAs. I
hope you find our second edition of Embedded Magazine informative and inspiring and invite you
to unlock the power of Xilinx programmability. The advantages are enormous.

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124-3400
Phone: 408-559-7778
FAX: 408-879-4780

© 2005 Xilinx, Inc. All rights reserved. XILINX,
the Xilinx Logo, and otherdesignated brands included here-
in are trademarks of Xilinx, Inc. PowerPC is a trademark of
IBM, Inc. All other trademarks are the property of their
respective owners.

The articles, information, and other materials included in
this issue are provided solely for the convenience of our
readers. Xilinx makes no warranties, express, implied,
statutory, or otherwise, and accepts no liability with respect
to any such articles, information, or other materials or their
use, and any use thereof is solely at the risk of the user.
Any person or entity using such information in any way
releases and waives any claim it might have against Xilinx
for any loss, damage, or expense caused thereby.

Mark Aaldering

Vice President
Embedded Processing
& IP Divisions

EDITOR IN CHIEF Carlis Collins
editor@xilinx.com
408-879-4519

MANAGING EDITOR Forrest Couch
forrest.couch@xilinx.com
408-879-5270

ASSISTANT MANAGING EDITOR Charmaine Cooper Hussain

XCELL ONLINE EDITOR Tom Pyles
tom.pyles@xilinx.com
720-652-3883

ADVERTISING SALES Dan Teie
1-800-493-5551

ART DIRECTOR Scott Blair

www.xilinx.com/xcell/embedded

Embedded
magazine

by Jay Gould
Product Marketing Manager,
Xilinx Embedded Solutions Marketing
Xilinx, Inc.
jay.gould@xilinx.com

Copyright © 2005 Xilinx, Inc. All rights reserved.

Are there any real-time computing require-
ments that don’t mandate that your new
systems be faster and more flexible than
your previous designs? Ever-changing
industry standards dictate that tomorrow’s
embedded system designs accommodate a
new level of customization, while high per-
formance demands challenge traditional
processing designs.

You don’t want to be restricted by an overly
customized design, and you can’t just keep tog-
gling the system clock at ever-increasing speeds
to improve performance. There has to be a bet-
ter way to create faster and more flexible
embedded processing systems.

Platform FPGAs are programmable SOCs
that support a multitude of sophisticated
designs, and include on-board memory, DSP
capability, embedded processing, and hard-
ware accelerated co-processing. The re-pro-
grammability and field upgradeability of these
new devices mean that you can fix bugs,
enhance features, optimize performance, and
add emerging industry standard support
throughout product life cycles and even after
deployment in the field.

With these powerful capabilities immersed
in a programmable SoC device, all you need
are the appropriate tools to unleash and har-
ness this embedded performance.

Intelligent Tools
In recent industry surveys, design engineers
made it clear that they often value intelligent
tools more than the actual devices and operat-
ing systems they use to build their own end
products. If this trend is accurate, choosing the
appropriate tool suite before beginning your
next embedded system design will be crucial to
your product schedule and overall success.

Today’s development environments need
to provide “platform-aware” tools that under-
stand all system options and support multiple
types of processor cores, as well as the cre-
ation and customization of co-processing and
IP. Design wizards and automatic module

Faster and
More Flexible
Embedded
Systems

Faster and
More Flexible
Embedded
Systems

September 2005 Embedded magazine 5

Programmable Platform FPGA
devices and intelligent tools
combine to create higher
performance processing solutions.

Programmable Platform FPGA
devices and intelligent tools
combine to create higher
performance processing solutions.

generation will reduce errors and stream-
line the development process, while inte-
grating hardware and software debuggers
together will enable you to find and fix
bugs faster. If you choose wisely, intelligent
tools will accelerate development and opti-
mize performance.

Standard Flows and Innovation
Xilinx® created the Xilinx Platform Studio
(XPS) tool suite with the development of
Platform FPGAs in mind, supporting exist-
ing traditional flows for both hardware
(HDL/netlists for FPGAs) and embedded

software design (C/ELF code for process-
ing core engines) (Figure 1). In addition to
providing a unified development tool suite
for supporting the complete spectrum of
programmable processing solutions, XPS
won the IEC’s (International Engineering
Consortium) DesignVision Innovation
Award for introducing new capabilities that
accelerate embedded development. With
platform-aware tools like XPS, you can
quickly create a real-time hardware/soft-
ware system through an abstract flow of
design wizards.

The design wizards guide you through
the process of creating a basic system and
can reduce errors by masking-off design
options not supported by your initial selec-
tions and assumptions. For example,
although XPS supports both PowerPC™

ware debug capabilities through a single
probe. Other traditional methods require
multiple probes and switching hardware
connections between the different steps.

In fact, XPS uniquely integrates the
hardware and software debuggers together
so that they can cross-trigger each other.
This new visibility into the system allows
embedded design teams to find and fix
bugs faster, regardless of whether the flaws
originate in hardware or software.

Acceleration Through Co-Processing
Let’s say that you now have a flexible
processor-based platform that satisfies most
of your system requirements. How fast can
you clock the core to meet your perform-
ance requirements?

You probably have realized that clocking
your processor faster won’t take care of all
of your performance challenges. Besides
the physical limitations of discrete proces-
sors and heat dissipation, accelerated clock-
ing can’t ensure that your core can service
and complete all the real-time event
responses and applications with which you
have burdened it. More and more “multi-
processor” solutions are emerging to parti-
tion and offload lower priority tasks from a
main control processor so that the main
unit can ensure real-time responses.

Programmable platforms introduce
some additional ways to approach this
problem, with off-the-shelf devices that you
customize yourself for your own unique
applications. Supporting both hard and soft
processor cores, one solution offered by
Platform FPGAs is to focus high-priority
tasks on an immersed hard processor while
offloading lower priority tasks to a soft-
processor core instantiation. You have the
option to add one or more MicroBlaze soft
processors to a Platform FPGA device
already running an embedded PowerPC
engine. Example devices supporting this are
the Virtex™-II Pro FPGA or new Virtex-4
FX family devices with built-in PowerPCs.
The PowerPC cores in these devices can be
complemented with MicroBlaze IP cores
inserted as macros and built out of FPGA
hardware resources in the silicon.

Another alternate and promising
approach is to implement the concept of

hard- and MicroBlaze™ soft-processor
core designs, the tools are smart enough to
remove MicroBlaze options if you have
chosen PowerPC, and vice versa.

Importing, creating, and customizing IP
is streamlined through a separate design
wizard, and supports an IP repository to
facilitate IP reuse elsewhere on this design
or in the future on a different design.

XPS additionally innovates and acceler-
ates the development process with a variety
of automatic generators that replace
tedious and error-prone manual design
steps. Being aware of the Platform FPGA

silicon properties and options, XPS can
automatically generate software drivers for
selected peripherals, generate sample test
code for board options, and even create
BSPs (board support packages) for some of
the more widely used RTOS/eOS (real-
time operating systems/embedded operat-
ing systems) such as Wind River Systems’s
VxWorks or embedded Linux.

XPS also provides a unique utility
(Data2Mem) that merges C code into the
FPGA bitstream, enabling software devel-
opment and debug to proceed in real time
without time-consuming re-runs of FPGA
place and route tools.

Xilinx even provides new efficiencies
with a unified JTAG connection method-
ology that combines FPGA download,
FPGA debug, C code download, and soft-

6 Embedded magazine September 2005

Data2MEM

Download Combined
Image to FPGA

Compiled ELF Compiled BIT

Platform Studio

Instantiate the
ëSystem Netlistí
and Implement

the FPGA

?

HDL Entry

Simulation/Synthesis

Implementation

Download Bitstream
Into FPGA

Chipscope

Standard FPGA
HW Development Flow

VHDL or Verilog

System Netlist
Incl ude the BSP
and Compile the
Softw are Image

?

Code Entry

C/C++ Cross Compiler

Linker

Load Software
Into FLASH

Debugger

Standard Embedded
SW Development Flow

C Code

Board Support
Package

12 3 Compiled BITCompiled ELF

RTOS Board Support Package

Figure 1 – XPS design flow

“co-processing” and use the intelligent tools
to build a direct connect from the embed-
ded PowerPC cores to high-performance
FPGA fabric, where hardware accelerator
functions can operate as extensions to the
PowerPC. As shown in Figure 2, you can
improve the overall system performance by
offloading computationally demanding
applications from the main CPU.

By its very nature, FPGA hardware fab-
ric is parallel in structure and can be used
to accelerate system functions orders of
magnitude faster than clocking methods
can provide. In this example, the PowerPC
core is complemented by an APU
(Auxiliary Processor Unit), which inter-

faces to a parallel soft processor that can
handle applications such as data process-
ing, floating-point mathematics, and video
processing. This direct connection provides
a high-bandwidth, low-latency solution with
parallel advantages over other multi-core
processor and arbitrated busing solutions.

Performance Analysis
Do you need to find out where your per-
formance is lost in your design?
Embedded software debugging and analy-
sis is always a bit of a challenge because
code execution is often “invisible” to you.
On paper, your design looks like it meets
specifications, but when running in real-
time hardware with asynchronous inter-
rupts and real-world situations, you find
that often you don’t meet your own per-
formance requirements. Now is the time
when intelligent tools can provide you
with a unique view inside the operating
device rather than leave you guessing out-
side of a black box.

Version 7.1 of Xilinx Platform Studio
introduces a series of performance analysis
tools and views that provide great insight as
to how your software is actually executing
and where performance is leaking away from
you (Figure 3). By knowing which software
functions take up the most execution time
and which functions call other functions – as
well as the number of times called – you can

get an illuminating view of exactly how your
embedded design is running. Functions that
take a long time to execute, or functions that
are called a large number of times by other
routines, may be excellent candidates to
accelerate by moving them to parallel hard-
ware as co-processing extensions.

Figure 3 also shows that if the tools
track and display your software execution
clearly, you can quickly and easily identify
areas that could be more efficient. This
can save a lot of what-if experiment sce-
narios that are time-consuming and often
result in relatively small performance
improvements. In-lining some C code or
an entire function may provide tiny local-
ized speed-ups, but moving time-consum-
ing routines into high-performance
FPGA hardware can often result in an
order-of-magnitude improvement. With
intelligent views of the code execution by
specific function names, you can see
exactly which software routines to adjust,
providing a much higher return on
improving system performance.

Conclusion
Intelligent platform-aware tools can help you
identify the inefficiencies in your embedded
software code and allow you to optimize per-
formance. Knowing which specific software
functions you need to streamline allows you
to evolve your hardware/software partition-
ing and accelerate more modules in pro-
grammable FPGA fabric.

The high-performance nature of parallel
FPGA hardware resources and the advent of
easy-to-use, programmable co-processing
technologies like the Virtex-4 FX APU
enable you to create faster and more flexible
embedded processing systems.

Xilinx offers clear advantages for
embedded processing over traditional dis-
crete or competitive FPGA solutions. Our
tools, combined with our programmable
embedded Platform FPGAs, offer a signif-
icant performance improvement for real-
time developers.

To learn more about the Platform Studio
tool suite, please visit www.xilinx.com/edk.
A good starting point to learn about all of
our embedded processing solutions is
www.xilinx.com/processor.

September 2005 Embedded magazine 7

PowerPC

Hard Processor Block

PLB

OCM FPGA Fabric

APU
I/F

FPGA
Interface

APU
Control

Soft
Auxiliary

Processor

Figure 2 – Virtex-4 FX APU

Figure 3 – XPS performance analysis views

David Pellerin
Chief Technology Officer
Impulse Accelerated Technologies, Inc.
david.pellerin@impulsec.com

Greg Edvenson
Senior Software Engineer
Pico Computing, Inc.
greg@picocomputing.com

Kunal Shenoy
Design Engineer
Xilinx, Inc.
kunal.shenoy@xilinx.com

Dan Isaacs
Director, Embedded PowerPC Marketing, APD
Xilinx, Inc.
dan.isaacs@xilinx.com

Copyright © 2005 Xilinx, Inc. All rights reserved.

The Xilinx® Virtex™-4 FX family of
FPGA devices provides embedded systems
developers with new alternatives for creat-
ing high-performance, hardware-accelerat-
ed applications. With an integrated
industry-standard PowerPC™ processor
and innovative Auxiliary Processor Unit
(APU) interface, the Virtex-4 FX device
allows system designers to efficiently con-
nect custom hardware accelerators to the
integrated processor, yielding unprece-
dented performance.

In the past, software programmers who
wanted to take advantage of FPGAs for
algorithm acceleration have experienced
significant technical barriers because of the
complexity of writing low-level hardware
descriptions to represent higher level soft-
ware functions.

Accelerating PowerPC
Software Applications

8 Embedded magazine September 2005

Using custom APU peripherals, C-to-hardware tools enable
fast creation of Virtex-4 hardware accelerators.

In this article, we’ll show how the
power of the Virtex-4 FX FPGA can be
made readily available to embedded sys-
tems designers and software programmers
through the use of software-to-hardware
tools. The emergence of such tools bring
the performance benefits of FPGAs to
anyone who can program in C.
Accelerated FPGA-based designs are now
easier and more practical for a wide range
of application domains, including image
processing, DSP, and data encryption.

From Software to FPGA Hardware
By virtue of their massively parallel struc-
tures, FPGAs have the potential to dramati-
cally accelerate embedded software
applications. But because these devices
require different (hardware-oriented) skills
than traditional processors, the creation and
programming of a system based on an FPGA
has remained challenging for all but the most
hardware-savvy software programmers. This
is changing, however. With the introduction
of simplified FPGA-based computing plat-
forms and streamlined tools for platform
building, most of the barriers to FPGA adop-
tion have been removed. In addition, the
introduction of software-to-hardware tools
for FPGAs has dramatically improved the
practicality of these devices as software-pro-
grammable computing platforms.

The tools that make this shift possible –
enabling FPGA-based platforms to be con-
sidered viable alternatives to traditional
processors for embedded systems – serve
two basic needs. At the front end, software-
to-hardware compiler tools accept high-
level descriptions written in a language
familiar to embedded software program-
mers. The de facto standard for embedded
systems design is standard C, with C++ and
Java beginning to make inroads as well.

At the back end, existing synthesis and
place and route technologies are combined
with system-level platform building tools,
allowing designers to develop and target
complete systems on programmable logic
to specific development boards. Both of
these needs are being met today, by tools
currently available.

In the area of software-to-hardware com-
pilation, compiler tools such as Impulse

rience with low-level FPGA design – to
assemble a complete system within a single
FPGA, including one or more processors
and related peripherals. When these tools
are combined with a platform-aware soft-
ware-to-hardware compiler, the complete
system can include custom accelerators
originally written in C.

Accelerating Embedded Applications
The Virtex-4 FX family of devices provides
an ideal platform for hardware acceleration
of embedded applications. The Virtex-4
FX12 FPGA, for example, includes more
than 12,000 logic cells; an integrated
PowerPC 405 core, which can operate at
speeds as fast as 450 MHz; and dual
10/100/1000 Ethernet MACs, configured
by the processor through the device control
register (DCR) interface or through the
FPGA fabric.

Looking inside the embedded processor
block (see Figure 2), the PowerPC 405
CPU is directly coupled to the unique and
innovative APU controller, which provides
direct access to hardware accelerators
implemented in the FPGA logic. The APU
controller supports three classes of instruc-
tions: PowerPC floating-point instructions,
APU load and store instructions, and user-
defined instructions (UDI). UDIs are pro-

CoDeveloper (Figure 1) can simplify the
generation of FPGA hardware from higher
level C-language descriptions of software
algorithms. These tools provide the necessary
bridge between the domains of software pro-
gramming and lower level hardware design.

Serving the need for platform building
tools is Xilinx Platform Studio, which sup-
ports a wide variety of Xilinx FPGA-based
boards and systems. Platform Studio makes
it practical for an embedded systems
designer – who may have little or no expe-

September 2005 Embedded magazine 9

HDL
Files

C Software
Libraries

C Language
Applications

Generate
FPGA

Hardware

Generate
Software
Interfaces

Generate
Hardware
Interfaces

EMAC

DCR
I/F

DSOCM

ISOCM
Control

PowerPC
405 Core

ISOCM

DSOCM

DSPLB

ISPLB

APU

DCREMAC

 APU
Control

Statistics

Client PHY

Client PHY

FCM

Ext DCR

Statistics

Host

DCR
Control

Reset
Debug

Figure 1 – Impulse CoDeveloper tools simplify the
conversion of C subroutines to lower level FPGA
logic and provide the necessary software-to-hard-
ware communications on the Virtex-4 platform.

Figure 2 – The Virtex-4 FX12 embedded processing block includes the embedded PowerPC 405
processor and a high-performance APU interface, along with dual 10/100/1000 EMACs.

grammed into the APU controller either
dynamically through the PowerPC 405 via
the DCR bus or statically during FPGA
configuration via the bitstream. The APU
supported instructions are executed by
hardware acceleration co-processing
engines implemented in the FPGA logic.

When packaged in a highly integrated

compact device such as the Pico
Computing E-12 card (see sidebar, “A
Wide Range of Development Platforms”),
the FX12 device becomes a complete
embedded development platform that
requires little or no hardware design expert-
ise. For embedded application developers
requiring a wider range of hardware

peripherals (such as direct access to video
and audio signals), the Xilinx ML403
board, also based on the FX12 device, pro-
vides an excellent embedded systems
development platform.

On-chip, the Virtex-4 FX APU con-
troller provides a flexible high-bandwidth
interface between the FPGA fabric and the

10 Embedded magazine September 2005

Taking Advantage of Parallelism in FPGAs
A key aspect of any software-to-hardware design flow is the use of parallelism to increase performance. When accelerating C appli-
cations using FPGAs, parallelism can be exploited at two distinct levels: at the application system level and at the level of statements
(or blocks of statements) within a specific subroutine or loop.

Although there are ongoing attempts to create compiler technologies that can exploit both levels of parallelism with a high degree
of automation, the best approach today is to focus automation efforts (represented by the software-to-hardware compiler) on the
lower level aspects of the problem, while at the same time providing software programmers an appropriate and easy-to-use pro-
gramming model that allows higher level, coarse-grained parallelism to be expressed. In this way programmers can make hard-
ware/software partitioning decisions and experiment with alternative algorithmic approaches, leaving the task of low-level
optimization to automated compiler tools. This approach is particularly useful for platforms such as the Virtex-4 device that include
embedded processors.

A number of programming models can be applied to FPGA-based programmable platforms, but the most successful of these
models share a common attribute: they support modularity and parallelism through a dataflow-like method of design partitioning
and abstraction. Communicating sequential processes, or CSP, is one such programming model. CSP has proven to be highly effec-
tive in expressing application-level parallelism for FPGA targets. This programming model is directly supported in the Impulse C
tools provided by Impulse Accelerated Technologies, Inc.

At the heart of the Impulse C programming model are processes and streams (Figure 4). Processes are independently synchro-
nized, concurrently operating portions of an application that are written in a standard language (in this case C language). Processes
perform the work of the application by accepting data, performing computations, and generating relevant outputs.

Unlike traditional C subroutines, processes are considered persistent; they are normally called once (whether in hardware or
software) and continue as long as there is streaming data to be processed. The data processed by such an application flows from
process to process by means of streams, or in some cases by means of messages or shared memories, which are also supported in
the programming model. Streams represent one-way
channels of communication between concurrent processes
and are self-synchronizing with respect to the processes
by virtue of buffering. The primary method of synchro-
nization between processes is therefore the data being
passed on the streams.

The key to allocating processing power within such a
system – and using such a programming model – is to
implement one or more processes in the FPGA to handle
the heavy computation, and implement other processes
on embedded or external microprocessors to handle file
I/O, memory management, system setup, and other non-
performance-critical tasks. Using tools such as those
included with Impulse C, an application comprising mul-
tiple parallel C processes can be modeled entirely in soft-
ware, verified using a standard desktop C debugging
environment, and then, after the application is function-
ally complete, incrementally moved into the FPGA for
further optimization and acceleration.

Software processes
set up data and
perform non-time-
critical functions

Hardware processes are independently
synchronized and perform most of the work

Shared Memory
Block Reads/Writes

Stream
Inputs

Signal
Inputs

Register
Inputs

Stream
Outputs

Signal
Outputs

Register
Outputs

Application
Monitoring

Outputs

Figure 4 – The Impulse C programming model emphasizes the use of
processes, streams, and shared memories for hardware/software partitioning.

pipeline of the on-chip PowerPC. Fabric
co-processor modules (FCMs) implement-
ed in the FPGA fabric are connected to the
embedded PowerPC processor through the
APU interface, allowing the creation of
custom hardware accelerators. These hard-
ware accelerators operate as extensions to
the PowerPC, thereby offloading the CPU
from demanding computational tasks.

Software engineers can access the FCM
from within assembler or C code. Assembler
mnemonics are available for user-defined
instructions and pre-defined load/store
instructions, enabling programmers to
invoke hardware-accelerated functions into
the regular program flow. Programmers can
also define custom instructions designed
specifically for the hardware functionality of
the FCM. When combined with C-to-hard-
ware compiler tools, the APU controller
allows software programmers to create hard-
ware-accelerated software applications with
little or no FPGA design expertise.

C-to-Hardware Tools
Increase Design Productivity
To make productive use of any computing
platform, software programmers need
appropriate compiler and debugging tools.
Impulse C, from Impulse Accelerated
Technologies, gives software pro-
grammers access to FPGAs by
allowing hardware accelerators to
be compiled directly from software
descriptions.

