
R

INSIDE
New EDK 8.1 Simplifies 
Embedded Design

Change Is Good

ESL Tools for FPGAs

Algorithmic Acceleration 
Through Automated 
Generation of 
FPGA Coprocessors

Bringing Floating-Point 
Math to the Masses

INSIDE
New EDK 8.1 Simplifies 
Embedded Design

Change Is Good

ESL Tools for FPGAs

Algorithmic Acceleration 
Through Automated 
Generation of 
FPGA Coprocessors

Bringing Floating-Point 
Math to the Masses

Issue 3
March 2006

Endless 
Possibilities
Endless 
Possibilities

E M B E D D E D  S O L U T I O N S  F O R  P R O G R A M M A B L E  L O G I C  D E S I G N S

EmbeddedEmbedded
magazinemagazine



Enabling success from the center of technology™

1 800 332 8638
www.em.avnet.com

© Avnet, Inc. 2006. All rights reserved. AVNET is a registered trademark of Avnet, Inc. 

Avnet Electronics Marketing offers a series of technical, hands-on 

SpeedWay Design Workshops™ that will dramatically accelerate 

your learning curve on new application solutions, products and 

technologies like the Philips-Xilinx PCI Express two-chip solution. 

Our FAE presenters use detailed laboratory exercises and Avnet 

developed design kits to reinforce the key topics presented during 

the workshops, ensuring that when you leave the class you will be 

able to apply newly learned concepts to your current design.

• Every workshop features an Avnet developed design kit 

• Workshops are systems and solutions focused 

• Design alternatives and trade-offs for targeted applications 
are discussed

For more information about upcoming Xilinx SpeedWay workshops, visit:

www.em.avnet.com/xilinxspeedway

Support Across The Board.
™

Accelerate Your Learning Curve
on New Application SolutionsXilinx Spring 2006 SpeedWay Series

• Xilinx MicroBlaze™
Development Workshop

• Xilinx PowerPC® 
Development Workshop

• Xilinx Embedded Software 
Development Workshop

• Introduction to FPGA Design 
Workshop

• Creating a Low-Cost 
PCI Express Design Workshop

• Embedded Networking 
with Xilinx FPGAs Workshop

• Xilinx DSP Development 
Workshop

• Xilinx DSP for Video Workshop

• Improving Design Performance
Workshop



W
Endless Possibilities
Welcome to our third edition of Xilinx Embedded Magazine. As we prepared this issue, the theme
for this year’s Embedded Systems Conference – “Five Days, One Location, Endless Possibilities” –
resonated with the array of potential articles. Simply stated, we seemed to have endless possibilities
for our embedded solutions to choose from and to share with you.

To capitalize on this theme, our ease-of-use initiative continues with Xilinx® Platform Studio and
the Embedded Development Kit (EDK), as we recently released our latest version, 8.1i. This
comes on the heels of EDN’s recognition of our 32-bit MicroBlaze™ soft-processor core as one
of the “Hot 100 Products of 2005.” Taken together, the MicroBlaze core, the industry-standard
PowerPC™ core embedded in our Virtex™ family of FPGAs, and a growing
list of IP and supported industry standards offer more options than ever to 
create, debug, and launch an embedded system for production.

The latest version of our kit serves one of the greatest appeals that the embed-
ded solution holds for our FPGA customers – to create a “just-what-I-needed”
processor subsystem that “just works.”  In so doing, our customers can concentrate
on the added value that differentiates their products in their marketplace. Here
again, “endless possibilities” resonates with unlimited design flexibility.

In this issue of Embedded Magazine we offer a collection of diverse articles unlocking the endless
possibilities with Xilinx platforms. We welcome industry icon Jim Turley and his clever insight
regarding shifts in the embedded industry with his article “Change Is Good.” In addition, our
partners Echolab, Impulse, PetaLogix, Poseidon, Teja, Avnet, and Nu Horizons highlight their 
latest innovations for our embedded platforms. Our own experts provide tutorials on the latest
release of EDK 8.1, along with a background look at the newly launched Xilinx ESL Initiative.

Join us as we plumb the depths of these exciting new embedded solutions. I’m sure you’ll find our
third edition of Embedded Magazine informative and inspiring as we endeavor to help you unlock
the power of Xilinx programmability. The advantages are enormous, the possibilities … endless!
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YOU CAN
DELIVER INNOVATION
YOU CAN
DELIVER INNOVATION

Time to market, developer and programmer productivity, choice in fabrication facilities and EDA retooling costs for
smaller and smaller geometries are all putting tremendous strain on system development groups around the globe. 