These accelerators, which are
typically represented by one or
more software subroutines, are
automatically compiled into effi-
cient, high-performance hardware
that can be mapped directly into
FPGA gates. In the case of the
Virtex-4 FPGA, Impulse C is also
capable of automatically generating
software/hardware interfaces using
the APU. This is particularly useful for
applications that combine both traditional
and FPGA-based processing.

Because it is based on standard C,
Impulse C allows FPGA algorithms to be
developed and debugged using popular C
and C++ development environments,
including Microsoft Visual Studio and

GCC-based tools. The CoDeveloper soft-
ware-to-hardware compiler translates spe-
cific C-language subroutines to low-level
FPGA-hardware (see Figure 3) while opti-
mizing the generated logic and identifying
opportunities for parallelism. The compiler
is also capable of unrolling loops and gener-
ating loop pipelines to exploit the extreme
levels of parallelism possible in an FPGA.
Instrumentation and monitoring functions
generate debugging visualizations for highly
parallel multi-process applications, helping
system designers identify dataflow bottle-
necks and other areas for acceleration.

For applications involving the embed-
ded PowerPC and MicroBlaze™ proces-
sors, the Impulse C compiler automates the
creation of hardware/software interfaces
and generates outputs compatible with
Xilinx Platform Studio. This makes it pos-
sible to create high-performance, mixed
hardware/software applications for FPGA-
based platforms without the need to write
low-level VHDL or Verilog.

For large applications comprising multi-
ple hardware and software elements,
Impulse C includes interface libraries (see
sidebar, “Taking Advantage of Parallelism
in FPGAs”) and related compiler features,
allowing parallelism to be expressed at the

level of multiple and independently syn-
chronized processes. These processes can be
mapped either to software running on an
embedded PowerPC or MicroBlaze proces-
sor, or to FPGA hardware.

For all such applications, integration of
front-end compiler tools and back-end
platform building tools is important. The

design process is highly iterative, reflecting
the fact that decisions made up-front (such
as C coding styles and system-level parti-
tioning decisions) may have a dramatic
impact on the results obtained after C
compilation, synthesis, place and route,
and final bitmap generation. At each point
in the process, the tools provide feedback,
allowing you to evaluate and estimate per-
formance before moving to subsequent
(and perhaps more time-consuming) phas-
es of the platform generation process.

Let’s summarize the steps required for a
typical PowerPC-based application using
Impulse and Xilinx tools:

1. The application is initially written
in standard C, using common C
development tools. These tools
include readily available tools such as
Visual Studio, Eclipse, or GCC and
GDB, and may also involve more
comprehensive cross-development
tools. During this phase, a baseline
for validation (a software test bench,
also written in C) is established,
allowing you to quickly test later
design iterations.

2. A C profiler such as gprof may be
invoked, or other, less sophisticated
methods are used to identify compu-
tational hotspots. Often these
hotspots can be isolated to a few C
subroutines or inner code loops
requiring acceleration. Application
monitoring (made possible by instru-
menting the C code during software
testing) can help characterize these
hotspots and analyze data movement.

3. Using software-to-hardware interface
functions provided in the Impulse
C library, data streams or shared
memories create abstract connections
between the main algorithm running
on the PowerPC and hardware-
accelerated subroutines running in
the FPGA. The modified software
algorithm, which now includes one
or more independently synchronized
processes, is simulated again in a
standard C environment to ensure
its correct behavior.

September 2005 Embedded magazine 11

Figure 3 – The C-language-to-FPGA-accelerator design flow

4. C-language subroutines (or processes,
as they may now be referred to) repre-
senting hardware accelerators are ana-
lyzed and optimized by the Impulse C
compiler, resulting in hardware
description files compatible with
FPGA synthesis tools. Optimization
reports generated in this phase help
you understand the impact of various
coding styles, and make appropriate
revisions in the original C code for
improved performance. During this
compilation process, additional com-
piler outputs are generated that repre-
sent hardware-to-software interfaces,
including (in the case of the Virtex-4
FPGA) the necessary APU interface
logic. Software run-time libraries are
also generated at this point, corre-
sponding to the abstract stream and
shared memory interfaces specified on
the processor side of the application.

5. The generated hardware and software
files are exported from the Impulse
tools (as a PCORE peripheral) and
imported directly into the Xilinx
Platform Studio environment.

The stream and shared memory inter-
faces defined in the C application are
mapped to APU, PLB, or other interfaces
where appropriate, along with other com-
ponents (such as standard processor
peripherals or non-standard IP blocks) to
create the complete system. From within
the Platform Studio interface, the entire
application (both hardware and software) is
built, resulting in a downloadable bitmap.

Evaluating FPGA Acceleration
Using the Pico E-12 card and the Xilinx
ML403 development kit, in conjunction
with Impulse C and Platform Studio, we set
out to compare the relative performance of
the embedded PowerPC 405 processor both
with and without APU hardware accelera-
tion – and using only C programming tech-
niques. To investigate a range of potential
application domains, we selected the fol-
lowing three representative algorithms:

1. An image filter. This algorithm allowed
us to evaluate two pipelined hardware

routines for processing a stream of
image data. The algorithm chosen for
this experiment is a relatively simple
3 x 3 edge-detection function operat-
ing on a 512 x 512 image buffer. This
algorithm allowed us to quickly
evaluate the performance of data
streaming through the Virtex-4 APU
interface, as well as the potential
speedups of using multiple, pipelined
hardware processes.

2. A triple-DES encryption engine. This
algorithm allowed us to evaluate the
impact of various C-level optimization
strategies, as well as the practicality
of adapting and optimizing legacy C
code for a streaming programming
model. One million character blocks
(of eight characters each) were
processed to obtain performance
numbers for this test.

3. A fractal image generator. This algo-
rithm is computationally intensive
and can be characterized in many
ways to explore the size/performance
space. For this experiment, we created
a single hardware process in the
FPGA as an APU peripheral. This
hardware process communicates with
a single controlling software process
running on the embedded PowerPC.
The design of this algorithm, which
generates a 1024 x 768 pixel image
with a selectable level of image accura-
cy, is scalable such that additional
hardware accelerator processes can be
easily added, up to the limit of the
target FPGA.

For each of these algorithms, various
combinations of compiler loop unrolling,
pipelining, and maximum stage delays

were selected in the Impulse C compiler. In
this way the applications could be opti-
mized (in most cases without modifying
the original C code) to obtain a desirable
balance of size, cycle delays, and maximum
clock speed in the generated hardware. In
most cases, we determined that using a rel-
atively low clock rate (50 MHz) in the
FPGA fabric – in combination with
increased cycle-by-cycle throughput
(through the use of automated pipelining)
– produced the best overall results given the
nominal overhead of software-to-hardware
data communication.

Using these algorithms as a baseline,
numerous tests were performed in which
the same C code was compiled both to the
FPGA (as an APU accelerator) and to the
embedded PowerPC processor as a soft-
ware-only application. The results of these
tests are summarized in Table 1.

As the chart shows, the hardware-accel-
erated algorithms show an impressive
increase in performance, even at reduced
FPGA clock rates, compared to the
PowerPC software-only version.

Conclusion
In this article, we have demonstrated how it
is possible, using an FPGA-based platform
and C-to-hardware tools, to create highly
accelerated systems without low-level hard-
ware design skills. The Virtex-4 FX device,
when implemented in a card such as the Pico
E-12 or on a prototyping board such as the
Xilinx ML403, promises to revolutionize the
way that FPGA devices are applied for high-
performance embedded computing.

Software-to-hardware tools such as
Impulse C, when combined with the plat-
form building capabilities of Platform
Studio, make programming for such
devices practical and efficient.

Application
PowerPC Only PowerPC/APU

Acceleration(300 MHz) (300/50 MHz)

Image Filter (512 x 512 Image) 0.1414 sec 0.0124 sec 11.4 X

Encryption (8M Characters) 2.257 sec 0.0667 sec 33.84 X

Fractal Image (10K Max Iterations) 660 sec 31 sec 21.29 X

Table 1 – Virtex-4 APU acceleration results

12 Embedded Processing Magazine September 2005

September 2005 Embedded magazine 13

A Wide Range of Development Platforms
Providing embedded application developers – software programmers – with an easy-to-use hardware platform is a critical first step
in making FPGAs viable as embedded development platforms. A growing number of vendors are offering FPGA-based proto-
typing and high-performance computing platforms ranging from low-cost, single-FPGA systems to larger FPGA grids intended

for hardware-accelerated computing.
The Pico E-12 card mentioned in the main article (which is avail-

able from Pico Computing, www.picocomputing.com) is a
CompactFlash form-factor package that draws well under 2W. It
features 10/100/1000 Ethernet, 64 MB of Flash, 128 MB of RAM,
and a wide host of peripheral adapters such as A/D, D/A, asynchro-
nous serial, synchronous serial, CAN bus, relay control, and JTAG.
The card is supported by platform development and programming
tools appropriate for software developers. The Pico E-12 platform
advances desktop and portable computing by providing massively
parallel hardware computing resources in a low-power, self-con-
tained package (Figure 5).

There are two versions of the Pico E-12. The Logic
Optimized (LO) version is based on the Virtex-4 LX-25 device,
while the Embedded Processor (EP) version is based on the
Virtex-4 FX12 device, with its integrated PowerPC processor.

In either case, the FPGA on the E-12 card is configured
from the 64 MB of on-board flash memory using an on-board
loader. The unique design of this loader allows new FPGA
images to be swapped into the FPGA on demand. A large num-
ber of FPGA images can be stored in flash memory, and any
image can be loaded at any time through on-board software or
external software communicating with the E-12 card through
its external interfaces. The contents of the 128 MB of external
RAM remain intact through the swapping sequence, allowing
subsequent FPGA images to operate on existing RAM data.

The Xilinx ML403 (shown in Figure 6), the first of sever-
al Virtex-4 FX embedded processing development boards,
combines the Virtex-4 FX12 with a wide variety of software-
configurable interfaces, including network interfaces; serial,
parallel, and USB ports; LVDS and D/A and A/D interfaces;
and a VGA driver. As such, the ML403 is ideal for embedded
systems designers requiring direct FPGA access to external
hardware devices.

Figure 7 shows a comparison between the APU with
Impulse-generated hardware accelerators and a processor/soft-
ware-only implementation. Both systems are utilizing the
ML403 in this example. You can see that the APU-accelerated
version is significantly faster than the processor-only version.

Figure 5 – The Pico Computing EP-12 card packages
the FX12 or LX-25 device with a CompactFlash

interface in an extremely compact form-factor.

Figure 6 – Xilinx ML403 development system

Figure 7 – Xilinx ML403 development system showing
APU hardware accelerated implementation versus software

only executing on the PowerPC

by Ross Nelson
Seamless FPGA Product Manager
Mentor Graphics Corporation
ross_nelson@mentor.com
Copyright © 2005 Xilinx, Inc. All rights reserved.

You’ve probably been there: clever detective
work leads you to a small change in the
HDL for your embedded processor-based
design. Now you just have to run synthesis,
place and route, and darn ... you suddenly
realize it will be another day before you can
see the result.

Large devices allow you to stuff a whole
system into the FPGA, but debugging
these complex systems with limited visibil-
ity – and a one-day turnaround – can con-
sume weeks of your precious time.

Hardware/software co-verification has
been successfully applied to complex
ASIC designs for years. Now available to
FPGA designers, Seamless FPGA from
Mentor Graphics brings together the
debug productivity of both a logic simula-
tor and a software debugger. Seamless
FPGA co-verification enables you to
remove synthesis and place and route
from the design iteration loop, while
yielding performance gains 1,000 times
faster than logic simulation.

Shortening the Design Iteration Loop
Because development boards are readily
available, many FPGA designers incorpo-
rate them into the highly iterative design
loop. Unfortunately, the development
board brings major overhead to every
design iteration. This overhead comes in
the form of logic synthesis, followed by
place and route. Although necessary to
produce a final design, you can remove
these time-consuming steps from the high-
ly iterative design debug loop by targeting
simulation as the verification platform.

With simulation as the verification
engine, the only overhead between editing
the HDL and verification becomes a rela-
tively quick compile of your HDL. The
time you can save on your next embedded
FPGA is easy to calculate: How many
times did you run place and route on your
last FPGA design? And how long did place
and route consume your PC for each run?

It’s true that simulation runs slower
than the real-time speed of a development
board. Seamless FPGA provides some
innovative ways to dramatically increase
the rate at which your embedded software
simulates. The increase in a typical system
is several orders of magnitude.

Improving Hardware and Software Visibility
To debug your FPGA design, you need full
and clear visibility. You need to know what
is happening in the hardware and what the
software is doing. You need to be able to
change a register, or force a signal to a dif-
ferent state. Sometimes you need to be able
to stop time and take a closer look. The
more visibility you have, the more quickly
you can see the problem or prove you have
resolved the bug.

Hardware Visibility
Probing inside or even on the pins of your
FPGA is a challenge. The ChipScope™
Pro analyzer from Xilinx® helps with this,
but in a logic simulator (in addition to
viewing every signal) you can also change
their values. Working from your source
HDL, you can step through the code, view
variables, or stop time. For detailed, imme-
diate, and hassle-free visibility, it is hard to
beat logic simulation.

Software Visibility
Software visibility in logic simulation is
another item with which to contend.
Running the fully functional processor
model allows you to execute software, but

Hardware/Software Co-VerificationHardware/Software Co-Verification

14 Embedded magazine September 2005

Gain full visibility into your software and hardware –
and achieve a faster design iteration loop in the process.

knowing what is in R3 of the processor is
almost impossible if you are given only
waveforms.

Co-verification provides an enhanced
processor model connected to a software
debugger. In the Mentor Graphics XRAY
debugger, you can view and change every-
thing from registers to memory, stack, and
variables. XRAY also provides a source code
view with symbolic debug. You can step
through code at the source or assembly
level and use breakpoints to halt execution
or run powerful macros.

If you are using the Accelerated
Technology Nucleus real-time operating
system (RTOS), you can view the status of
tasks, mailboxes, queues, pipes, signals,
events, semaphores, and the memory pool.

Much Faster Than Logic Simulation Alone
Running substantial amounts of software
on a standard processor model in logic sim-
ulation is not practical; the run times are
just too long. However, running this soft-
ware actually turns out to be one of the
most effective verification strategies avail-
able. The payoff for running diagnostics,
device drivers, board support package (BSP)
code, booting the RTOS, and running low-
level application code is huge. It is not sur-
prising that verifying hardware – by putting
it through its paces the way the software will
actually use it – is effective. Similarly, the
software is tested against the actual design
(including any external board-level compo-
nents that are included in the simulation)
before the board is actually built.

The challenge has always been to run
enough software to really boot the system
and do something interesting. Co-verifica-
tion is able to speed up the run time by tak-
ing advantage of one simple observation:
most of the simulation time is spent re-vali-
dating the same processor-to-memory path.
Although you need to test your memory sub-
system and try several dozen corner cases,
you don’t need to repeat those same tests over
again every time you fetch an instruction
from memory. Similarly, you need to verify
that the processor can push a value on the
stack and pop it off again with the correct
result, but repeating this test every time a
software function is called would be overkill.

logic simulation alone requires 12 hours
and 13 minutes. The same task with these
techniques employed accomplishes the task
in only six seconds – 7,330 times faster.

Using this technique, Seamless FPGA
maintains one coherent view of memory
contents through a back door into Xilinx
block RAM memory models or any other
memory device. So if your DMA controller
drops something into memory that the
processor later executes, it will still all work
together correctly. And if the processor
generates a large data packet and instructs
hardware to transmit it using DMA, there
are no data inconsistencies.

Identifying Processor Bus Bottlenecks
The performance of your FPGA platform
can be seriously impacted by the memory
structure of the design. What should be
located in cache versus block RAM or
external memory? Where are the bottle-
necks? Do other bus masters starve the
processor? Questions like these are impor-
tant, but getting the answers can be diffi-
cult without real data from your
hardware/software application.

Accesses to hardware peripherals always
generate bus cycles in the logic simulation,
but instruction fetches and stack operations
can typically be offloaded for faster execu-
tion. By allowing you to specify which bus
cycles are run in the logic simulator and
which are not, Seamless FPGA allows you to
make the performance tradeoff. And you
can change this specification at any time
during your simulation session. You can run
through reset with full cycle-accurate behav-
ior, and then switch off instruction fetches
and stack accesses to boot the RTOS.

Accessing memory through the logic sim-
ulator requires several hardware clock cycles.
Each clock cycle requires significant work in
the logic simulator as it drags along the heavy
weight of all the other logic in your FPGA.
Using a “back door” to directly access the
memory contents, instead of running the bus
cycle in the logic simulator, allows accesses to
occur many orders of magnitude faster.

The speedup is very significant. For
example, the following data is from a typi-
cal design configuration with a PowerPC™
running Nucleus on the Xilinx Virtex™-II
Pro FPGA. Booting the Nucleus RTOS in

September 2005 Embedded magazine 15

Figure 1 – Seamless FPGA’s system profiler helps you tune performance by providing detailed data
on bus transactions and utilization, software function execution time, bus arbitration delay,

memory hot spots, and software code profiling.

Seamless FPGA gathers performance
data from the simulation and displays it
graphically in the system profiler (Figure
1), enabling you to identify:

• Which functions are consuming most
of the CPU time

• Unexpected lulls or bursts of activity

• Cache efficiency and memory hot
spots

• Code execution and duration at the
function level

• Bus utilization and bus master
contention

Ease of Use and Integration
Seamless FPGA is easy to use and set up.
Using the knowledge you have already
entered in Xilinx Platform Studio (XPS),
Seamless FPGA automatically configures
itself to co-verify your design. You may
already know how to use ModelSim, and
Seamless FPGA leaves the full functionali-
ty and user interface unchanged. The
XRAY software debugger uses many of the

same menu icons for operations like step,
step over, and run.

To set up Seamless FPGA, simply
choose File > Import from Xilinx Platform
Studio and specify your XPS project file.
The import process does all of the setup
steps and in about one minute proceeds to
invoke ModelSim and the XRAY debugger.

If you have two or more Xilinx proces-
sors in your design, you will have additional
software debugger windows, one for each
processor.

Once ModelSim and XRAY have been
invoked (Figure 2), you are ready to verify
your design. In ModelSim, enter any stimu-
lus commands needed – typically this is reset
and clock, plus any design-specific stimulus
– and then click “run.” In XRAY, click “go”
or “step” to start stepping through your
embedded code. By default, all bus cycles are
routed to the hardware simulation.

To increase software execution speed,
three icon selections are provided. These
icons are labeled “optimizations” because
they increase the rate of software execution
by directing Seamless FPGA to access

memory contents through a back door
without requiring the logic simulator to
run every bus cycle. The first button
directs all instruction fetch cycles to use
the back door. A second button allows
you to specify any number of address
ranges, which use the back door. When
accesses use the back door, you can either
choose to keep advancing the logic simu-
lation in lock step with the software or
remove that requirement.

The optimization settings can be
changed at any time on the fly during a
simulation session. This allows you to
quickly run to a certain point in your soft-
ware, and then enable all bus cycles for
detailed cycle-accurate verification.

Conclusion
With large FPGA designs employing
embedded processors, it’s not possible to
complete a design in a few weeks. These
designs are very sophisticated; unfortu-
nately, so are the bugs that you must track
down and resolve to produce an effective
system on schedule.

Software content in your FPGA can
bring lower system costs, higher config-
urability, and increased functionality. But
software doesn’t execute alone – it inter-
faces with hardware, and the
hardware/software interface often stretch-
es across disciplines and design teams.

Seamless FPGA bridges the hard-
ware/software gap with a productive soft-
ware and hardware debug environment
that provides the visibility to find bugs
and performance bottlenecks efficiently.
And once you have fixed them, you can
quickly turn the fix and verify it, without
having to wait for your PC to rumble
through place and route for hours on end.

Try Seamless FPGA on your design
today. For your free 30-day evaluation
copy, visit www.seamlessfpga.com. The
included example design and Quick
Start Guide will get you up and running
in no time. For more information,
e-mail seamless_fpga@mentor.com.

16 Embedded magazine September 2005

Figure 2 – Seamless FPGA running the Nucleus RTOS on a Xilinx Virtex-II Pro PowerPC processor.
XRAY (lower left) provides symbolic software debug and RTOS task status. ModelSim (lower right)

enables full hardware debug and control. Seamless FPGA control panels (upper left) allow dynamic selec-
tion of bus cycles routed to ModelSim. The ModelSim HDL source window is also displayed (upper right).

... software doesn’t execute alone – it interfaces with hardware, and the
hardware/software interface often stretches across disciplines and design teams.

by Nancy Eastman
Regional Director, USA, Altium Limited
Altium Limited
nancy.eastman@altium.com

Copyright © 2005 Xilinx, Inc. All rights reserved.

The development of electronic products is
a juggling act that balances the drive to
embed more and more intelligence into a
design with the time needed to create,
implement, and test the application. The
history of electronics charts a continuous
movement toward designing at higher lev-
els of abstraction to efficiently contend
with increasing levels of complexity.

Microprocessors and digital design par-
adigms allowed portions of design prob-
lems – such as adding more intelligent
features to a design or executing complex
signal processing functions – to be moved
from hard-wired components into a highly
fluid and easily updateable realm: software.
This enabled some complexity to be dealt
with in a “soft” environment that was flex-
ible throughout the design process.

Today, the availability of high-capacity,
high-performance programmable devices
(such as FPGAs) at relatively low costs is
shifting the balance again, allowing previous-
ly fixed design elements such as the processor
and its peripheral components and logic
blocks to move into a soft domain (Figure 1).
This holds the promise of greater design flex-
ibility and the freedom to change crucial
design decisions – the partitioning of func-
tions between software and hardware imple-
mentation or even the choice of processor –
throughout the development cycle.

Moving Embedded
Systems onto FPGAs
Moving Embedded
Systems onto FPGAs

September 2005 Embedded magazine 17

Altium Designer allows hardware developers to move system complexity
from the board level into the “soft” programmable logic realm.
Altium Designer allows hardware developers to move system complexity
from the board level into the “soft” programmable logic realm.

Barriers to Mainstream Adoption
To date, the development of FPGA-based
processor applications has been a niche
exercise, at least compared to the number
of embedded systems developed using dis-
crete off-the-shelf processors. Certainly
FPGAs have been widely used to contain
much of the glue logic that surrounds the
processor in an embedded system. But the
processor and its major peripheral compo-
nents have remained mainly hard-wired
and outside the programmable space.

This is partly a pricing issue.
Historically, FPGAs that were large and
capable enough to provide a platform for
processor applications have been far more
expensive than comparable off-the-shelf
microcontroller units (MCUs). Therefore,
designers needed a very good reason to jus-
tify the extra expense of taking an FPGA
approach, limiting the range of applica-
tions targeted. More recently, however,
devices like the Xilinx® Spartan™-3 fami-
ly have pushed the pricing envelope and,
when combined with a suitable FPGA-
based processor core, are changing the
cost/benefit equation.

Price is not the only barrier to main-
stream penetration of FPGAs as an embed-
ded systems platform. Another and perhaps
far more intractable problem is changing
the way we think about programmable
logic devices in general. Rather than seeing
them simply as an efficient way to integrate
logic blocks, we need to look at the big pic-
ture, reassessing the whole design process
in the context of the reconfigurablilty that
FPGAs offer.

software within a programmable platform.
This method should allow the integration
of FPGA design with the board design
process and facilitate the rapid design
changes possible within this new “soft”
design paradigm.

The Need for a User-Friendly
Development Paradigm
FPGA design techniques are traditionally
based around the FPGA as a component
within a larger system. But when the FPGA
is the system platform, sourcing the neces-
sary system components in the HDL realm
and instantiating them at the register trans-
fer level is a complex process – a process
that is daunting for the majority of engi-
neers, who are not FPGA specialists.

These same engineers, however, will
have no trouble developing a very complex
system at the board level. At the board level,
the complexity of the system is embodied in
the off-the-shelf components used to create
the design. Engineers can simply use these
components as is without needing to
understand the underlying complexity.

The key to unlocking the potential of
FPGAs as a mainstream embedded systems
platform is providing a seamless transition
between current board-level design prac-
tices and FPGA-based system design.

The Future of the Design Desktop
One recent development in this direction
is Altium Designer, an electronic product
development system from design solutions
provider Altium Limited. Altium Designer
provides a graphical capture environment
for FPGAs that includes libraries of high-
level FPGA components. These compo-
nents include a range of processor cores
and peripherals, which are provided pre-
synthesized for a wide range of target
FPGA devices. The components are ready
to use, making system hardware creation a
drag-and-drop exercise (Figure 2).

The system includes its own royalty-free
32-bit processor – the TSK3000 – that can
be used across a wide range of FPGA devices
and families. Other supported execution
platforms include the Xilinx MicroBlaze™
core and the hard PowerPC™ processor
embedded in Virtex™-II Pro devices.

The Big Picture
A clue to this big-picture view of the FPGA
phenomenon as it relates to embedded
design lies in the history of the micro-
processor itself. Originally developed for
use in calculators and then personal com-
puters, the microprocessor revolutionized
mainstream electronics design when the
devices could be bought at a fraction of the
cost of the products in which they were
used. The technology progressed to the
point where a relatively user-friendly devel-
opment paradigm could be widely adopted
– in this case high-level programming lan-
guages such as C.

The flexibility and power of software
allowed designs to be created in a new way,
where large parts of a system’s functionality
could be created and modified on the fly
without redesigning hardware. The ability
to use C to program embedded applica-
tions meant that this power and flexibility
was available to a wide engineering audi-
ence, effectively making embedded proces-
sor-based design the mainstay of the
electronics industry.

FPGAs have the potential to create a
similar revolution in design by dramatical-
ly increasing the amount of system that can
be “soft.” As previously mentioned, large-
scale programmable devices are now avail-
able at prices that allow them to compete
with discrete processor systems. What is
needed now to drive the adoption of
FPGAs for embedded applications is a
user-friendly, accessible development
method that facilitates the easy integration
of processors, peripheral hardware, and

18 Embedded magazine September 2005

Figure 1 – As shown in illustration “A,” microprocessors allowed some of the design problem
to be moved into easily changeable software, but much of the circuitry remains hard-wired.
In illustration “B,” moving the bulk of the system onto an FPGA platform means that both

the software and execution platform are easily changeable during development.

Altium Designer makes extensive use of
the royalty-free Wishbone processor inter-
connect bus, and supplies several config-
urable bus connection components for
easy interconnection with processor
peripherals. Wishbone-based wrapper
cores for MicroBlaze and PowerPC proces-
sors make it possible to retarget designs
between processors without having to re-
engineer the system. A common compiler
engine and integrated tool chains support
this process at the software level.

This approach allows embedded devel-
opers to choose the most appropriate exe-
cution platform for their applications. You
can commence a design using the vendor-
neutral TSK3000 and move it to a
PowerPC if you need a higher degree of
performance, or migrate to a MicroBlaze
solution optimized for the particular Xilinx
device you are targeting.

Conclusion
Altium Designer allows hardware devel-
opers to move system complexity from
the board level into the “soft” program-
mable logic realm using their existing
skill set. This drastically increases the
number of engineers who can free them-
selves from hard-wiring system compo-
nents and design in an environment
where both the software and hardware
that make up a product’s intelligence are
easily changeable on the fly.

The move toward “softening” the design
process that began with the availability of
cheap microprocessors is being taken to a
new level by current advances in FPGA
technology. Today the bulk of the intelli-
gence in an electronic device resides prima-
rily in the embedded software. With
FPGAs, the embedded intelligence can
span both software and soft-wired compo-
nents contained within a programmable
platform (Figure 3). Opening up of this
potential to mainstream embedded devel-
opers will fuel an explosion in FPGA use
and set the foundation for tomorrow’s elec-
tronic products.

For more information about Altium
Designer and its capabilities, or to learn
more about the emerging soft design
paradigm, please visit www.altium.com.

September 2005 Embedded magazine 19

Hardware Platform

Embedded Intelligence

Connectors

Implemented as Printed Circuit Board

Soft-wired components and
software running on soft microprocessors

“Real World”

Figure 3 – With FPGAs, the embedded intelligence of a product can encompass both
software and soft-wired system components contained within the FPGA. The PCB then

becomes simply a platform for connecting the device intelligence to the outside world.

Figure 2 – Typical block-level definition of system hardware created
in Altium Designer from ready-to-use, pre-synthesized components, including

the processor and configurable Wishbone bus interconnects.

by Joel Woodward
Product Manager
Agilent Technologies
joel_woodward@agilent.com

Copyright © 2005 Xilinx, Inc. All rights reserved.

Logic analyzers provide deep trace and
sophisticated triggering for capturing
software trace. These measurements can
be critical for tracking events leading up
to a crash, evaluating the interaction of
software with hardware, or analyzing soft-
ware performance.

However, microprocessor technology
shifts (such as increased use of cache mem-
ory) have made the information that can be
captured on the pins of stand-alone micro-
processors less relevant. These shifts make
it increasingly difficult to debug embedded
systems. Fortunately, a new logic analysis
innovation for Xilinx® FPGAs allows you
to quickly take MicroBlaze™ soft-core
processor measurements.

Software Execution with Logic Analyzers
Beginning in the 1980s, design teams used
logic analyzers extensively to debug embed-
ded systems, designing in PC board connec-
tors with a specified layout for tracing the
processor. For 32-bit processors, this require-
ment typically included 102 to 136 signals
comprising data, address, and status signals.

Tracing MicroBlaze Processors
with a Logic Analyzer
Tracing MicroBlaze Processors
with a Logic Analyzer

20 Embedded magazine September 2005

Agilent’s MicroBlaze trace core and inverse assembler simplify the task.Agilent’s MicroBlaze trace core and inverse assembler simplify the task.

Logic analyzers still require a certain
arrangement of processor address, status,
and data signals to be laid out on your tar-
get system. Each processor has an associat-
ed logic analysis configuration file and
inverse assembler that works with a speci-
fied PC board layout. Inverse assembly
software converts the acquired ones and
zeros to instruction mnemonics.

In the late 1990s, 32-bit embedded
processors began incorporating technolo-
gies that made it more difficult to make
logic analysis trace measurements.
Shrinking real estate available for debug
made it impractical to include connectors
for tracing. Even if the design team had
designed in connectors for trace measure-
ment, no signals of relevance would be
transmitted to the pins monitored by the
logic analyzer if the processor was execut-
ing out of cache memory. Turning off
cache caused the system to run at a slow-
er rate and could mask problems that
would only occur at real system speeds. In
addition, pipelining and out-of-order
execution made it more difficult for logic
analysis vendors to unravel information
on the bus.

executed instruction and looking up the
associated opcode in the OMF (object
module format) file. It then decodes the
opcode into a MicroBlaze mnemonic, as
shown in Figure 1.

As pins available for debug are often
scarce, the inverse assembler includes a
capability that reduces the number of
required pins. Although 32 PC_Ex signals
exist, the number of external signals needed
to capture a logic analysis trace is typically
much less. This reduction is accomplished
using two different techniques.

First, you do not need to trace the upper
address bits. For any given design, a certain
number of upper address bits are static. You
can achieve more pin reduction – with one
additional pin decreased for each static
upper address bit in the program counter –
by specifying this information in the logic
analysis user interface.

Second, you also do not need to trace
the lower two address bits. All instructions
start on 4-byte boundaries. Using these
techniques, tracing software execution of a
1 MB program requires only about 18 pins.
Simultaneous capture of data requires addi-
tional pins.

Tracing with Cache Enabled
and Using Source Correlation
For stand-alone processors with cache
enabled, logic analysis tracing becomes
impossible. Fortunately, the situation
changes for processors embedded in FPGAs.
A logic analyzer can trace MicroBlaze
processors even when cache is enabled.
Captured signals are routed from the execu-
tion stage of the MicroBlaze pipeline.

Agilent logic analyzers come standard
with a source correlation window. By read-
ing a symbol file (in .elf format), the logic
analyzer can associate captured addresses
with the high-level software associated with
that address. Opcode images are found in
the text sections of the .elf object files. As
you step through assembly instructions, the
equivalent line in the source code for this
instruction is also highlighted. You can
alternatively step through high-level source
code while the logic analyzer simultaneous-
ly displays the associated instruction
mnemonics in the lower window. Simply

Recently, Agilent and Xilinx have collab-
orated to develop a logic analysis trace solu-
tion for MicroBlaze processors that
overcomes the traditional difficulties of trac-
ing software execution using a logic analyzer.

MicroBlaze Inverse Assembly
For PC board layout, design teams enable
the inverse assembler by routing at least the
MicroBlaze program counter signals
(PC_Ex) and the valid cycle signal
(Valid_Instr) to pins. Routing these signals
to a specified layout allows for fast connec-
tion to a logic analyzer through Mictor,
Samtec, or soft-touch probing. You can
also connect the logic analyzer to these sig-
nals with a berg strip or header, using indi-
vidual flying leads.

Because of their reprogrammable
nature, FPGAs with MicroBlaze processors
can be traced late in the development cycle.
As long as a sufficient number of pins have
been reserved for debug, you can route the
required MicroBlaze signals to a specified
pinout without PC board changes.

The Agilent inverse assembler for
MicroBlaze processors reconstructs pro-
gram flow by capturing the address of each

September 2005 Embedded magazine 21

Figure 1 – Agilent’s MicroBlaze inverse assembler works with all of Agilent’s 1680, 1690,
and 16900 series logic. Agilent logic analyzers come standard with a source correlation window

so that team members can set up a measurement at the assembly or source level.

right-click in the source code to set up the
logic analysis trigger (trace specification) for
the next acquisition, as shown in Figure 1.

MicroBlaze Trace Core (MTC)
An optional MicroBlaze trace core, or
MTC, reduces the amount of time and
number of pins required to trace
MicroBlaze processors with a logic analyzer
(see Figure 2). The MTC core, co-devel-
oped by Agilent and Xilinx, works exclu-
sively with the Xilinx Platform
Studio included with the
Embedded Development Kit.
Design teams can graphically add
an MTC core to their design.
Core parameters include pin
compression using time-division
multiplexing (TDM), pin loca-
tion, and I/O standards.

The MTC core provides four
key values:

1. The MTC core connects
required MicroBlaze signals to
pins (pre-synthesis).

2. The core incorporates TDM
to reduce the number of pins
required by a factor of two.
Two MicroBlaze signals are
TDM’d onto a single pin,
with data valid on the rising
edge of the clock for signal
one and data valid on the
falling edge of the clock for
signal two. A demux clock-
ing mode in the logic ana-
lyzer decompresses the
information and splits it
into two separate logic
analysis channels.

3. The MTC core includes
technology that reduces ini-
tial setup time from hours to
seconds and eliminates man-
ual errors that can happen
during PC board layout.
Tracing MicroBlaze proces-
sors can be accomplished
late in product development,
as the MTC core eliminates
the need to layout a PC

board with a specific MicroBlaze sig-
nal pattern for Mictor, Samtec, or
soft-touch probes. Through JTAG,
the logic analyzer sends an auto setup
message to the MTC core. The core
outputs a training pattern on a spe-
cific MTC pin. The logic analyzer
looks for this training pattern across
its channels and discovers which
channel is connected to the MTC
pin. The logic analyzer knows how

each MTC core input is routed
through the core to pins from its
communication with the MTC core.
Using this correlation, the instru-
ment now has sufficient knowledge
to determine how to set up the
physical connection between specific
microprocessor signals and the input
channel on the logic analyzer. This
process is sequentially repeated for
each MTC output pin.

4. Lastly, the MTC core –
constructed entirely of
flops and LUTs – uses a
multi-stage pipeline (typi-
cally four) to minimize
impact on device timing
when the core is inserted
(Figure 3). MTC cores are
very small. An MTC core
in a Xilinx XC2V3000
device consumes roughly
1% of the LUTs and flops.

Conclusion
FPGAs enable fast, accurate
processor execution tracing not
available for stand-alone
processors. Agilent’s inverse
assembler for the MicroBlaze
soft-processor core provides
you with an effective tool for
tracing software execution.
Agilent logic analyzers,
equipped with precise time res-
olution, correlate MicroBlaze
execution history with other
software or hardware events
acquired simultaneously. This
allows you to quickly isolate
problems associated with hard-
ware and software interaction.

Agilent’s royalty-free MTC
core, distributed as part of the
Xilinx Embedded Development
Kit (beginning with version
8.1i), minimizes the time to set
up measurement and eliminates
the need for a specified PC
board layout. For more infor-
mation, visit www.agilent.com/
find/microblaze.

22 Embedded magazine September 2005

Figure 2 – Agilent’s MicroBlaze trace core (MTC) reduces setup time for
an initial trace measurement. You can literally connect a logic analyzer
to a connector with MTC core outputs routed to it. Within seconds, the

logic analyzer is ready to take a measurement. The MTC core,
with its pin compression technology, reduces the number of required

pins for tracing MicroBlaze processors by 50%.

Figure 3 – The thick blue lines show the flops and routes added by
the MTC core. Because there is a flop in the fabric – in addition to one

at the I/O buffer – the router can use timing solely within the MTC core to
move across the chip, thereby minimizing the impact of timing changes

with the addition of the MTC core.

Now you can see inside your FPGA designs in a way that

will save days of development time.

The FPGA dynamic probe, when combined with an Agilent

16900 Series logic analysis system, allows you to access

different groups of signals to debug inside your FPGA—

without requiring design changes. You’ll increase visibility

into internal FPGA activity by gaining access up to 64

internal signals with each debug pin.

You’ll also be able to speed up system analysis with the

16900’s hosted power mode—which enables you and your

team to remotely access and operate the 16900 over the

network from your fastest PCs.

The intuitive user interface makes the 16900 easy to get up

and running. The touch-screen or mouse makes it simple to

use, with prices to fit your budget. Optional soft touch

connectorless probing solutions provide unprecedented

reliability, convenience and the smallest probing footprint

available. Contact Agilent Direct today to learn more.

U.S. 1-800-829-4444, Ad# 7909
Canada 1-877-894-4414, Ad# 7910
www.agilent.com/find/new16900
www.agilent.com/find/new16903quickquote

©Agilent Technologies, Inc. 2004
Windows is a U.S. registered trademark of Microsoft Corporation

• Increased visibility with FPGA dynamic probe
• Intuitive Windows

®
XP Pro user interface

• Accurate and reliable probing with soft touch connectorless probes
• 16900 Series logic analysis system prices starting at $21,000

Get a quick quote and/or FREE CD-ROM
with video demos showing how you can
reduce your development time.

X-ray vision for your designs
Agilent 16900 Series logic analysis system with FPGA dynamic probe

X-ray vision for your designs

by Aaron Spear
Lead Architect, Tools Solution
Accelerated Technology, A Mentor Graphics Division
aaron_spear@mentor.com

Phillip Walker
Technical Marketing Engineer
Accelerated Technology, A Mentor Graphics Division
phillip_walker@mentor.com

Copyright © 2005 Xilinx, Inc. All rights reserved.

The FPGA-based embedded system design
flow provides many benefits to system
developers, as well as new challenges. Chief
among the benefits are accelerated design
flows that allow you to move quickly from
the design and testing cycles to marketing
and selling. With this accelerated flow, it is
more important than ever that the hardware
and software designs are in sync throughout
the entire engineering design cycle.

Accelerated Technology, A Mentor
Graphics Division, has developed a version
of its Nucleus embedded software suite that
integrates with the Xilinx® Embedded
Development Kit (EDK). This provides a
tight integration of software systems in the
FPGA embedded systems design flow.
EDK is based on a data-driven code base
that makes it extensible and open. By lever-
aging this functionality, Nucleus software is
able to achieve a level of integration into
the FPGA-based embedded system design
flow that was previously not possible.

Nucleus Integration with
Xilinx FPGA System Design
Nucleus Integration with
Xilinx FPGA System Design

24 Embedded magazine September 2005

Accelerated Technology’s Nucleus, integrated with EDK, provides
the most extensive solution for embedded system architects.
Accelerated Technology’s Nucleus, integrated with EDK, provides
the most extensive solution for embedded system architects.

The Nucleus embedded software suite
for Xilinx FPGA system design includes a
complete tool offering and target software
platform, including high-level modeling
with xtUML and advanced target software
debugging with the Eclipse-based Nucleus
EDGE environment.

Auto Configuration with MLD
The underlying technology of the Xilinx
approach is microprocessor library defini-
tion (MLD). This technology allows for
automatic kernel configurations and the
generation of board support packages
(BSPs). This unique and straightforward
approach allows the Nucleus embedded
software suite to configure to FPGA system
designs created in EDK. This eliminates the
need to re-port the software system to the
new memory map and peripherals for every
hardware design cycle.

The Data-Driven Approach
EDK uses two main data repositories to
store information on hardware- and soft-
ware-related settings. All hardware-related
settings are stored in the MHS (micro-
processor hardware specification) file, while
software-related settings are stored in the
MSS (microprocessor software specifica-
tion) file. These files provide a database
that other tools in the Xilinx system can
access for any given project.

The data-generation component, as
defined in a TCL file, takes hardware
details from the MHS data file and custom
information from the MLD file and
decides which files to generate and what
parameters to customize. The Nucleus-

Introduction to Nucleus EDGE
Accelerated Technology offers the
Eclipse-based Nucleus EDGE develop-
ment environment, a complete develop-
ment environment that supports JTAG
debugging of both PowerPC and
MicroBlaze processors. Nucleus EDGE
extends the Eclipse platform for multi-
core, multi-process, multi-thread debug-
ging. It can be installed as a stand-alone
or into Platform Studio SDK to provide
advanced debugging and project manage-
ment capabilities.

Nucleus EDGE is state-of-the-art
debugging technology that includes fea-
tures such as:

• Full multi-core/multi-process/multi-
thread debugging, with support for
synchronous operation on multiple
cores simultaneously

• Advanced C-like scripting language
(codelets)

• Data-driven target/core/peripheral
descriptions (XML)

• Support for freeze-mode/run-mode
debugging (OS- and hardware-
dependent)

• Pluggable kernel awareness (data-driven)

• Pluggable connection devices

• Pluggable core support

• Pluggable real-time trace support

• Pluggable profiling engine

specific functions of the TCL file encapsu-
late the entire algorithm, generating con-
sistent information used by the Nucleus
kernel to support a wide range of hardware
IP configurations (see Figure 1).

The elements of the Nucleus PLUS real-
time kernel modified by the data genera-
tion file include:

• The number and type of
peripherals used

• Memory map information

• Locations of memory-mapped
device registers

• Timer configurations

• Interrupt controller configurations

Core Generation
Xilinx currently offers two processor choic-
es for implementation in their FPGAs: the
PowerPC™ 405 hard-core processor and
the MicroBlaze™ soft-core processor. The
Nucleus embedded software suite currently
works with both options. Once you have
selected your processor and configured
your system inside EDK, enabling Nucleus
is as simple as a drop-down menu selection.

Configuring Nucleus
and BSP Generation
After you have generated your basic system
design and core selection in EDK, you are
ready to implement the Nucleus embedded
software suite. As Figure 2 illustrates, we
leveraged Xilinx MLD technology to add
this functionality to EDK.

Once you have configured Nucleus to
fit your system requirements, generating
the corresponding BSP is straightforward.
Simply choose the “Generate Libraries and
BSPs” from the Tools menu option in
EDK. This will build the correct libraries
and any associated applications that the
Nucleus embedded suite requires in order
to run on your newly designed system.

System Debugging with Nucleus EDGE
You now have your hardware defined and
the Nucleus PLUS kernel configured to
run on your new platform. But what about
software development? Where do we go
from here?

September 2005 Embedded magazine 25

MHS MSS

MLD

TCL

User Parameters

Figure 1 – Dataflow in Xilinx EDK

Figure 2 – Components of the Nucleus system are
now configurable from within the EDK through

the Library/OS Parameters dialog.

Creating and Building Applications
Nucleus EDGE provides a powerful build
and project management environment.
The Nucleus EDGE builder is a front end
for any tool that transforms one or more
files from one format into another format;
examples include a compiler that trans-
forms a C file into an object module or a
linker that transforms N object modules
into an executable. You can plug tools into
the Nucleus EDGE builder by writing a
simple XML description for that tool. We
currently have built-in support for 32 dif-
ferent tool sets, including Xilinx GNU for
both PowerPC and MicroBlaze processors.

BSPs
When targeting traditional processors with
Nucleus EDGE, you are responsible for cre-
ating and maintaining BSPs that the debug-
ger and project manager use. One advantage
of Nucleus software integration with EDK is
that BSPs are generated automatically, mak-
ing maintenance painless. When you finish
your hardware design and generate the BSP,
the Nucleus EDGE BSP is also generated.
This BSP is then used to determine appro-
priate tool defaults when creating applica-
tions, or knowing the layout of memory and
peripherals when debugging.

Getting Started with
Project Management
Nucleus EDGE provides a powerful user
interface to change compiler settings for a
given project, or optionally override them
for a particular file. You are free to type in
the command-line arguments if you know
them, or you can peruse the options using a
tree, which contains information about the
command and allowable settings for it. It is
nice not to have to wade through obscure
compiler documentation to find the setting
you need and its syntax (Figure 3).

Editing and Building
Nucleus EDGE provides a full-featured
context-sensitive editor for C/C++ as well
as assembly. The editor provides the fol-
lowing features:

• Configurable syntax highlighting (you
can change the colors)

• Outliner that aids in navigation for
your active source file

• Right-click navigation for declara-
tion/definition of function calls

• During debugging, hovering over vari-
ables displays their current value; addi-
tionally, you can define your own
script functions to render tool tips for
your application data types

• Code completion for both functions
and macros

Any errors in your source during build-
ing are displayed in the build console. You
can click on errors; the editor synchronizes
to the location for you. The editor decorates
all warning or error source locations with
special icons (Figure 4). Figure 4 also shows
the outliner at the right side of the file.

Debugging PowerPC
and MicroBlaze Processors
For Nucleus PLUS kernel applications,
Nucleus EDGE can support run-mode
debugging – the debug of individual tasks
while the rest of the system continues to
run. To accomplish this, it can use a serial
port, Ethernet connection, or even the
Xilinx JTAG UART.

For MicroBlaze processors, Nucleus
EDGE currently supports debugging
through XMD (Xilinx Microprocessor
Debugger). For PowerPC, connection
options include XMD, or, for PowerPC
designs in which you have instantiated a
dedicated JTAG scan chain, third-party
JTAG devices such as Abatron’s BDI2000
and MacCraigor Systems On Chip Demon
family of connections.

Platform Debugging
(Hardware/Software Co-Debugging)
One useful feature gained from connecting
through XMD is that you can leverage
ChipScope™ Pro hardware debugging fea-
tures simultaneously while you debug your
software using Nucleus EDGE. In the
ChipScope Pro GUI, you get a logic ana-
lyzer view of signals inside your core. You
can then configure the ChipScope Pro ana-
lyzer to halt the processor when the state of
a certain peripheral changes, for example.

When this occurs, Nucleus EDGE syn-
chronizes, and you see the exact state of
your software when the event occurred.

Debugging
Nucleus EDGE contains many special fea-
tures for embedded debugging. The regis-
ter view, for example, shows groups of
native processor registers as well as memo-
ry-mapped peripherals. Those bits in the
register that are set are highlighted in an
optional graphical control. Bit-mapped
registers show the bits set, and allow you
to control them individually.

In Figure 5, you can see that “Exception
Enable” is bit 6 in the MSR (the bold box
around the bit), and that the bit is not cur-
rently set (the blue background). Gone are
the days of getting out your calculator to
do binary conversions and counting bits to

26 Embedded magazine September 2005

Figure 3 – Nucleus EDGE build settings
for MicroBlaze GNU

Figure 4 - Building with errors

Figure 5 - MicroBlaze registers

figure out if a bit is set. Figure 5 also shows
how values that changed from the last step
are color-coded (red).

Breakpoints
One other compelling feature that Nucleus
EDGE offers above and beyond the capabil-
ities of Platform Studio SDK is built-in inte-
gration with hardware breakpoints. As you
may know, you can locate as many as eight
program counter hardware breakpoints
(used for stepping), as well as four read
watch points and four write watch points in
a given MicroBlaze design. Nucleus EDGE
offers a completely integrated and graphical
method to set both types of breakpoints.
Also, the Nucleus EDGE debug engine is
able to use the hardware breakpoints seam-
lessly to enable stepping in ROM.

Multi-Core Debugging
The number of MicroBlaze cores that can
be placed in a design is only limited by the
size of the FPGA. However, the MicroBlaze
debug module can support debugging of as
many as eight MicroBlaze cores simultane-
ously. The Nucleus EDGE user interface
and debug engine have the ability to create
“synchronization groups” of different cores.
When one of these cores stops, all of the
cores in the group are stopped.

Although Xilinx does not currently ship
an IP block that supports configuration of
synchronous control of multiple cores, it is
a relatively trivial matter to implement it
yourself – after all, you have an FPGA.
Simply tie together a memory-mapped reg-
ister with some MUX logic on the
MB_HALT pin (that indicates that a core
has gone into debugging state) as well as the
DBG_STOP pin (that can force a core into
debugging state). This way, when one core
in a group either hits a breakpoint or has an
exception, all of the cores stop. Then, in
Nucleus EDGE, you can provide a codelet
script that sets this register appropriately.

Codelets/Scripting
Nucleus EDGE contains support for a
scripting language that we call “codelets.”
The syntax is standard ISO/ANSI C, with
a few extensions. Simply put, codelets are
scripts that run in the debugger but have

full visibility and control over the target.
You can access target registers, memory,

and variables, as well as call target functions
from within a codelet. You can read and
write host files as well as sockets. You can
open “channel viewers” in the debugger GUI
and execute them through any different
expression evaluation. You can call them
from the command line, or when hitting a
breakpoint, or by typing an expression in the
watch window. Codelets are meant to be an
enabling technology. They allow you to get
inside your hardware in a way that is not
otherwise possible. Some things that cus-
tomers have done with codelets include:

• Board initialization during debug

• Complex conditional breakpoints

• Custom hardware validation/
regression testing

• Virtual console I/O

• “Poor man’s” kernel awareness

• SmartWatch – the ability to define
a codelet that is used to “render” a
given data type to a string, giving
you nice tool tips for your data
structures when debugging

Channels
Nucleus EDGE contains an abstraction for
communications that we call channels. Any
byte stream can be a channel. Files, sockets,
and serial ports can all be channels. Codelets
can also be used to create channels. On top of
that, the GUI provides the ability to write
“channel viewer plug-ins,” a way to render the
data that comes from these channels. Using
this infrastructure offers all kinds of interesting
capabilities. Nucleus EDGE currently ships
with the following built-in channel viewers:

• Generic text console I/O (standard I/O
with the app)

• VT-100 compatible console I/O (sup-
ports escape sequences)

• Strip chart recorder that allows you to
plot any value over time in real time

• Windows Media Player streaming
plug-in (plays MP3s, MPEG video)
(on Windows hosts only)

• Binary data viewer (like the memory
view, in effect a “protocol analyzer”)

These viewers are just the beginning.
Channels also allow us to abstract the mech-
anism used to connect to a profiling agent or
run-mode debugging, for instance. When
coupled with the Xilinx JTAG UART, this
yields a powerful infrastructure for getting
inside your application.

Kernel Awareness
Nucleus EDGE kernel awareness gives you
the ability to see a snapshot of the state of
your system, as well as providing the ability to
set thread-dependent breakpoints. We cur-
rently provide out-of-the-box kernel aware-
ness for the Nucleus PLUS kernel. However,
Nucleus EDGE also gives you the ability to
configure your own kernel awareness. This
can be done for a third-party RTOS, an in-
house kernel, or no RTOS at all.

Nucleus EDGE provides a data-driven
mechanism to describe how it should iterate
objects of a given type and display their
attributes. They do not even have to be soft-
ware objects – they could be anything that
is memory-mapped (Figure 6).

Conclusion
Configurable cores are the future of embed-
ded development. With the combination of
auto configuration of Nucleus target software
and advanced debugging with Nucleus
EDGE, Accelerated Technology has bridged
long-standing gaps in integrated system
design. By supporting both PowerPC- and
MicroBlaze-based FPGA systems, Accelerated
Technology distinguishes itself from the com-
petition and provides unparalleled software
tools and support for FPGA system designers.

For more information, evaluations, and
updates to these exciting technologies, visit
www.acceleratedtechnology.com/xilinx.

September 2005 Embedded magazine 27

Figure 6 - Kernel awareness

©2005 Mentor Graphics Corporation. All Rights Reserved. Mentor Graphics, Accelerated Technology, Nucleus is a registered trademarks of Mentor Graphics Corporation. All other trademarks and
registered trademarks are property of their respective owners.

For a FREE evaluation of Nucleus for Xilinx EDK visit:
AcceleratedTechnology.com/xilinx

Nucleus. FPGA made easy.Accelerated Technology, A Mentor Graphics Division
info@AcceleratedTechnology.com • www.AcceleratedTechnology.com

As a developer, you are concerned with many issues—
project deadlines, code quality and integrated tool
support, to name a few. And now that you’ve selected an
FPGA-based processor to power your next application,
what do you do? Where can you find a rich development
environment that supports both the Xilinx MicroBlaze™

and PowerPC™ processors, individually and
simultaneously? The Nucleus® EDGE software,

based on Eclipse, answers this need by providing
a comprehensive, fully developed tool suite for both

MicroBlaze and immersed PowerPC developers alike.

Accelerated Technology recognized a lack of
development tools designed specifically for
FPGA designers and created a rich
development environment for their
particular needs. The Nucleus EDGE
software consists of an IDE, compiler,
debugger and system profiler —

all seamlessly integrated so that FPGA
developers can create their

product from conception to
deployment in one complete
environment.

So whether you’re developing your
application with a MicroBlaze or immersed

PowerPC processor-based FPGA, the Nucleus
EDGE development environment is the only tool
you’ll need to completely develop your product
and get it to market quickly.

NucleusEDGE
Comprehensive Tool Suite for FPGA Developers

>> Key Benefits

High quality and performance at low cost

Plug-and-play to Xilinx MicroBlaze and

PowerPC.

Full support of Xilinx EDK.

Zero kernel overhead, 1-3 instructions

per service call and no scheduling

overhead.

Only 2 kb software driver code.

Scalable micro-kernel structure and plug-

in architecture supports: UDP/IP,

TCP/IP, file system, multi-processor

support etc.

Perfect for FPGA design!

>> Suitable Target Systems

Highly suitable for FPGA designs since

access time between CPU and

peripherals can be minimized.

Small/medium sized embedded systems

where performance and predictability is

important.

Old systems where higher performance

is needed at a low cost

Systems that uses the RTOS

extensively.

MicroBlaze/PowerPC + Sierra RTOS

– a complete system can be built with a

Xilinx 200K-gate Spartan-3 FPGA

SSiieerrrraa RRTTOOSS ffrroomm RReeaallFFaasstt

- The Fastest Real-Time Kernel in the World!

The Sierra RTOS is a unique implementation of a real-time kernel in hardware.

Due to hardware implementation, the Sierra can fully utilize hardware benefits:

increased performance, parallelism and 100% predictability.

The Sierra hardware together with a small software driver makes a complete stand-

alone RTOS kernel and can be used in any embedded system. The Sierra is easy

integrated with Xilinx Embedded Development Kit to the MicroBlaze or PowerPC.

>> RealFast provides:

Sierra RTOS support and optimized customizations.

Worldwide courses in HW/SW System Design with

Xilinx EDK for single- and multi-processor systems

Sierra demo version available now at:

www.realfast.se/xilinx

More information:

www.realfast.se/xilinx

Susanna Nordstrom

susanna.nordstrom@realfast.se

by Paul N. Leroux
Technology Analyst
QNX Software Systems
paull@qnx.com

Copyright © 2005 Xilinx, Inc. All rights reserved.

With their multi-gigabit transceivers, multi-
plier arrays for parallel signal processing, and
reconfigurable logic, Xilinx® Virtex™-II
Pro and Virtex-4 FX FPGAs serve as ideal
platforms for building flexible and cost-
effective software-defined radios (SDRs).
For instance, by supporting partial recon-
figuration – the ability to configure or
reconfigure a portion of an FPGA on the
fly – these FPGAs allow a single set of pro-
cessing resources to support multiple wave-
forms concurrently. System designers can,
as a result, eliminate redundant per-chan-
nel hardware and reduce power consump-
tion in their SDR devices.

Until recently, the CPU in most SDR
designs existed as a discrete component that
communicated with the FGPA fabric over a
high-speed interconnect. The Virtex-II Pro
and Virtex-4 FX devices take a different
approach, immersing high-performance
PowerPC™ cores directly into the FPGA.
This approach not only provides high-speed
access ports between the CPU and the
FPGA fabric, but also lowers the compo-
nent count and frees up board space.

Building Reliable and Upgradable
Software-Defined Radios
Building Reliable and Upgradable
Software-Defined Radios

30 Embedded magazine September 2005

The QNX Neutrino RTOS provides the dynamic upgradability, fault tolerance,
and hard real-time capabilities demanded by mission-critical SDR devices.
The QNX Neutrino RTOS provides the dynamic upgradability, fault tolerance,
and hard real-time capabilities demanded by mission-critical SDR devices.

Just as important, the embedded
PowerPC cores allow SDR designers and
software engineers to leverage an array of
standards-based, off-the-shelf RTOSs and
tool chains, such as the QNX Neutrino
RTOS and QNX Momentics develop-
ment suite.

The term “software” in SDR can be
misleading at first. It suggests a device in
which software running on the CPU han-
dles functions such as signal generation and
detection, modulation and demodulation,
encryption and decryption, and signal fre-
quency selection. In reality, most such
functions run on signal processors in the
FPGA fabric.

Nonetheless, SDR devices must still
rely on CPU-based software to download
and manage new waveforms for the signal
processors, handle voice capture and play-

back, manage information displays, and
coordinate numerous other command
and control tasks. Given the complexity
and dynamic nature of the typical SDR
device, this software must offer a robust
mix of reliability, upgradability, and real-
time performance. In this article, we’ll
explore how the QNX Neutrino micro-
kernel RTOS helps system designers and

critical to building a dynamic and reliable
SDR device:

1. The OS kernel contains only a small
core of fundamental services, such as
timers, messages, and scheduling. All
higher level services and programs –
drivers, file systems, protocol stacks,
and user applications – run outside
the kernel as separate, memory-pro-
tected components.

2. Most software components communi-
cate through message passing, a well-
defined communication mechanism
that allows programs to exchange data
while remaining safely isolated from
each other.

Properly implemented, this message
passing also serves as a virtual “software
bus” that allows almost any software com-
ponent, be it a device driver, protocol stack,
or application, to be removed, added, or
upgraded on the fly. SDR devices can thus
support new functionality without system
resets or service interruptions.

Web Services
With QNX Neutrino’s virtual software bus,
SDR devices can operate nonstop, even
when being upgraded with new waveforms,
applications, drivers, or other software
components. Nevertheless, one question
remains: When a server makes a new wave-
form or service available, how do remote
SDR devices actually discover that compo-
nent and learn how to use it?

To discover and activate new waveforms
and filters, SDR devices can use Common
Object Request Broker Architecture
(CORBA) middleware. In fact, the U.S.
Department of Defense (DoD) mandates
the use of CORBA for this purpose in its
Joint Tactical Radio System (JTRS) pro-
gram. An example of CORBA middleware
is Objective Interface’s ORBexpress, a
highly efficient, real-time implementation
that can run on QNX Neutrino.

software engineers achieve these qualities,
while significantly reducing development
time and effort.

Making the (Up)grade
With Xilinx FGPAs, you can achieve a key
objective of SDR: a single, reconfigurable
hardware platform that can dynamically
adapt to a variety of radio environments.
Yet that goal is defeated, or seriously
diminished, if the system software running
on the FGPA’s PowerPC core doesn’t pro-
vide an equivalent measure of upgradabili-
ty and reconfigurability.

Unfortunately, such dynamic require-
ments pose a serious challenge to conven-
tional RTOSs. The problem springs from
traditional embedded design, where soft-
ware typically remained stable, with little
or no change, over a product’s entire life

cycle. Having been created for such prod-
ucts, most RTOSs still reflect the old reali-
ty. Consequently, deployed systems cannot
easily be maintained, upgraded, or extend-
ed unless removed from service.

To address this problem, QNX
Neutrino uses a true microkernel archi-
tecture (Figure 1). Microkernel RTOSs
have two defining characteristics – both

September 2005 Embedded magazine 31

Figure 1 – QNX Neutrino’s microkernel architecture allows software components – including
waveforms, device drivers, protocol stacks, and other services – to be upgraded on the fly.

... SDR devices can operate nonstop, even when being upgraded with
new waveforms, applications, drivers, or other software components.

Designed to let heterogeneous systems
interoperate with one another, CORBA pro-
vides distributed processing in a single enter-
prise and over a closed network, and is
well-suited to waveform provisioning.
However, its inability to readily traverse
Internet firewalls makes it unsuitable for
accessing higher level services over a wide
area network (WAN), such as the Global
Information Grid (GIG) envisioned by the
DoD. In net-centric operational warfare
(NCOW) systems, for instance, multi-func-
tion field radios must access new tactical
information services through the GIG as
those services become available. For such
applications, QNX’s implementation of Web
services offers an ideal solution (Figure 2).

Web services offer full access to Web
capabilities (such as the uniform resource
identifier [URI] for accessing remote
resources) and can work with various
security protocols, including HTTP-S
and IPSec with strong encryption. Web
services are also firewall-friendly –
through their well-defined transport bind-
ing to HTTP, they can use existing
Internet security protocols and be
accessed from anywhere on the Internet.
And because Web services are based on
open standards such as XML, SOAP,
WSDL, HTTP, and UDDI, they provide
a vendor-neutral, language-independent,
and platform-independent method of
accessing remote services and data.

Put simply, Web services can span mul-
tiple enterprises over a WAN and eliminate
the complexities of firewall traversal, allow-
ing a JTRS radio to access services on a
GIG that has high levels of VPN security
and routing.

To help you take advantage of Web serv-
ices, QNX has developed a Web services
technology development kit (TDK). Using
this TDK, embedded developers can
implement WSDL, SOAP, and XML-based
Web service applications in native C or
C++ without having to deal with the com-
plexity of XML and protocol transforma-
tions. Moreover, the TDK conforms to the
Web Services Interoperability Organization
(WSI) Basic Profile 1.0. Applications
developed with the TDK can therefore
interoperate with other standards-based
implementations, such as Microsoft .NET.
Just as important, QNX designed the TDK
to meet the tight resource constraints of
SDR devices and other embedded systems.

Mission: Critical
For most SDR devices, reliability is an
absolute must. There is little or no toler-
ance for any software fault that can defeat
the device’s main purpose: signaling. If for
some reason a software fault does occur, the
device should recover from it gracefully,
without a system reset.

This requirement poses a challenge to
conventional OSs, which bind most system

services (drivers, file systems, protocol
stacks) to the OS kernel. With this
approach, a single coding error in any sys-
tem service can corrupt memory used by
other services or by the kernel itself, caus-
ing system-wide failure.

In comparison, a microkernel OS like
QNX Neutrino runs all such services out-
side of the kernel as separate memory-pro-
tected components. This architecture offers
two key reliability benefits. First, it makes it
much easier to isolate and correct coding
errors before the errors can make their way
into a deployed system. For instance, if any
service or application under development
attempts to access memory outside of its
process container, the OS will identify the
process responsible, indicate the location of
the fault, and create a process dump file
viewable with source-level debugging tools.
The dump file can include all of the infor-
mation the debugger needs to identify the
source line that caused the problem, includ-
ing a history of function calls, contents of
data items, and other diagnostic informa-
tion. Compare this to a conventional OS,
where such errors can crash the entire sys-
tem without leaving a trace of the cause.

Second, microkernel architecture
enables dramatically shorter mean time to
repair (MTTR). Consider what happens
when, for example, a driver faults in a
deployed system: the OS can terminate the
driver, reclaim the resources the driver was
using, and then restart it, often within a
few milliseconds. From start to finish, the
entire procedure can be orders of magni-
tude faster than the conventional solution,
which is to reboot the entire system.

The process is made even simpler by
QNX’s critical processing monitoring
technology, which employs “heartbeating”
to detect problems before they escalate and
allows you to specify the exact recovery
actions the OS should follow (Figure 3).

The Real Benefits of Real Time
As a true RTOS, QNX Neutrino offers the
hard real-time capabilities needed to coor-
dinate multiple concurrent SDR applica-
tions and services. It can, for instance,
handle command and control programs,
map-based tactical displays (in a JTRS

32 Embedded magazine September 2005

Service Broker

Service Consumer

Di
sc

ov
er

y

Bind, Request

Transport
Client

Service Provider

UDDI Publish save_xxx

WSDL

UDDI Inquiry find_xxx

Service

SOAP

XML
Header Body

Web Services Architecture

Figure 2 – Using Web services, an SDR device can readily access higher level services over a wide area network.

radio), multiple modulation and encryption
schemes, and various other applications,
while ensuring that time-critical tasks (such
as transmission of voice packets between the
host processor and a signal processor) always
occur in a timely and predictable manner.

To enable this predictable behavior,
QNX Neutrino offers numerous features,
including a priority-based preemptive
scheduler, a preemptible kernel, nested
interrupts, mechanisms to avoid priority
inversion, and a flexible choice of scheduling
algorithms. Together, these features help you
ensure that high-priority threads meet their

deadlines consistently, no matter how many
other threads are competing for CPU time.

Allowing a single set of resources to sup-
port multiple waveforms is a key advantage
of Virtex-II Pro and Virtex-4 FX FPGAs.
Likewise, a mature RTOS like QNX
Neutrino allows you to maximize processor
resources while minimizing overall cost.
There is no need to adopt an expensive
high-end CPU, along with its attendant
thermal dissipation issues, to achieve the

necessary processing capacity. Moreover,
QNX Neutrino’s real-time capabilities offer
greater design flexibility: you have the
option to move applications from a DSP to
the host CPU or vice versa. With a gener-
al-purpose OS, any tasks with real-time
constraints have to be delegated to a DSP.

Bred in the Bone
SDR holds the key to dealing with multiple
evolving transmission standards. But for a
time, SDR was itself in need of common
standards that could ensure software
reusability and interoperability across various

SDR platforms. To address the problem, the
DoD’s JTRS Joint Program Office (JPO)
developed the Software Communications
Architecture (SCA) and has mandated its use
for all JTRS development projects. The
Software Defined Radio Forum has since
adopted the SCA, while the Object
Management Group (OMG) plans to pro-
mote it as a commercial standard.

To ensure waveform portability and
compatibility with commercial off-the-

shelf (COTS) technology, the SCA defines
an operating environment based on two
existing industry standards: CORBA mid-
dleware and a Portable Operating System
Interface (POSIX) operating system.

QNX Neutrino represents an ideal oper-
ating system for SCA implementations. To
begin with, it complies with POSIX 1003.1-
2001 and features an extensive set of POSIX
options, including real-time extensions and
threads. This not only satisfies SCA require-
ments, but makes it very easy to port Linux,
Unix, and other POSIX-based open-source
programs to QNX Neutrino’s highly effi-
cient real-time architecture. Just as impor-
tant, the QNX Neutrino microkernel was
designed from the beginning to support
POSIX – POSIX is “bred in the bone.” Such
an approach obviates the need for a complex
POSIX adaptation layer used by other OSs,
resulting in greater performance and lower
memory requirements.

In addition, this robust POSIX support
greatly simplifies the task of porting any
real-time CORBA implementation, such as
ORBexpress, to QNX Neutrino. This is key,
as real-time CORBA provides the frame-
work that allows SCA-compliant devices to
dynamically learn new waveforms.

Conclusion
Working closely with Xilinx, QNX
Software Systems has developed board sup-
port packages (BSPs) for the Virtex-II Pro
ML300 evaluation platform, the ML310
Virtex-II Pro development platform, and
the ML403 Virtex-4 FX evaluation plat-
form. These BSPs are compatible with the
version 6.3 of the QNX Neutrino RTOS
and eliminate software/hardware integra-
tion issues, allowing you to immediately
begin application development.

For more information about these BSPs,
or how QNX Neutrino can help enable
your SDR project, visit www.qnx.com, or
call QNX at (800) 676-0566 (in North
America) or +1 (613) 591-0931.

September 2005 Embedded magazine 33

Figure 3 – With its critical process monitor, QNX Neutrino can restart problem components
automatically, without downtime or operator intervention. The monitor can also generate

a process dump file for postmortem debugging, allowing SDR developers to engineer
a fix that can then be uploaded to the field.

Allowing a single set of resources to support multiple waveforms
is a key advantage of Virtex-II Pro and Virtex-4 FX FPGAs.

by Geir Kjosavik
Embedded Processing Marketing Manager
Xilinx, Inc.
geir.kjosavik@xilinx.com

Copyright © 2005 Xilinx, Inc. All rights reserved.

Electric motors are everywhere. I counted 334
of them in my home, and the number keeps
growing. If I were to buy a new PC, for exam-
ple, I’d have to count many more. Two or
three motors drive different cooling fans. The
DVD/ROM drive and DVD burner each
contain four motors: tray control, spindle
drive, pickup sledge drive, and laser focus
servo. The hard drive has two motors, and
even though floppy drives are no longer
included, common peripherals such as force
feedback joysticks, printers, and scanners
more than make up for their loss.

Outside the home, trains, cranes, and
electric cars contain motors that can output
anything from 100 to several thousand
horsepower. Stationary applications contain
big motors as well. Industrial compressors,
pumps, and fans are just a few examples.

Different applications also require differ-
ent types of motors. A small stepper motor
can position an inkjet printer head with
incredible precision, but it takes a mon-
strous three-phase AC induction motor to
drive a city water supply pump.

For almost every motor, an electronic
motor drive circuit controls its speed and
torque. The electronics that control the print
head motor and the water pump motor are as
different as the motors themselves. A $.50 8-
bit microcontroller can drive a stepper
motor, while the current drive comprises a
few surface-mounted metal-oxide semicon-
ductor field-effect transistors (MOSFETs).

On a water pump motor, the fat copper
rails connecting it to the power stage hint at
large electric currents. The power stage is
based around gigantic insulated gate bipolar
transistor (IGBT) transistors that alternate
the direction of the current through the
motor’s three-phase windings.

Serious Computing Power Needed
The computing horsepower required to effi-
ciently control pump motors is almost as
impressive as the motor itself – at least to an
electrical engineer. At the heart of the motor

Take Electronic
Motor Drives to
the Next Level

Take Electronic
Motor Drives to
the Next Level

34 Embedded magazine September 2005

When you combine embedded processors
on FPGAs with Xilinx motor drive components,
there’s no limit to what you can achieve.

When you combine embedded processors
on FPGAs with Xilinx motor drive components,
there’s no limit to what you can achieve.

drive sits a high-performance CPU, and a
busy one at that. Among its many tasks is
generating the three 120-degree out-of-
phase sine waves on which AC induction
motors thrive. It varies the duty cycle of the
drive currents at high frequency, and the
inductive load “sees” the waveform as a
smooth sine wave. This is pulse width
modulation (PWM).

The sine waves, amplified many times by
the power stage, make the motor spin. The
CPU controls the speed and torque of the
motor by varying the frequency and ampli-
tude of the sine wave, respectively. However,
as in an automobile, holding the accelerator
in a fixed position doesn’t guarantee travel at
a constant speed. This is why some clever
engineers invented the cruise control, and
also why equally clever engineers came up
with electronic motor controls.

Throw Some Math in There
In simple terms, the CPU controls the
speed and torque of the motor this way:

1. Read speed and torque values

2. Compare with desired settings

3. Calculate increments or decrements

4. Adjust speed and torque using
values from #3

5. Repeat series from #1

The most commonly used method to
calculate the adjustments in step #3 is
known as PID – proportional integration
and derivation. PID comprises a series of
computations that take the differences
between desired and current operation as
inputs and spit out suitable adjustments
proportional to those differences – small
adjustments for small deviations, bigger
changes if the motor is really off-kilter. You
can’t just add or subtract the entire differ-
ence, because it takes several control loop
iterations for the motor to react to a change
in input. Such an approach would lead to

ferent position encoding/decoding mecha-
nism than AC induction motors. When it
comes to controlling currents and voltages,
PWMs are still the name of the game.

Doing It My Way
Because you cannot build a high-
performance motor drive without PWMs,
many embedded processors and microcon-
trollers come with PWMs built-in. These
PWMs are the result of long discussions
between the chip vendor’s marketing and
engineering departments. It’s a battle
between customer requirements on one
side and die size estimates, design time, and
testability on the other. The resulting
design is a compromise between what the
“average” customer wants and what can be
done within the confines of cost and time-
to-market requirements.

A Square PWM in a Square Hole
PWMs come with different features and
settings: varying resolution and speed, edge-
aligned versus center-aligned, dead time
generation, and symmetrical outputs. Most
on-chip modules offer software configura-
tions of these parameters, but more often
than not, off-the-shelf modules will not
meet your exact requirements. Even if they
did, that technology would also be available
to your competitors. Using a standard mod-
ule often requires limiting adaptations to
the power stage and control software.

A clever motor drive design requires
that software, power stage, and PWMs
work together in perfect unison. In other
words, you need full freedom in designing
all three, which effectively rules out on-
chip PWMs.

FPGAs to the Rescue
Custom PWMs = custom logic = FPGAs.
With an FPGA, you can also do custom
QEI interfaces, an ADC interface, safety
circuitry, and timer arrays, all designed
exactly the way you want them.

instability, with wildly oscillating values.
The motor drive measures the speed of

the motor by decoding signals from an
optical or magnetic encoder on the motor’s
drive shaft. A state machine known as
quadrature encoder interface (QEI)
decodes these signals. Measuring phase cur-
rents at certain points in the PWM cycle
gives you the torque.

You can then feed other parameters to
the control algorithm, such as voltage and
current waveform profiles. If you take the
latter and throw complex math at it, such
as an algorithm bearing the “Star Trek”-like
name of flux vector control, you can pre-
dict the motor’s behavior very accurately
without an opto-mechanical or magnetic
interface. This is useful when controlling
smaller motors, where gadgets like shaft
encoders take up too much space and cost
more than the incremental CPU power to
eliminate them.

Most industrial motor drives are also
connected to some kind of network, so
when you add the computational powers
required to run a TCP/IP or DeviceNET
stack on top of everything, performance
requirements can reach as much as several
hundred MIPS – if you solve your embed-
ded computing needs with brute force. Like
hunting sparrows with a rocket launcher, it
works, but there are more elegant approach-
es to meeting performance requirements.

Look Ma, No Brushes
The AC induction motor is generally con-
sidered the workhorse of all industrial motor
types. Another popular motor for high-per-
formance applications is the brushless DC
motor (BLDC), also known as the perma-
nent magnet AC motor. The apparent con-
fusion arises from the fact that it is built on
the principles of a DC motor but operates
from an alternating current. The BLDC
motor doesn’t need a sine wave, but the
motor drive must know its exact rotational
position at any time, thus calling for a dif-

September 2005 Embedded magazine 35

A clever motor drive design requires that software,
power stage, and PWMs work together in perfect unison.

The Next Step: Embedded Integration
The traditional high-performance AC
induction motor drive comprises an
FPGA and an embedded processor, as
shown in Figure 1. This configuration
works well, except that the control loop
traverses the bus between the two com-
ponents twice. Because this bus is often
shared with other system functions, per-
formance is indeterministic and easily
becomes an unnecessary bottleneck in
loop response time.

Xilinx® embedded technology allows
you to bring the embedded processor onto
the FPGA. The benefits of this approach
go beyond fewer components, smaller size,
and fewer suppliers. It also improves both
performance and design time.

Co-Processor Interface
It does not matter whether you choose
the 32-bit MicroBlaze™ soft-core
processor or hard-coded PowerPC™ 405
processor. Both offer some unique bene-
fits through circuitry dedicated to inter-
facing with on-chip peripherals in the
FPGA fabric. Figure 2 shows some
design examples in which all control
loop data travels to and from the CPU
over a dedicated, deterministic link that
is not shared with any other resources.

Eliminating bottlenecks in a design is
like peeling away the layers of an onion.
You design around one hurdle, and the
next one reveals itself immediately. Now
that an important hardware pipe has
been effectively unclogged, you should
not be surprised to see a potential for
improvements in your software. Figure 3
shows the software analyzer that comes
packaged with the Xilinx Embedded
Development Kit (EDK). This tool
could prove exceptionally helpful in
identifying resource-consuming func-
tions. Motor control software, like any-
thing else, is likely to have its share.

Intelligent Versus Brute Force
I have already mentioned the brute-force
approach to designing embedded sys-
tems. FPGA processors with a co-pro-
cessing interface effectively put an end to
throwing raw MIPS at any performance

36 Embedded magazine September 2005

FPGAFPGA

 C

PWMs

Feedback
Logic

ADCADC

PID

(Waveform gen.)

Interfacing

Power
Stage

Bus

Network

PWMs

Feed-
back
Logic

ADCADC

Wave-
form
gen

Interfacing

Power
Stage

ADC
I/F

PID

O
P

BSupervisory

EMAC /
CAN2.0B

FSL

Network

Feed-
Back
Logic

ADCADC

PID / Wave-
form gen.

Interfacing

Power
Stage

ADC
I/F

DSP /
FPU

F
S

Ls

Supervisory

...or...

EMAC / CAN

Network

PWMs
/

Figure 1 – Block diagram traditional motor drive design

Figure 2 – Two-block diagram of embedded FPGA design

challenge. A carefully designed hard-
ware/software mix can reduce CPU per-
formance requirements by several orders
of magnitude.

Typical software bottlenecks in a drive
are floating-point math functions, DSP
functions, and of course, the PID function.
As the designer, you should define the opti-
mum mix between hardware and software
modules. The FPGA gives you full freedom
to balance this any way you want.

A New World of Debugging
The traditional design split of an embed-
ded processor plugged onto an FPGA can
be a nightmare to debug. With two differ-
ent sets of debugging tools probing two
different chips, visibility of interaction
between the two is extremely limited.

The Xilinx ChipScope™ Pro analyzer
lets you debug software and hardware inter-

action like never before. You can set the
debugger to trigger when the base counter
inside the PWM reaches 0x3FF and observe
what code lines were executed within a 50
µs window around that point – without
halting execution. Or set the debugger to
trigger on each Phase X zero crossing in the
sine table and observe the resulting PWM
waveform over the next 5 ms.

With full visibility of any chain of
events within the system, you can track
down even the most elusive bugs in min-
imum time.

Motor Control Components Ready to Go
As much as we at Xilinx recognize the fact
that you are the drive design experts, we
do provide a few bits and pieces to give
you some ideas of what’s possible with
embedded processing on FPGAs.

Our reference design, “Spinning Wheels,”

contains complete implementations of one
BLCD and one AC induction motor drive.
The IP of the solution is openly available as
VHDL source code:

• BLDC drive unit

• Hall effect BLCD decoder

• AC induction drive unit

• QEI

The solution comes packaged with
reference designs that include MicroBlaze
integration with C code examples, tutori-
als, application notes, and simulation test
benches if you don’t have a power stage
and a motor handy at all times.

Take a look at the blocks and play
with them to get a feeling for what’s pos-
sible. Once you have pieced them
together, feel free to sprinkle the design
with an FPU and a CAN2.0B interface,
or whatever it takes to make it the per-
fect drive.

Conclusion
Motor control design is tough work. The
quest for smarter, faster, and more power-
efficient designs imposes an enormous
strain on software and hardware engi-
neers. By adopting FPGAs with on-chip
embedded processors, you are free to
implement the creative design ideas need-
ed to pull ahead of your competitors.
With full flexibility in PWM design and
control over the hardware/software split
in the control functions, the possibilities
are endless.

September 2005 Embedded magazine 37

XMDXMD

Active trigger when
addr bus = 0xC200

Trigger out signal
from IBA to CPU
debug halt signal in

Figure 3 – Software profiling screen shot Figure 4 – ChipScope screenshot

Figure 5 – Spinning Wheels reference design

The PSA also provides a sort of free-roaming

video conferencing facility. Effectively a “PDA

with wings,” the images captured with its single

color camera are compressed by a JPEG module

in the VPU and transmitted over a wireless

Ethernet link to enable real-time visual

teleconferencing.

Partnering

The Challenge
Design a low-power and cost-effective

Vision Processor Unit (VPU) for a

Personal Satellite Assistant (PSA)

that processes all image data at a rate

of at least 15 frames per second from

eight monochrome cameras and one

color camera.

The Solution
The Xilinx® Virtex™-II Pro embedded

PowerPC™ processor, wide range of

processor IP, and Platform Studio tool

suite in the Embedded Development Kit

(EDK) achieve increased system

integration and cost-efficiency.

The Results
• Processor performance requirement

met with the PowerPC

• Strict power budget satisfied

• Functionality of an entire stack of

graphic cards implemented in a

single FPGA

Xilinx and Birger Engineering
The Xilinx embedded processing solution enables Birger Engineering

to develop the Vision Processor Unit (VPU) for a Personal Satellite

Assistant (PSA).

The Personal Satellite Assistant (PSA) is a

volleyball-sized robot designed to operate

on a wide variety of spacecraft. The goal is

to provide astronauts with a robot assistant

to help them with their daily tasks, monitor

the environment on the space vehicle, and

to venture into situations that might be

too dangerous for humans. Central to the

operation of the PSA is the Vision Processor

Unit (VPU). The Xilinx embedded processing

solution – which includes a PowerPC

processor in a Virtex-II Pro FPGA – enabled

Birger Engineering to develop a low-power,

cost-effective VPU for a PSA.

Although it may sound like the sort of curious

technology we’ve come to expect from our

favorite sci-fi programs, the idea of creating a

self-propelled, self-navigating, free-floating

robotic sphere presents some interesting

possibilities for the unique environmental

conditions encountered in space. On the practical

side, having a hands-free “eye-and-nose-in-the-

sky” keeps the folks back on earth and up in space

constantly appraised of critical environmental

conditions. Using its four pairs of monochrome

cameras, the floating robot provides constant

visual monitoring wherever it goes, and its

various gas-sniffing sensors constantly check

for gas leaks and other atmospheric anomalies

that could prove life threatening if left undetected

and unattended.

“ The real challenge was satisfying

the cost and power budgets within the

constraints of the design schedule. That’s

where using the Xilinx Virtex-II Pro FPGA

and the Platform Studio tool suite in EDK

really paid off.”
Erik Widding
President
Birger Engineering

For Success

The Programmable Logic CompanySM

www.xilinx.com

38 Embedded magazine September 2005

Application Areas
Develop a low-power, cost-effective

VPU for a PSA in a single Virtex-II Pro

platform for programmable systems.

Products Used

• PowerPC in a Virtex-II Pro FPGA

• System ACE™ Compact Flash

• Xilinx Platform Studio tool suite EDK

• ISE Foundation™ software

• ChipScope Pro analyzer

The PSA explores new technological possibilities

and challenges that may create value in as-yet-

undiscovered ways. Using a combination of sophis-

ticated image processing and analysis techniques –

and some surprisingly simple, barcode-like location

identification concepts – the PSA manages to keep

track of where it is at all times while avoiding

collisions with both static and moving objects.

“We were pretty confident that we understood

the problem well enough from an algorithmic

perspective,” said Erik Widding, president of Birger

Engineering.

The Birger Engineering design team built the

VPU on a PC/104-Plus form-factor PCB using a

single Virtex-II Pro 20 FPGA. Sequenced video

data from the cameras passes from a frame grabber

into the common SDRAM bank. Then a “de-warp-

ing” module implemented in one of the on-chip

PowerPC processors retrieves the video data from

memory in 640 x 480 pixel VGA-sized frames to

remove the “fish-eye” distortion inherent to cam-

eras used on the PSA. This has to be done to enable

the PSA to accurately analyze the image data.

The “de-warped” data is then output back into

memory in pairs of quarter VGA frames (320 x

240 pixels) in preparation for the next module –

a stereo disparity module – which searches for

textural matches in the images. The disparities of

these matching blocks are representative of the

parallax effect and can be used to triangulate the

actual distance to the object in view. The output

of the stereo disparity module takes the form

of a depth map.

While all of this image processing is occurring,

the same data that was passed to the de-warping

module is also fed from the SDRAM bank to a

module called a “blob-finder” that is used to

read a series of coded circular fiducials to

identify the PSA’s exact location.

The complexity of the various algorithms

notwithstanding, the real challenge in designing

the VPU was providing all of the various modules

timely and manageable access to the single mem-

ory bank over the processor local bus (PLB). The

design team found the Platform Studio tool suite

in EDK invaluable in unraveling the complexities

of getting these modules (each of which is a PLB

master) to operate independently, and then to

interact as intended while passing the equivalent

of a few hundred VGA frames back and forth

across the PLB – every second.

By simply commenting out a few lines of code in

the microprocessor hardware specification

(MHS) file, which is a description of the system

generated by XPS, the team was able to arbitrarily

change the structure of the system to isolate and

validate various module combinations, until

finally arriving at a fully implemented design that

achieved nearly 70 percent utilization of the PLB.

By using the Platform Studio tool suite in EDK

and the PowerPC in the Virtex-II Pro FPGA,

Birger Engineering developed a low-power,

cost-effective VPU for a PSA.

About Birger Engineering, Inc.

Birger Engineering, Inc. (Boston, MA) is a full-

service product development firm specializing

in the development of algorithms, electronics,

and systems for imaging. Additional informa-

tion about Birger Engineering is available at

www.birger.com.

Corporate Headquarters
Xilinx, Inc.

2100 Logic Drive

San Jose, CA 95124

Tel: (408) 559-7778

Fax: (408) 559-7114

Web: www.xilinx.com

European Headquarters
Xilinx, Ltd.

Citywest Business Campus

Saggart,

Co. Dublin

Ireland

Tel: +353-1-464-0311

Fax: +353-1-464-0324

Web: www.xilinx.com

Japan
Xilinx, K.K.

Shinjuku Square Tower 18F

6-22-1 Nishi-Shinjuku

Shinjuku-ku, Tokyo

163-1118, Japan

Tel: 81-3-5321-7711

Fax: 81-3-5321-7765

Web: www.xilinx.co.jp

Asia Pacific
Xilinx

Unit 1201, Tower 6, Gateway

9 Canton Road

Tsimshatsui, Kowloon,

Hong Kong

Tel: 852-2-424-5200

Fax: 852-2-494-7159

E-mail: ask-asiapac@xilinx.com

© 2005 Xilinx Inc. All rights reserved. The Xilinx name is a registered trademark; Virtex-II Pro is a trademark; and The Programmable Logic Company is a service mark of Xilinx, Inc. PowerPC is a trademark of Internal Business Machines Corporation in the United States, or other countries,

or both. All other trademarks are the property of their owners.

The Programmable Logic CompanySM

Camera exhibiting fish-eye distortion Rectified image with distortion removed

September 2005 Embedded magazine 39

A WCDMA base station consists of amplifiers,

transceiver/receiver module, base-band processing

module, networking interface module, and main

processing module. A critical element of this

infrastructure is the transceiver card, a complex

board that performs digital up/down conversion,

digital filtering, antenna diversity, and bridging

between the baseband-processing module and

amplifiers. Because of this complex functionality,

LG Electronics used an external processor to con-

trol test data flow of the diagnostic function.

Partnering

The Challenge
Design a more cost-effective transceiver

card for WCDMA (wideband code-

division multiple access) base stations

that delivers enhanced processing

functions while reducing system cost.

The Solution
Leverage the Xilinx® Virtex™-II Pro

embedded PowerPC™ processor, wide

range of processor IP, and Embedded

Development Kit to realize increased

system integration and cost-efficiency.

The Results
• 85 MHz PowerPC performance

• Easier debugging of the diagnostic

module

• Minimal impact on FPGA utilization

• Reduced component cost and

PCB area

Xilinx and LG Electronics
A Xilinx embedded processing solution helps LG Electronics

develop a lower cost WCDMA transceiver card

The transceiver card

(transceiver/receiver

module) in a WCDMA

base station is an

extremely complex board

that can add significant

expense to the overall

system solution. The Xilinx embedded

processing solution – which includes a

PowerPC processor in a Virtex-II Pro

FPGA – enabled LG Electronics to realize

significant functionality improvements

while dramatically reducing cost.

As of June 2004, 30 WCDMA 3G networks and

12 CDMA2000 1xEV-DO 3G networks were

operating in Europe, Japan, South Korea, the

United States, and South America. By the end of

2004, Europe deployed 12 more WCDMA 3G

networks, and at least five more CDMA2000

1xEV-DO 3G networks began operating in

other global regions. The deployment of 3G

networks is obviously ramping up and will

represent the majority of wireless carrier

capital spending by 2005. The slowdown of

the equipment industry in the past few years

has also made the 3G equipment market

extremely competitive, with cost-effectiveness

becoming the number-one selection criteria

of infrastructure.

“ The Xilinx embedded processing

solution … helped LG Electronics

implement functions into a programmable

system that we had never thought of.”
WanRae Kim

Senior Engineer

Node B Systems

LG Electronics

Production board for WCDMA BTS transceiver module

For Success

The Programmable Logic CompanySM

www.xilinx.com

40 Embedded magazine September 2005

Application Areas
• Design an integrated transceiver

module with test-data flow controller,

digital up/down conversion, and

digital filter in a Virtex-II Pro FPGA.

Products Used
• PowerPC in a Virtex-II Pro FPGA

• EDK

• Xilinx processor IPs

LG Electronics revisited its existing architecture

to better meet these cost/performance demands

and found that Xilinx offered the ideal solution.

After reviewing the Xilinx Embedded Development

Kit and the wide variety of Xilinx processor IP

options, LG Electronics chose the PowerPC

processing power within the existing Virtex-II

Pro FPGA to implement the functions that the

external processor had performed in their

previous designs.

By implementing this functionality through

the Xilinx embedded design methodology,

LG Electronics was able to run the PowerPC

at 85 MHz with user-defined RAM controller,

UART, and GPIO. Plus, the code size was only

90 KB, which allowed the FPGA to continue to

run at 70% utilization. This increased system

integration not only reduced the cost of materials,

but also simplified the debugging of the diagnostic

module through GDB. LG Electronics had found

its cost-effective solution for high-performance

WCDMA transceiver card design.

About LG Electronics

LG Electronics (LGE) is a major global player

in electronics and telecommunications, operating

72 subsidiaries around the world with over

55,000 employees worldwide. LGE focuses on

cell phone, wire and wireless telecom, digital

TV, CD-RW, DVD, CD-ROM, DVD-ROM

drives, PCs, monitors, mobile handsets, CRTs,

and PDPs. LGE is continually strengthening its

core competencies further its reputation as the

“Digital Leader” in electronic products and

equipment for the digital era.

Corporate Headquarters
Xilinx, Inc.

2100 Logic Drive

San Jose, CA 95124

Tel: (408) 559-7778

Fax: (408) 559-7114

Web: www.xilinx.com

European Headquarters
Xilinx, Ltd.

Citywest Business Campus

Saggart,

Co. Dublin

Ireland

Tel: +353-1-464-0311

Fax: +353-1-464-0324

Web: www.xilinx.com

Japan
Xilinx, K.K.

Shinjuku Square Tower 18F

6-22-1 Nishi-Shinjuku

Shinjuku-ku, Tokyo

163-1118, Japan

Tel: 81-3-5321-7711

Fax: 81-3-5321-7765

Web: www.xilinx.co.jp

Asia Pacific
Xilinx

Unit 1201, Tower 6, Gateway

9 Canton Road

Tsimshatsui, Kowloon,

Hong Kong

Tel: 852-2-424-5200

Fax: 852-2-494-7159

E-mail: ask-asiapac@xilinx.com

© 2005 Xilinx Inc. All rights reserved. The Xilinx name is a registered trademark; Virtex-II Pro is a trademark; and The Programmable Logic Company is a service mark of Xilinx, Inc. PowerPC is a trademark of Internal Business Machines Corporation in the United States,

or other countries, or both. All other trademarks are the property of their owners.

The Programmable Logic CompanySM

LG Electronics replaced an expensive, external processor with the PowerPC within the Virtex-II Pro FPGA to realize
significant performance improvements and lower costs.

Test-data flow of diagnostic function in improved design

Test-data flow of diagnostic function in previous design

September 2005 Embedded magazine 41

Designing RPR through traditional methods

requires designers to separate SW implementa-

tion of complex algorithms in stand-alone

processors and place the fast-response portion in

hardware logic. However, this methodology is

risky and often costly. The nature of RPR

requires considerably faster communication

between hardware and software, which increases

the communication challenges among software,

firmware, and hardware designers. At the same

time, high-performance processors for algorithm

computing add significant cost to the system.

Partnering

The Challenge
Design a high-performance, reliable,

lower cost RPR solution for the

MetroWave product family.

The Solution
Leverage the Xilinx® Virtex™-II Pro

embedded PowerPC™ processor to

offload the RPR algorithm from a

stand-alone processor.

The Results

• Photonic Bridges uses the Virtex-II

platform for programmable systems

to deliver MetroWave multi-service

transport platform (MSTPs) on time

• The product is fully compliant with

the newly approved RPR standard

• The high level of system integration

greatly simplifies PCB design

Xilinx and Photonic Bridges
A Xilinx embedded processing solution helps Photonic Bridges

develop a higher performance, lower cost RPR solution

Building state-of-the-art

optical network equipment

with emerging resilient

packet ring (RPR) features

requires high-performance

processing power with fast

input and output response time.

The Xilinx Virtex-II Pro FPGA with

embedded PowerPC processors and

multi-gigabit transceivers (MGTs) enabled

Photonic Bridges Inc to meet the challenging

specifications and deliver RPR technology on

time and on budget.

Known as one of “The 10 Hottest Technologies

for 2004*,” RPR is a demanding new feature in

state-of-the-art optical networking equipment.

Telecom equipment vendors want to ship RPR-

ready equipment as soon as possible.

To build new RPR features into their

MetroWave MSTP products, Photonic Bridges

needed to address challenges in RPR specifica-

tions, such as fairness algorithms, spatial reuse,

and sub-50 ms fail-over restoration time.

MetroWave MSTPs are leading-edge products

that enable telephone companies to use their

highly reliable voice-oriented networks to eco-

nomically transport and manage a variety of

high-growth data services.

“ The Xilinx platform for programmable

systems enabled Photonic Bridges to design

the demanding technical features of RPR

into our MetroWave MSTP products in

record time. The Virtex-II Pro FPGA was

able to lower our total system cost as well.”
Lucas Hsu

VP of Research and Development

Photonic Bridges

SDH RPR processing card

For Success

The Programmable Logic CompanySM

www.xilinx.com

42 Embedded magazine September 2005

Application Areas
Design complex RPR algorithm and

high-speed SDH backplane interface

in a single Virtex-II Pro platform for

programmable systems.

Products Used

• PowerPC in a Virtex-II Pro FPGA

• MGT transceivers in a Virtex-II Pro

FPGA

• EDK

To lower design risk and cost, Photonic Bridges

turned to Xilinx Virtex-II Pro FPGAs with

embedded PowerPC processing and MGT

technologies. In their design, Photonic Bridges

off-loaded the RPR algorithm from the stand-

alone processor into the Xilinx Virtex-II Pro

FPGA’s PowerPC. This not only satisfied their

algorithm processing needs, but it also

significantly shortened the communication

time between hardware and software. Plus,

system engineers didn’t have to worry about

potential performance degrade, which happens

in the traditional design method. As a result, the

expensive high-performance external processor

was replaced by the Xilinx Virtex-II Pro FPGA.

Additionally, in the same FPGA, Photonic

Bridges utilizes four MGTs for SDH backplane

interfaces. By increasing the level of system

integration, Photonic Bridges reduced system

complexity and increased syssten stability.

About Photonic Bridges

Photonic Bridges, founded in California’s

Silicon Valley in 2000, designs and produces

advanced optical telecommunication equipment

focused on the Metro market segment, the key

growth area in the telecommunications/data

market. By combining western-style technology,

innovation, and management philosophy with

Chinese service orientation and low-cost

manufacturing, Photonic Bridges is developing

as a world-class telecommunications equipment

provider. Photonic Bridges’ headquarters,

along with R&D, manufacturing, and logistic

support, are located in Shanghai. Sales support

operations are in Beijing, Shanghai, Shenyang,

and Guangzhou, with additional offices to

support its growing business planned. For

more information about Photonic Bridges,

please visit www.photonicbridges.com.

*Telecommunications Magazine at

SUPERCOMM 2004

Corporate Headquarters
Xilinx, Inc.

2100 Logic Drive

San Jose, CA 95124

Tel: (408) 559-7778

Fax: (408) 559-7114

Web: www.xilinx.com

European Headquarters
Xilinx, Ltd.

Citywest Business Campus

Saggart,

Co. Dublin

Ireland

Tel: +353-1-464-0311

Fax: +353-1-464-0324

Web: www.xilinx.com

Japan
Xilinx, K.K.

Shinjuku Square Tower 18F

6-22-1 Nishi-Shinjuku

Shinjuku-ku, Tokyo

163-1118, Japan

Tel: 81-3-5321-7711

Fax: 81-3-5321-7765

Web: www.xilinx.co.jp

Asia Pacific
Xilinx

Unit 1201, Tower 6, Gateway

9 Canton Road

Tsimshatsui, Kowloon,

Hong Kong

Tel: 852-2-424-5200

Fax: 852-2-494-7159

E-mail: ask-asiapac@xilinx.com

© 2005 Xilinx Inc. All rights reserved. The Xilinx name is a registered trademark; Virtex-II Pro is a trademark; and The Programmable Logic Company is a service mark of Xilinx, Inc. PowerPC is a trademark of Internal Business Machines Corporation in the United States,

or other countries, or both. All other trademarks are the property of their owners.

The Programmable Logic CompanySM

September 2005 Embedded magazine 43

making things better at work
threadx,

43rd floor
ABC hosts a worldwide

conference with their

VoIP Router

39th floor
Tim and Pam see their

new baby for the first time

on their doctor’s Sonogram

33rd floor
Jane accesses her

e-mail through an

802.11g Wireless

Access Point

41st floor
Jim’s sales presentation is

printed in vivid color on

his Ink-Jet Printer

X
X

X
X

X

X

X

X

X

X

express logic’s ThreadX – the RTOS deployed everywhere.
at work. at home. at play.

Making things better. This is what Express Logic is all about. Our ThreadX® RTOS is used in over 100 million electronic

products that help make your life better everyday–at work, at home, and at play. In fact, you have probably already used a

ThreadX product today! How do we make things better? It all starts with our complete

focus on true embedded systems. Our ThreadX RTOS is a blend of advanced technol-

ogy, powerful services, and most importantly, unparalleled ease of use. With real-time

performance, understandable source code, extensive processor support, minimum footprint, a broad choice of develop-

ment tools and100% royalty-free licensing, it’s no wonder that ThreadX has been chosen over and over. Let Express Logic

help you make your next product better with ThreadX.

express logicexpress logic
ThreadX is a registered trademark of Express Logic, Inc., © 2004 by Express Logic, Inc.

For more, visit expresslogic.com or call 1-888-THREADX

T H R E A D X

In this section, we’ll break out excerpts
from Xilinx® application notes and pro-
vide information on how to access the
complete articles. The first two application
notes are “High Performance TCP/IP on
Xilinx FPGA Devices Using the Treck
Embedded TCP/IP Stack,” by Satish
Narayanaswamy of Xilinx (XAPP546) and
“UltraController-II: Minimal Footprint
Embedded Processing Engine” by Punit
Kalra, also from Xilinx (XAPP575).

XAPP546 describes how to use the
Treck TCP/IP stack with Xilinx EDK tools
and the Gigabit System Reference Design
(GSRD) system.

XAPP575 presents the features and
benefits of the PowerPC™-based
UltraController-II, along with a tutorial
of applications included with the design.

XAPP546: High Performance TCP/IP
on Xilinx FPGA Devices Using the Treck
Embedded TCP/IP Stack
TCP/IP is a popular communications pro-
tocol software stack that allows reliable data
communications between two hosts. Most
people already use TCP/IP to check e-mail,
browse the Web, or transfer files. TCP/IP is
being used more and more in the embed-
ded world as well.

Treck, Inc. is a leading provider of
embedded TCP/IP stacks that allow Xilinx
FPGAs to communicate in a wide range of
networking environments. Treck’s dual
Ipv4/Ipv6 TCP/IP stack provides Ipv4
functionality today and allows a Xilinx
FPGA to support Ipv6 networks of the
future. Treck also provides optional proto-
cols, such as an embedded web server, FTP,
IPSEC, and DHCP, to enhance the func-
tionality of Xilinx FPGAs.

This application note describes how to
get started using the Treck TCP/IP stack

using Xilinx EDK tools. An evaluation
version of the Treck TCP/IP stack is
included. An example TCP application
uses the Treck TCP/IP stack to send TCP
data over Gigabit Ethernet on the
Virtex™-II Pro ML300 development
board to a remote PC-based server.

Introduction
The Treck TCP/IP stack offers a high-per-
formance TCP/IP software solution that
can be used with the PowerPC™ 405
processor inside the Virtex-II Pro series of
Xilinx FPGAs.

Some features of the Treck TCP/IP
stack include:

• Zero-copy send and receive, which
help deliver maximum throughput for
bridging applications

• Jumbo frames support (in the case of
Gigabit Ethernet devices)

• TCP checksum offload support for
devices that support TCP checksum
offload in hardware

• Fully RFC-compliant TCP/IP stack for
maximum interoperability

• Standard sockets interface API

The Treck TCP/IP stack can be used
with or without any operating system soft-
ware. This application note discusses the use
of the Treck TCP/IP stack on a stand-alone
system (without an operating system).

This application note also provides the
Treck library as a binary file for evaluation
purposes. The Treck library allows full
functionality of the stack for a limited peri-
od of time before it times out and requires
a restart to continue evaluation.

Contact Treck at www.treck.com for
information about purchasing the sources
for the Treck TCP/IP stack. An example
TCP client and server application is also
available as part of this application note.
Xilinx EDK tools are used to compile and
link the client application with the Treck
library to create a complete TCP/IP appli-
cation for the ML300 board.

The client application uses Treck TCP/IP
on the ML300 board to transmit TCP data
to a remote PC. The server application run-
ning on the PC prints the TCP throughput
every second on the console. The sources, as
well as Windows and Linux binaries, are
included for the server application.

The reference design files can be down-
loaded from the Xilinx website.

The Treck embedded TCP/IP stack is
well suited for TCP/IP applications run-
ning on Xilinx FPGAs. Its support of zero-
copy applications and checksum offload in
hardware is utilized in a high-performance
architecture like GSRD. Treck also offers
different protocols and applications like
IPSEC, IPV6, HTTP, and Telnet. The
combination of the Treck TCP/IP stack
and the flexible Xilinx FPGA hardware

Embedded Application Notes

46 Embedded magazine September 2005

Popular application notes available from Xilinx and our partners.
Copyright © 2005 Xilinx, Inc. All rights reserved.

A P P L I C A T I O N N O T E S

platform offers an ideal solution for TCP/IP
termination at high data rates.

For more of XAPP546, you can access the
unabridged application note for “High
Performance TCP/IP on Xilinx FPGA Devices
Using the Treck Embedded TCP/IP Stack” at
www.xilinx.com/bvdocs/appnotes/xapp546.pdf.

XAPP575: UltraController-II: Minimal Footprint
Embedded Processing Engine
UltraController-II is a minimal footprint
Virtex-II Pro embedded processing engine
based on the embedded PowerPC 405
(PPC405) processor core. Computing per-
formance is maximized and FPGA resource
usage minimized by running code strictly
from the integrated PPC405 caches. General-
purpose input/output (GPIO) is available
directly from the PPC405 core. Interrupt
handling is provided for a user-defined exter-
nal interrupt line, a programmable interval
timer (PIT), and a fixed interval timer (FIT).
You can easily incorporate the
UltraController-II black-box processing
engine into larger ISE™ software designs to
gain additional degrees of freedom by balanc-
ing the high performance of FPGA fabric
with the algorithmic flexibility of software.

This application note presents the features
and benefits of the UltraController-II, along
with a brief overview of the tutorial applica-
tions included with the design. The accompa-
nying tutorials and reference designs include
VHDL, Verilog, and example C-code applica-
tions with step-by-step procedures. XAPP575
also provides performance characteristics and
describes how to field an UltraController-II
system using Xilinx configuration solutions.

Introduction
The UltraController-II reference design is a
black-box processing engine that includes 32
bits of user-defined GPIO as well as interrupt
handling capability. UltraController-II appli-
cations are developed within the 16 KB
instruction- and data-side cache memory of
the PPC405 core. If you are developing
embedded designs that require PLB and OPB
bus resources, the Xilinx Platform Studio
(XPS) toolset creates expandable processor
designs that leverage the full set of IP
and software drivers offered by Xilinx
(see www.xilinx.com/edk).

UltraController-II Internals
In today’s complex and competitive design
environment, products must be designed and
verified more rapidly than ever before. This
can be accomplished by partitioning designs
into functional sub-blocks. The
UltraController-II solution inherently sepa-
rates a design into hardware and software
functional sub-blocks, or components, due to
its cache-based nature.

The original block RAM-based
UltraController provides you the ability to ini-
tialize both the hardware and software compo-
nents of the system through the bitstream.
Compared with traditional embedded systems
of similar size, a single bitstream file with both
hardware and software components eliminates
the need for external non-volatile storage that
only contains software.

UltraController-II designs also use a single
initialization file. In addition, UltraController-
II allows you to independently modify the
hardware or software components by taking
advantage of Xilinx configuration solutions.
You can create multiple software design itera-
tions without modifying the bitstream, there-
by limiting the scope of any introduced design
changes. Once an UltraController-II black
box is integrated into a larger ISE design and
verified, the hardware can be locked down to
become a “golden” bitstream. This golden bit-
stream gives you independence from develop-
ment tool revisions and the ability to
reestablish a known hardware state at any time
in the future.

UltraController-II offers additional
built-in functionality and a reduced
resource footprint when compared with
UltraController. Program storage for both
the instructions and data now resides with-
in the PPC405 caches, thereby eliminating
the need for any block RAM. GPIO is
available directly from the PPC405 block
and provides access to 32 bits of input and
output. Exception handling permits you to
process a user interrupt line, the PIT, and
the FIT interrupts. Reset and boot logic are
also covered.

For more of XAPP575, you can access
the unabridged application note for
“UltraController-II: Minimal Footprint
Embedded Processing Engine” at www.
xilinx.com/bvdocs/appnotes/xapp546.pdf.

Features:

• Scalable CPU clock (up to 400 MHz in
a Virtex-II Pro speed grade -7 device)

• Integrated cache-based program store

• 16 KB I-side

• 16 KB D-side

• No block RAMs used

• 32-bit output

• 32-bit input

• External user interrupt line (EXT)

• Programmable interval timer (PIT)

• Fixed interval timer (FIT)

• Watchdog timer (WDT)

Benefits:

• Processing power is determined by pro-
gram execution speed; UltraController-
II can be clocked at the maximum
PPC405 input clock frequency, which
far exceeds any soft-core processor
implementation

• Program instruction and data access
speeds are maximized by using the
integrated caches

• A minimal footprint processing engine
frees up FPGA logic and block RAM
resources

• 32-bit output and input ports can
interface with logic internal or external
to the FPGA

• An external interrupt line allows
UltraController-II applications to per-
form high-speed, base-level computa-
tion and handle time-critical events as
they occur

• Timer resources (PIT and FIT) are
available for commonly implemented
embedded solutions for:

– Time-of-day computation

– Data-logging for system-service
routines

– Periodic servicing of time-sensitive
external devices

• A watchdog timer (WDT) is available
to monitor system sanity and recover
from upsets by issuing a system reset

September 2005 Embedded magazine 47

A P P L I C A T I O N N O T E S

embedded development

Vaartkom 11, B-3000 Leuven, Belgium • phone: +32 16 309 666 • http://mind.be/virtex/ • virtex@mind.be

Virtex 4 FX: the SoC platform of the future
• extremely fast development [1]

• a low cost, off-the-shelf chip delivers multiple hard core and soft core CPU's (PowerPC 405, MicroBlaze), hard core
Gbit/s Ethernet interfaces, high-speed I/O, DSP blocks, on-chip memory and large amounts of programmable logic

• co-design and co-debugging of advanced electronic designs and high performance SW solutions comes in
reach, also for smaller development teams

Linux and eCos: the operating systems of the future
• Open Source operating systems deliver performance, flexibility and low cost

• eCos: hard real-time, small footprint, easy step-up from home-brew or proprietary RTOS solutions

• Linux: high-end, scalable, portable across many platforms

Mind: the SoC development partner of the future
• dedicated to custom engineering, tool chains, support and training for FPGA and Open Source SW solutions

• specialized engineers know the FPGA, the operating system and the interface between the two

• experienced in full tool chain set-up for FPGA and SW development, including an entire tool chain on a single,
low cost Linux system, with integrated make tools

Mind eCos and Linux on Virtex 4 FX:
the SoC HW/SW platform of the future

[1] In a recent customer project, Mind developed HW
and SW for a dual CPU (2 x PowerPC 405) design on
Virtex-II Pro (V2P30) with shared memory, running
Linux and eCos, in a two week timeframe. This is
orders of magnitude faster than equivalent multi-core
ASIC design projects on which Mind assisted earlier.

by Helen Yu
Product Marketing Manager,
Xilinx Embedded Processing Solutions
Xilinx, Inc.
helen.yu@xilinx.com

Copyright © 2005 Xilinx, Inc. All rights reserved.

Finding a processor to meet performance,
feature, and cost targets is very challenging.
The Xilinx® MicroBlaze™ soft-processor
provides a scalable solution that is fully cus-
tomizable, area-efficient, and can be opti-
mized for your most cost-sensitive designs.

MicroBlaze v4.00, the newest version of
the 32-bit soft-processor core from Xilinx,
raises the bar for flexibility and ease-of-use
with new user-configurable hardware
options, improved debug capabilities, and
complete backward compatibility with earli-
er releases. In this article, you will learn how
to increase the performance of a software-
based filter design using the MicroBlaze
processor and the award-winning Xilinx
Platform Studio embedded tool suite.

Build What You Need
The Xilinx MicroBlaze processor is a RISC-
based, 32-bit reconfigurable soft-processor
that can be customized with different
peripherals and memory configurations.
Unlike a hard processor, which is imple-
mented in the FPGA at the transistor level,
a soft core is an IP block. The MicroBlaze
soft processor core is optimized for our
FPGA architecture. One of the many advan-
tages of soft-core designs is that they are very
configurable. In other words, you do not
have to incorporate every available feature.
Instead, you can disable any feature that you
are not using to save valuable logic resources
on your device. As a result, the MicroBlaze
solution allows you to tune the processor
system architecture to your application.

Build and Optimize a MicroBlaze
Soft-Processor System Your Way
Build and Optimize a MicroBlaze
Soft-Processor System Your Way

50 Embedded magazine September 2005

The Xilinx MicroBlaze solution makes
custom processing on FPGAs easy.
The Xilinx MicroBlaze solution makes
custom processing on FPGAs easy.

T e c h O n l i n e

form software model and libraries for that
system. A new feature in the XPS called the
Virtual Platform Generator provides the
capability to generate a virtual MicroBlaze
platform model. Now you no longer have
to prototype on a hardware development
board at your desk or even go through the
flow of developing that hardware. With
Virtual Platform Generator, you can gener-
ate the software model, drivers, and libraries
of your system and then compile, profile,
and execute software on that model.

The Next Step –
Profile Your Software Application
By now you have specified your hardware
processor system and generated the virtual
model and software libraries. The next step is
to start a C application project using either
XPS or the Eclipse-based XPS Software
Development Kit (SDK) tools. Once the
software project is built and compiled, you
can run the executable and then step the
application through the debugger tool.

Profiling in SDK is interactive and pro-
vides graphical profile views. In our
MicroBlaze design example, the core arith-
metic loop function implements a FIR fil-
ter function. This small loop of code
makes calls to floating-point library func-
tions, which consume a large part of the
CPU time in the FIR function call (as
shown in Figure 2). How can you avoid
calling floating-point libraries? Well, you
could convert to a fixed-point operation,
but that would be quite time-consuming.
Another option is to use a processor with
an FPU. The FPU would be able to do
these computations natively and thus
avoid library calls (as shown in Figure 3).

Conveniently, the new MicroBlaze
v4.00 includes an integrated FPU option
(depicted in Figure 4). The FPU handles
single-precision floating-point arithmetic
and is compatible with IEEE-754. Its inte-
gration ensures high performance, low
latency, and a compact design. Because the
MicroBlaze FPU is yet another configurable
feature of the MicroBlaze core, it takes no
extra space in the FPGA if it is not needed.

Let’s look at how we might improve the
performance of our FIR filter by enabling
this MicroBlaze FPU.

Getting Started with XPS
The Xilinx Platform Studio
(XPS) embedded tool suite
provides an integrated environ-
ment for creating the software
and hardware specification
flows for a MicroBlaze system,
as shown in Figure 1. In this
article, we’ll discuss a
MicroBlaze system that uses a
floating-point finite impulse
response (FIR) algorithm and
its performance improvement
after adding a floating-point
unit (FPU) to the design.

The XPS base system
builder (BSB) wizard helps
you quickly build a working
system targeted at an existing
or custom development
board. Based on your board
selection, the BSB offers you a
number of options for creat-
ing a basic system on that
board, including processor
type, debug interface, cache
configuration, memory type
and size, and peripheral selec-
tion. For each option, func-
tional default values are
pre-selected in the wizard.

Once you have defined the
system architecture, you can
then generate the virtual plat-

September 2005 Embedded magazine 51

MicroBlaze/PPC

UART

Arbiter

GPIO

Build Software Project

SW Development Flow

SW Configuration

Automatic Software
BSP/Library Generation

Virtual
System
Model

Software Compilation

Executable

Debug

Specify Processor,
Bus and Peripherals

HW Configuration

Automatic Hardware
Platform Generation

Xilinx FPGA
ImplementationFlow

Bitstream

Download to FPGA

SW Development Flow

GDB/

XMD

Figure 3 – Adding FPU improves performance

Figure 2 – Floating-point library calls occupy CPU time

Figure 1 – The Xilinx Platform Studio (XPS) tool flow

T e c h O n l i n e

FPU to the Rescue
To compare performance results,
you will need to profile a float-
ing-point FIR filter application
on two different configurations
of the MicroBlaze processor. The
flat profile views in Figures 5 and
6 display the time spent on the
main function call with and
without an FPU, respectively.
Adding the FPU to the design
reduced the number of CPU
cycles required by this applica-
tion from 62 milliseconds to
about 4.7 milliseconds – a 13x
improvement. In addition, the
FIR function call is now more
than 50 times faster than in the
previous run without an FPU.
By simply enabling the
MicroBlaze FPU option, you
have substantially improved the
performance of the MicroBlaze
floating-point FIR design.

To further enhance system
performance, consider imple-
menting the entire FIR function
in hardware as an assist engine
connected to a fast simplex link
(FSL) interface. The FSL is a
simple yet powerful point-to-
point interface that connects
user-developed co-processors to
the MicroBlaze processor
pipeline. Like the FPU option,

the FSL interface is a config-
urable feature within the
MicroBlaze processor. This high
level of configurability allows you
to tailor your processor system to
the exact needs of the target
embedded application, which
provides great flexibility but does
not add to the cost if these fea-
tures are not used.

Conclusion
This sample MicroBlaze FIR fil-
ter application has demonstrated
how an algorithm that is a candi-
date for hardware acceleration
can – with minimal work – be
implemented on a mixed hard-
ware/software platform for the
purpose of performance evalua-
tion. Utilizing the Xilinx
Platform Studio embedded tool
suite, you can generate cycle-
accurate software models and
profile the performance of soft-
ware running on a fully custom
virtual system. You can quickly
tune the performance of your
processor architecture and system
architecture to achieve an opti-
mal balance of performance ver-
sus hardware resources.

For more information on the
MicroBlaze soft-processor core, visit
www.xilinx.com/microblaze.

52 Embedded magazine September 2005

IOPB

IXCL

ILMB

I-C
ach

e

Bus
IF

Program
Counter

Instruction
Buffer

Instruction
Decode

Special
Purpose

Registers

ALU

Shift

Barrel Shift

Multiplier

Divider

FPU

Register File
32 X 32b

FSL

DLMB
Bus
IF

DXCL

Multi-
Channel
Memory

Controller

Multi-
Channel
Memory

Controller

OPB
Memory

Controller

DOPB

D
-C

ach
e

Data-side
bus interface

Instruction-side
bus interface

Basic Processor Functions

OPB
Memory

Controller

OPB
Peripherals

HW/SW
Accelerator

On-Chip Peripheral Bus (OPB)

Block RAM

Configurable Functions Designer Defined Blocks Peripherals – Xilinx or 3rd Party or Designer Defined

Figure 6 – Flat profile view for FIR filter design with FPU

Figure 5 – Flat profile view for FIR filter design without FPU

Figure 4 – MicroBlaze v4.00 architecture

T e c h O n l i n e

Celoxica tools help you get the most extreme performance for your software algorithm. Augment your

Xilinx processor with custom hardware co-processors using Celoxica’s C-synthesis technology.

The DK Design Suite programs Xilinx logic directly from software descriptions, and provides software API

interfaces to connect hardware logic to embedded processors. Celoxica offers comprehensive support for

Xilinx devices and embedded processors including Virtex-4 FX, Virtex II Pro, Spartan 3 and MicroBlaze.

The combination of Xilinx devices and embedded processors with Celoxica technology produces performance

gains of 50x-300x to deliver the algorithm acceleration you need.

For more information and design examples visit www.celoxica.com

Turning Software into Silicon

Grasp the full power
of Xilinx processing...

Creating a new, real-time embedded

system can be quite a challenge today,

especially if you are designing your own

custom hardware, software, and firmware.

A completely integrated development

environment of hardware, design tools, IP,

and working reference designs can rapidly

accelerate your embedded development.

Xilinx® provides powerful Platform

FPGA devices with a variety of flexible

embedded system capabilities to handle

any real-time application. By supplying

a spectrum of processing solutions includ-

ing high-performance hard PowerPC™

cores, co-processor acceleration options,

and flexible soft MicroBlaze™ processor

cores, Xilinx can ensure that you have all

the programmable elements to build

exactly the system you require.

With pre-verified reference designs

and a powerful evaluation board inte-

grating a broad set of system options,

you can kick-start the design process

and focus on adding value to your

designs. Intelligent “platform-aware”

tools ease the design process and com-

plete the Xilinx Embedded Development

Kit, helping you get to market faster and

satisfy your product requirements.

Build Faster and More Flexible Embedded Processing Systems
Programmable platforms and innovative tools allow you to craft an embedded design

with the perfect combination of feature set, performance, area, and cost. Choose the

most effective processor core for your application, customize your IP, optimize the

performance, and validate your software on a development board before you even

have your own custom hardware back from the shop.

Programmable Platform FPGAs are Versatile SOCs. Programmable, reprogrammable

and field-upgradable platforms mean that your product gets to market quicker and has

a longer life. System features immersed in the chip allow you to build a wide variety of

applications with off-the-shelf devices. Embedded capabilities include hard and soft

processor options, processing IP, on-board memory, and even DSP capability.

Complete Spectrum of Processing Options. The Xilinx Virtex™-4 FX12 and the ML403

evaluation platform support both the high-performance PowerPC hard and flexible

MicroBlaze soft-processing cores. Choose the appropriate processing core for your

application and feel confident knowing that the IP and tools are a unified environment.

Optimize Your Design. Broad features of the ML403 development board empower

you to optimize performance via a high-bandwidth Auxiliary Processor Unit (APU)

controller to execute custom instructions, integrated Ethernet MACs, multiple memory,

audio, video, and other interfaces.

Intelligent Tools and Reference Designs Accelerate Development. Easy-to-use design

wizards and automatic generators will reduce user errors and streamline the development

process, even generating software drivers, sample test code, and BSPs (board support

packages). Integrated hardware/software debuggers enable you to find and fix bugs faster

and more efficiently.

PowerPC and MicroBlaze Development Kit
Virtex-4 FX12 Edition
Accelerate Your Embedded Development

54 Embedded magazine September 2005

Corporate Headquarters

Xilinx, Inc.

2100 Logic Drive

San Jose, CA 95124

Tel: (408) 559-7778

Fax: (408) 559-7114

Web: www.xilinx.com

European Headquarters

Xilinx

Citywest Business Campus

Saggart,

Co. Dublin

Ireland

Tel: +353-1-464-0311

Fax: +353-1-464-0324

Web: www.xilinx.com

Japan

Xilinx, K.K.

Shinjuku Square Tower 18F

6-22-1 Nishi-Shinjuku

Shinjuku-ku, Tokyo

163-1118, Japan

Tel: 81-3-5321-7711

Fax: 81-3-5321-7765

Web: www.xilinx.co.jp

Asia Pacific

Xilinx Asia Pacific Pte. Ltd.

No. 3 Changi Business Park Vista, #04-01

Singapore 486051

Tel: (65) 6544-8999

Fax: (65) 6789-8886

RCB no: 20-0312557-M

Web: www.xilinx.com

Distributed By:

© 2005 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners.

ML403 Development Board

Embedded Design Services – XDS
Xilinx Design Services’s (XDS) experience in system, logic, and

embedded software design complements your own resources to

optimize your budget, schedule, and performance requirements.

Go to www.xilinx.com/xds for more information on how XDS can

help you solve your schedule and design challenges.

Embedded Systems Training and Development Courses
Learn how to effectively develop, debug, and simulate an embedded

system using the newest advancements in Platform Studio technology.

A variety of courses are available. Go to www.support.xilinx.com/

support/education-home.htm to learn more.

Take the Next Step
For more information on all Xilinx Embedded Processing Solutions,

visit www.xilinx.com/processor.

Ordering Info:
Part number: DO-ML403-EDK-ISE

The PowerPC and MicroBlaze Development Kit
Virtex-4 FX12 Edition includes the following:

• Virtex-4 ML403 development board

• Platform Studio embedded tool suite

• ISE FPGA design software

• Pre-verified reference designs

• All documentation, JTAG probe, power supply, cables

and flash device

ML403 Evaluation Platform (Development Board):

• Xilinx devices – XC4VFX12-FF668-10C, XC95144XL,

XCCACE, XCF32P

• Memory – 64 MB DDR SDRAM, 1 MB ZBT SRAM, 512 MB

compact flash, 8MB linear flash, and 4kb IIC EEPROM

• Clocks – 100 MHz oscillator and two clock sockets

• Display – 16 x 2 character LCD

• Connectors and Interfaces – Four SMA connectors, two PS/2

connectors, two audio, RS-232 serial port, three USB ports, PC4

JTAG, DB15 VGA, RJ-45 Ethernet, and GPIO

Development Tools and IP
(for both PowerPC and MicroBlaze core design):
• Embedded Development Kit with Platform Studio embedded

tool suite

• Graphical tools for developing/debugging embedded platforms

• GNU compiler, debugger, and utilities

• Platform Studio SDK – Software Development Kit, Eclipse-based

IDE for powerful embedded software development and debug

• MicroBlaze soft-processor license

• IP library of processor peripheral cores and other evaluation cores

• XMD – Xilinx microprocessor debug engine for run time

target control

• ISE FPGA design tool suite

• Timing-driven FPGA hardware implementation tools

• Design entry, synthesis, and verification capabilities

• Data2MEM – application for loading on-chip memory

September 2005 Embedded magazine 55

Creating a new embedded system

can be quite challenging today,

especially if you are looking for a

low-cost solution with the flexibility

to design your own custom hard-

ware, software, and firmware.

The MicroBlaze™ Development

Kit, Spartan™-3 SP305 Edition,

powered by the 3S1500 device and

supported by industry-standard

peripherals, connectors, and inter-

faces, provides a low-cost, easy-to-

use development platform for

Spartan-3-based embedded

designs. The Spartan-3 SP305

development board gives you

instant access to cutting-edge

90 nm technology and the

complete platform capabilities of

the Spartan-3 FPGA family, includ-

ing the configurable MicroBlaze

32-bit soft-processor core. Develop

embedded applications via the

industry-leading Xilinx® ISE™ and

Embedded Development Kit (EDK)

with Platform Studio embedded

tool suite and proven IP cores. The

MicroBlaze Development Kit,

Spartan-3 SP305 Edition brings

embedded designs to reality quicker,

at low cost, and on schedule.

Build Lower Cost and Configurable Embedded Processing Systems

Programmable platforms and innovative tools allow you to customize your embedded

design with the ideal combination of feature set, performance, area, and cost.

MicroBlaze Soft-Processor Solution

The Spartan-3 SP305 development board supports the MicroBlaze 32-bit soft-processor

core. With the MicroBlaze soft processor, you have complete flexibility to select any

combination of peripherals, memory, and interface features that you need to give you

the best system performance at the lower cost on a single FPGA.

Optimize Your Embedded Design

Broad features of the Spartan-3 SP305 development board empower you to optimize

performance via the MicroBlaze fast simplex link (FSL) to execute custom functions,

integrated Ethernet MACs, multiple memory, audio, video, and other interfaces. FSL

allows you to connect hardware co-processors to accelerate time-critical algorithms.

Intelligent Tools and Reference Designs Accelerate Development

EDK includes the Platform Studio tool suite, the MicroBlaze soft-processor core license,

as well as all the documentation and soft peripheral IP that you need to start designing

Spartan-3-based embedded processor systems today.

MicroBlaze Development Kit
Spartan-3 SP305 Edition
The Low-Cost Embedded Development Solution

56 Embedded magazine September 2005

The MicroBlaze Development Kit
Spartan-3 SP305 Edition includes the following:
• EDK with Platform Studio embedded tool suite
• ISE FPGA design software
• Pre-verified reference designs
• All documentation, JTAG probe, power supply, cables,

and flash device
• Spartan-3 SP305 development board

• Xilinx devices –XC3S1500-FG676-10C, XCF32P
• Clocks –100 MHz oscillator, two clock sockets
• Memory – 64 MB DDR SDRAM, 9 Mb ZBT SRAM,

8 MB linear flash and 4 Kb IIC EEPROM
• Display – 16 x 2 character LCD

Corporate Headquarters

Xilinx, Inc.

2100 Logic Drive

San Jose, CA 95124

Tel: (408) 559-7778

Fax: (408) 559-7114

Web: www.xilinx.com

European Headquarters

Xilinx

Citywest Business Campus

Saggart,

Co. Dublin

Ireland

Tel: +353-1-464-0311

Fax: +353-1-464-0324

Web: www.xilinx.com

Japan

Xilinx, K.K.

Shinjuku Square Tower 18F

6-22-1 Nishi-Shinjuku

Shinjuku-ku, Tokyo

163-1118, Japan

Tel: 81-3-5321-7711

Fax: 81-3-5321-7765

Web: www.xilinx.co.jp

Asia Pacific

Xilinx Asia Pacific Pte. Ltd.

No. 3 Changi Business Park Vista, #04-01

Singapore 486051

Tel: (65) 6544-8999

Fax: (65) 6789-8886

RCB no: 20-0312557-M

Web: www.xilinx.com

Distributed By:

© 2005 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners.

• Connectors and Interfaces
–Four SMA connectors (differential clocks)
–Two PS/2 connectors (keyboard/mouse)
–Two audio (in/out, microphone, headphone)
–Two UART RS-232 serial ports
–SPI port, CAN port
–Three USB ports (two peripherals/one host)
–PC4 JTAG
–DB15 VGA display
–RJ-45 Ethernet port (connected to SMSC MAC/PHY device)
–RJ-45 Ethernet port (connected to Intel PHY device)
–Rotary encoder with push-button switch
–Expansion headers (32 single-ended, 16 differential, and 16

general-purpose I/O)
–General-purpose I/O (buttons/LEDs)

Take the Next Step
Order your MicroBlaze Development Kit, Spartan-3 SP305 Edition
today and get a head start on your MicroBlaze in Spartan-3 embedded
design. For more information, visit www.xilinx.com/sp305.

September 2005 Embedded magazine 57

by Saeid Mousavi
Sr. Strategic Marketing Manager
Xilinx, Inc.
saeid.mousavi@xilinx.com

Copyright © 2005 Xilinx, Inc. All rights reserved.

Designs for embedded systems require a
series of hardware and software components,
including compilers, debuggers, operating
systems, IP cores, companion chipsets, and
prototyping platforms. The flexibility, re-
programmability, functionality, and per-
formance of Xilinx® Virtex™-4 FPGAs,
along with supporting hardware/software
components, provide an excellent solution
for today’s challenging and complex embed-
ded system designs.

As illustrated in Figure 1, embedded sys-
tem designs with Xilinx FPGAs and sup-
ported processors (such as the PowerPC™
405 hard-core and MicroBlaze™ soft-core
processor) comprise both standard FPGA
hardware and processor software develop-
ments in parallel. This parallel integration
and flow is enabled by the Xilinx
Embedded Development Kit (EDK) and
ISE™ Foundation™ software.

The final design requires a hardware
platform to provide a vehicle for evalua-
tion and validation. Xilinx offers a series
of Spartan-™, Virtex-II Pro-, and Virtex-
4-based development, evaluation, and
prototyping platforms that you can use
for such purposes.

These embedded system development
and prototyping platforms are carefully
designed to provide the right set of FPGAs,
interfaces, connectors, and support pack-
ages. For Virtex-4-based embedded system
designs utilizing embedded hard-coded
PowerPC or MicroBlaze soft processors, we
recommend the ML401, ML402, ML403,
ML405, and ML410 platforms. These
platforms are supported by a wide range of
reference designs, IP cores (evaluation),
and Xilinx and third-party tools.

ML403
Populated with a Virtex-4 XC4VFX12
device, the ML403 is a low-cost, feature-
rich, and easy-to-use embedded system
development platform (Figure 2). The
XC4VFX12 device – with one embedded
PowerPC 405 processor and more than

12,000 FPGA slices, along with access to a
wide set of connectors and interfaces –
makes the ML403 a good candidate for
embedded system developments. The
FPGA gates and PowerPC processor can be
accessed through on-board USB (host and
peripheral), 10/100/1000 Ethernet, audio
in/out, CompactFlash card interface, and
64 general-purpose I/O (GPIO) pins.

FPGA configuration is supported by
Parallel Cable IV cable (JTAG), System
ACE™ controller (JTAG), platform flash
memory, and linear flash plus CPLD.
System ACE technology supports multiple
bitstreams and provides an easy, scalable,
and reusable configuration.

The ML403 board contains headers
(0.1”) for easy expansion or adaptation of
the board for other applications through
customized modules. The expansion con-
nectors contain connections to single-
ended (32) and differential FPGA I/Os (16
pairs), ground, 2.5V/3.3V/5V power,
JTAG chain, and the IIC bus.

The availability of 64 MB of on-board
DDR SDRAM (32-bit interface at 266
MHz) and external memory through a

More Integration,
Easier Development
More Integration,
Easier Development

58 Embedded magazine September 2005

Well designed and feature-rich, Virtex-4 platforms enable
you to expedite hardware and software development.
Well designed and feature-rich, Virtex-4 platforms enable
you to expedite hardware and software development.

B O A R D S

ML410
Populated with a Xilinx Virtex-4
XC4VFX60 device and supported by a
wide set of industry-standard connectors,
interfaces, and companion chipsets, the
ML410 platform (with ATX form factor) is
an ideal platform for embedded system
developments (Figure 3).

With two embedded PowerPC 405
processors, the ML410 is an excellent
platform for parallel and distributed pro-
cessing applications and development. In
addition to the processors, the ML410
provides access to RocketIO MGTs
through PCI Express slots (two); Serial
ATA (two); and Z-dok-based personality
modules. These PM101 and PM102 per-
sonality modules (the latter shown in
Figure 4), are mainly designed to provide
access to eight channels of RocketIO
MGTs through SFP, X-PAK, and
MSA300 connectors. Personality modules
also provide access to the LVDS and sin-
gle-ended I/Os of the FX60 device.

The ALI M1535D+ south bridge com-
panion chipset provides access to many
features supported by standard PCs. These
basic PC features are accessible over the
PCI bus. The ALI chipset supports one
parallel port, two USB ports, two IDE
connectors, GPIO, SMBus interface,
AC97 audio CODEC, and PS/2 keyboard
and mouse.

To host PCI-based modules, the ML410
provides access to two PCI Express down-
stream slots. The ML410 also provides
access to two 33 MHz/32-bit PCI buses, a
primary 3.3V PCI bus and secondary 5.0V
PCI bus (a total of four slots). The FPGA is
directly connected to the PCI Express and
primary 3.3V PCI bus, while the 5.0V PCI

Cardbus reader provides ample storage
for operating system developments.
The ML403 is currently supported by
Linux and Vxworks operating systems.

Other important features of the
ML403 board include 10/100/1000
tri-mode Ethernet, USB host and
peripheral ports, stereo AC97 audio
CODEC, RS-232 serial port, VGA
output, PS/2 mouse and keyboard, 9
Mb of ZBT synchronous SRAM, and
8 MB of flash memory. Additional
product information is available at
www.xilinx.com/ml403.

ML401, ML402, and ML405
The ML401 and ML402 platforms
share the same features as the ML403,
but are populated with Virtex-4
XC4VLX25 and XC4VSX35 devices,
respectively. The ML405 is populated
with a Virtex-4 XC4VFX20 device
and provides additional support for
RocketIO™ multi-gigabit trans-
ceivers (MGTs) through two SATA,
one SFP, and four SMA connectors.

Xilinx board database (XBD) files
for all boards in the ML4 family are
available as part of the EDK library.

September 2005 Embedded magazine 59

Standard Embedded SW
Development Flow

C/C++ Code Entry

Compiler

Linker

Download

Software Debug

Processor,
Memory,

Logic

Standard FPGA HW
Development Flow

HDL Entry

Simulation

Synthesis

Place & Route

Download

Hardware Debug

Figure 1 – FPGA hardware and processor software design flow

Figure 2 – Xilinx HW-V4-ML403 platform

Figure 3 – Xilinx HW-V4-ML410 platform Figure 4 – PM102 personality module

B O A R D S

bus is connected to the primary PCI bus
through a PCI-to-PCI bridge.

For high-speed communication, the
ML410 supports two 10/100/1000 Base-
T PHY with RJ45 connectors for two
independent systems (1x connected
through RGMII/MII and 1x connected
through SGMII).

To support high-speed storage applica-
tions, the ML410 platform provides two
Serial ATA host connectors targeting 1.5
Gbps operation.

In addition to 64 MB of DDR memory,
the ML410 provides support for as much as
1 GB of DDR 2 memory through a 64-bit

DIMM socket (supporting buffered and
unbuffered DIMM). Together with the
System ACE CF controller providing hard-
disk access to additional memory on
CompactFlash cards, the ML410 offers
ample storage area for operating system and
software development. The ML410 is cur-
rently supported by Linux, Vxworks, and
QNX operating systems.

FPGA configuration is supported
through Parallel Cable IV cable (JTAG),
System ACE controller (JTAG), platform
flash memory, and linear flash plus CPLD.

Additional product information is avail-
able at www.xilinx.com/ml410.

Conclusion
As summarized in Table 1, embedded
system developments with Virtex-4
devices are supported by a wide range of
Xilinx-designed platforms. These plat-
forms enable you to significantly expe-
dite hardware and software
development.

In conjunction with these platforms,
the availability of different reference
designs, OPB- and PLB-based IP cores,
EDK, operating systems, compilers,
debuggers, and technical support make
embedded system design an easy and
pleasant experience.

60 Embedded magazine September 2005

HW-V4-ML401 HW-V4-ML402 HW-V4-ML403 HW-V4-ML405 HW-V4-ML410

Board Type Eval/Proto/Demo Eval/Proto/Demo Eval/Proto/Demo Eval/Proto/Demo Eval/Proto/Demo

Best Usage FPGA /MicroBlaze Development DSP Evaluation & Development PPC Evaluation & Development FPGA/RocketIO/PPC Eval/Development Embedded System Dev.

Xilinx Device LX25-FF668 SX35-FF668 FX12-FF668 FX20-FF672 FX60-FF1152

Price (Resale) $495 $595 $495 $696 $2,995

Memory 64 MB DDR/8 MB Flash/1 MB ZBT 64 MB DDR/8 MB Flash/1 MB ZBT 64 MB DDR/8 MB Flash/1 MB ZBT 128 MB DDR/8 MB Flash/1 MB ZBT DDR2 256 MB Required

DIMM / DDR1 64 MB

USB 2 Peripherals/1 Host 2 Peripherals/1 Host 2 Peripherals/1 Host 2 Peripherals/1 Host YES (2 Peripheral Ports)

10/100/1000 Ethernet 1 Port 1 Port 1 Port 1 Port: 10/100/1000 & SGMII 2 Ports: 10/100/1000 & SGMII

HSSDC2 NO NO NO NO NO

Serial ATA NO NO NO YES (2 Ports Host only) YES (2 Ports Host only)

SFP NO NO NO 1 Port Through Personality Module

PS/2 Mouse YES YES YES YES YES

PS/2 Keyboard YES YES YES YES YES

System ACE YES YES YES YES YES

PC4 Interface YES YES YES YES YES

JTAG YES YES YES YES YES

Serial Port YES YES YES YES YES (2)

Parallel Port NO NO NO NO YES

Clock -LVDS pair via SMAs (1) -LVDS pair via SMAs (1) -LVDS pair via SMAs (1) -LVDS pair via SMAs (1) On board:
– Single-ended via – Single-ended via – Single-ended via – Single-ended via – LVDS pair via SMAs (2)

socketed oscillators (2) socketed oscillators (2) socketed oscillators (2) socketed oscillators (2) – Single-ended via SMA (1)
-For MGT: 125 MHz LVDS, – Single-ended via

150 MHz LVDS, programmable socketed oscillators (2)
LVDS clock generator Personality module:

LVDS pairs (1)

PCI Slot NO NO NO NO 3.3V(2), 5.0V(2), PCI Express(2)

GPIO YES YES YES YES YES

Microphone YES YES YES YES YES

Headphone YES YES YES YES YES

Audio YES (line in/line out) YES (line in/line out) YES (line in/line out) YES (line in/line out) YES (line in/line out)

Video (VGA) YES YES YES YES YES

Display LCD LCD LCD LCD LCD

Bundles With Board + power supply Board + power supply Board + power supply Board + power supply Board + power supply
+ CompactFlash card + CompactFlash card + CompactFlash card + CompactFlash card + CompactFlash card

+ documentation + documentation + documentation + documentation + CD (documentation)

Table 1 – Xilinx embedded system development platforms

B O A R D S

62 Embedded magazine September 2005

EMBD21000-7-ILT (v1.0) Course Specification

© 2005 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Embedded Systems
Development

Course Description
Embedded Systems Development introduces experienced FPGA
designers to developing embedded systems using hard (embedded IBM
PowerPC™) or soft (Xilinx® MicroBlaze™) processor cores, and soft
peripheral cores, within the Embedded Development Kit (EDK) design
environment. The course includes hands-on labs to provide personal
experience with the development, debugging, and simulation of the
embedded system.

After completing this comprehensive training, you will have the
necessary skills to:
� Effectively develop, debug, and simulate an embedded system
� Identify tools used in the EDK
� Understand the hardware and software flows defined in the EDK
� Identify IP included in the EDK and where to get additional

information
� Understand the hardware and software simulation environments
� Integrate custom IP into the EDK

Course Outline

Day 1
� EDK Overview
� Lab 1: Simple Hardware Design
� Hardware Design
� Hardware Design Using EDK
� Lab 2: Adding IP to a Hardware Design
� Adding Your Own IP to the OPB Bus
� Lab 3: Adding Custom IP to an Embedded System

Day 2
� Software Development
� Address Management
� Lab 4: Writing Basic Software Applications
� Debugging
� Lab 5: Advanced Software Writing
� Lab 6: Using the Software Development Kit (SDK)

� System Simulation
� Lab 7: Performing System Simulation

Lab Descriptions
� Lab 1: Simple Hardware Design – Create an XPS project by

using the Base System Builder to develop a basic hardware
system for a target board.

� Lab 2: Adding IP to a Hardware Design – Learn to add IP, such
as bridges, OPB peripherals, OPB buses, and others to the basic
hardware design.

� Lab 3: Adding Custom IP to an Embedded System – Explore
adding a custom IP to your design by using the
Creating/Importing Peripheral Wizard.

� Lab 4: Writing Basic Software Applications – Write a basic C
application that utilizes the UART and GPIO.

� Lab 5: Advanced Software Writing – Use the OPB Timer and
create an interrupt service routine.

� Lab 6: Using the SDK – Writing applications using the Eclipse-
based SDK.

� Lab 7: Performing System Simulation – Generate simulation
scripts by using XPS and perform behavioral simulation.

Register Today
Xilinx delivers public and private courses in locations throughout the
world. Please contact Xilinx Education Services for more information,
to view schedules, or to register online.

Visit www.xilinx.com/education, and click on the region where you
want to attend a course.

North America, send your inquiries to registrar@xilinx.com, or contact
the registrar at 877-XLX-CLAS (877-959-2527). To register online,
search by Keyword "Embedded" in the Training Catalog at
https://xilinx.onsaba.net/xilinx.

Europe, send your inquiries to eurotraining@xilinx.com,
call +44-870-7350-548, or send a fax to +44-870-7350-620.

Asia Pacific, contact our training providers at
www.xilinx.com/support/training/asia-learning-catalog.htm, send your
inquiries to education_ap@xilinx.com, or call +852-2424-5200.

Japan, see the Japanese training schedule at
www.xilinx.co.jp/support/training/japan-learning-catalog.htm, send your
inquiries to education_kk@xilinx.com, or call +81-3-5321-7750.

You must have your tuition payment information available when you
enroll. We accept credit cards (Visa, MasterCard, or American
Express) as well as purchase orders and training credits.

Level – Intermediate
Course Duration – 2 days
Price – $1000 USD or 10 Training Credits
Course Part Number – EMBD21000-7.1-ILT
Who Should Attend? – FPGA design engineers, system architects,
and system engineers who are interested in Xilinx embedded
systems development flow
Prerequisites
� FPGA design experience
� Completion of the Fundamentals of FPGA Design course or

equivalent knowledge of Xilinx ISE™ implementation tools
� Basic understanding of C programming
� Basic microprocessor experience, understanding of PowerPC

and MicroBlaze systems
Software Tools
� ISE 7.1 SP1
� ModelSim PE 6.0
� EDK 7.1

September 2005 Embedded magazine 63

EMBD33000-63-ILT (v1.0) Course Specification

© 2005 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Advanced Features and Techniques
of Embedded Systems Development

Course Description
Advanced Features and Techniques of Embedded Systems
Development provides embedded systems developers the necessary
skills to develop complex embedded systems and improve their
designs by using the tools available in Xilinx® EDK. This course also
helps developers understand and utilize advanced components of
embedded systems designs for architecting a complex system.

This course builds on the skills learned in the Embedded Systems
Development course. Labs provide hands-on experience with the
development, verification, debugging, and simulation of the embedded
system. All labs use a virtual hardware board to which designs are
downloaded and verified.

After completing this comprehensive training, you will have the
necessary skills to:
� Understand and utilize advanced features and techniques of

Xilinx Platform Studio for embedded systems design
� Build a complete embedded system
� Architect a system that incorporates performance improvement

and booting large applications from external memory
� Employ various debugging techniques

Course Outline

Day 1
� Embedded Systems Development Review
� Lab 1: Building a Complete Embedded System
� External Memory Controllers and File Systems
� Lab 2: External Memory Controllers and File Systems
� Interrupts
� Debugging Using ChipScope™ Pro
� Lab 3: Debugging Using ChipScope Pro
� OCM Bus

Day 2
� Performance Tuning
� Lab 4: Performance Tuning
� Board Support Packages
� BFM Simulation
� Lab 5: BFM Simulation
� Boot Loader
� Lab 6: Boot Loading from Flash Memory

Lab Descriptions
� Lab 1: Comprehensive System Development – Develop hardware

that will incorporate IP cores to interface to push buttons,
switches, LEDs, an LCD display, and serial communication.
Develop an application that will interact with switches, push
buttons, an LCD display, and serial communication. Generate a
bitstream and download it onto a virtual hardware board.

� Lab 2: External Memory Controllers and File Systems – Design a
system that will include an OPB (on-chip peripheral bus)
EMC/SDRAM IP core. Develop an application that will perform
file-related tasks on external memory.

� Lab 3: Debugging Using ChipScope Pro – Perform simultaneous
hardware and software debugging on stack-related errors with the
ChipScope Pro tool, GDB, and XMD.

� Lab 4: Performance Tuning – Profile a simple piece of code
running on a processor and go through iterative steps of
refinement to improve the performance by using cacheing and
porting a repetitive function to hardware.

� Lab 5: BFM Simulation – Create an EDK system that includes
IBM CoreConnect bus architecture bus functional models (BFM)
and bus functional language constructs for an OPB IP. Simulate
the OPB bus-based design to verify IP functionality.

� Lab 6: Boot Loading – Develop an application that performs
desired tasks. Due to application size and resource limitations,
store it in flash, load it through a boot loader program, and
execute from external memory.

Register Today
Xilinx delivers public and private courses in locations throughout the
world. Please contact Xilinx Education Services for more information,
to view schedules, or to register online.

Visit www.xilinx.com/education and click on the region where you
want to attend a course.

North America, send your inquiries to registrar@xilinx.com, or contact
the registrar at 877-XLX-CLAS (877-959-2527). To register online,
search by Keyword "Embedded" in the Training Catalog at
https://xilinx.onsaba.net/xilinx.

Europe, send your inquiries to eurotraining@xilinx.com,
call +44-870-7350-548, or send a fax to +44-870-7350-620.

Asia Pacific, contact our training providers at
www.xilinx.com/support/training/asia-learning-catalog.htm, send your
inquiries to education_ap@xilinx.com, or call +852-2424-5200.

Japan, see the Japanese training schedule at
www.xilinx.co.jp/support/training/japan-learning-catalog.htm, send your
inquiries to education_kk@xilinx.com, or call +81-3-5321-7750.

You must have your tuition payment information available when you
enroll. We accept credit cards (Visa, MasterCard, or American
Express) as well as purchase orders and training credits.

Level – Advanced
Course Duration – 2 days
Price – $1200 USD or 12 Training Credits
Course Part Number – EMBD33000-6.3-ILT
Who Should Attend? – FPGA design engineers, system architects,
and system engineers who are interested in Xilinx embedded
systems development flow
Prerequisites
� Experience in C programming
� Embedded Systems Development course or experience with

embedded systems design
� Some HDL modeling experience
� Basic microprocessor experience and understanding of

PowerPC™ and MicroBlaze™ systems
Software Tools
� ISE™ 6.3
� Mentor Graphics ModelSim
� EDK 6.3

DESIGN FOR MANUFACTURING + INTEGRATED SYSTEM DESIGN + ELECTRONIC SYSTEM LEVEL DESIGN + FUNCTIONAL VERIFICATION

THE EDA TECHNOLOGY LEADER

©2005 Mentor Graphics Corporation. All Rights Reserved. Mentor Graphics is a registered trademark of Mentor Graphics Corporation.

Why are we the leader in FPGA design and verification?
Because Mentor helps you get your PowerPC/MicroBlaze design right the first time.

FPGA DESIGN | Getting it right the first time. There’s nothing better.

Especially when you have huge devices with logic, memory, processors, and complex

IP – all wrapped within another tight schedule. Mentor Graphics is the only EDA

company that offers embedded software plus hardware design solutions, from

design inception and synthesis to simulation and co-verification, for your embedded

platform FPGA. For more information on the Mentor PowerPC/MicroBlaze solution, or

other Mentor FPGA design solutions, visit mentor.com or call 800.547.3000 today.

® ™

MRKT0403 XilinxPartnerAdAUG05.ai 8/16/05 10:32:02 AM

PN 0010877