Enter IBM. Whether your design priorities are low power or high performance, or both, IBM’s Power Architecture™
microprocessors and cores can help you accelerate innovation in your designs.  Find out what the world's fastest
supercomputer, Internet routers and switches, the Mars Rover, and the next generation game consoles all have in
common. For more information visit ibm.com/power
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by Jay Gould
Product Marketing Manager, 
Xilinx Embedded Solutions Marketing
Xilinx, Inc.
jay.gould@xilinx.com

After achieving an industry milestone,
what’s next? In 2005, the Xilinx® Platform
Studio tool suite (XPS) included in the
Embedded Development Kit (EDK) won
the IEC’s DesignVision Award for innova-
tion in embedded design. The revolution-
ary approach of design wizards brought
abstraction and automation to an other-
wise manual and error-prone development
process for embedded system creation.

The year 2006 brings a new version 8.1
update to the Platform Studio tool suite,
with an emphasis on simplifying the devel-
opment process and providing a more vis-
ible environment. The result is a shortened
learning curve for new users and an even
more complete and easier-to-use environ-
ment for existing designers. 

New EDK 8.1 Simplifies 
Embedded Design
New EDK 8.1 Simplifies 
Embedded Design
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Just getting a complex design started
can take a significant amount of time out
of a critical schedule, so Xilinx started with
a premise that the first steps to a working
core design should be automated. The
Xilinx Base System Builder design wizard
within the Platform Studio tool suite pro-
vides a step-by-step interface to walk you
through the critical first stages of a design.
Design wizards are a great innovation
because they can provide a quick path to a
working core design even if you have min-
imal expertise. The “smarter” the install
wizard is, the fewer issues occur, and the
less experience you need to have. 

Pre-configured hardware/software devel-
opment kits are also extremely valuable for
getting a design “off the napkin” and into a
quick but stable state. Xilinx hardware/soft-
ware development kits provide working
hardware boards, hardware-aware tools, and
pre-verified reference designs. The benefit
here is that you can power up hardware,
download a working design to a board, and
start investigating a “working” core system
in a very short period of time, skipping past
the delays and complexities of debugging
new hardware, new firmware, and new soft-
ware all at the same time.  

The “Project” tab contains a variety of
helpful information about the design,
including specific Xilinx device selection
and settings (for example, a specific
Virtex™-4 or Virtex-II Pro device with
one or two PowerPC™ processor cores)
and project file locations (hardware and
software project descriptions as well as log
and report files for steps like synthesis), as
well as simulation setup details. 

You can view software applications
under the “Applications” tab, which pro-
vides access to all of the C source and head-
er files that make up the embedded system
design. This view also provides views of the
compiler options and even the block RAM
initialization process.

The “IP Catalog” tab contains in-depth
information about the IP cores created,
bought, or imported for the design. Xilinx
provides several scores of processing IP
cores in the Embedded Development Kit
software bundle as well as some high-value
cores for time-limited evaluations. You can
research Xilinx processor IP at www.
xilinx.com/ise/embedded/edk_ip.htm.

The middle panel is the “Connectivity”
view, and the adjacent panel to the right of
that is the associated “System Assembly”
view. The connectivity view gives a clear
visual of the design busing structure and
also provides a dynamic tool for creating
new or editing existing connections. The
color-coded view quickly makes it clear –
even to novice users – the specifics of the
bus type and how it might relate to IP. For
example, in this view, peripherals connect-
ed to the PLB (processor local bus) are pre-
sented in orange; OPB (on-chip peripheral
bus) connections are green; and point-to-
point connections with a processor core, in
this case the PowerPC 405, are in purple.
The panel “filter” buttons allow you to cus-
tomize or simplify the connection views so
that you can focus on specific bus elements
without the distraction of other elements.

Platform Studio reduces the errors that
a designer might make by maintaining cor-
rect connections by construction – that is,

A majority of the embedded design
cycle, before full system verification, is
spent iterating on the core design, incre-
mentally introducing new features, adding
individual capabilities, and repeatedly
debugging after each step. Because this is
excessively tedious and time consuming,
this stage should be as easy and streamlined
as possible. Version 8.1 has a focus on mak-
ing common (and repetitive) tasks simple
and intuitive, benefiting both new and
existing users.

All Users Benefit from V8.1
Xilinx has updated the main user inter-
face of Platform Studio to provide an
intuitive feel for both hardware and soft-
ware engineers, making multiple views
and customization easy for all. The inte-
grated development environment (IDE)
in Figure 1 displays a wide array of infor-
mation, but also allows you to filter views
and customize the toolbars. The left-hand
pane provides an industry-standard “tab”
method of displaying or hiding informa-
tion panels on the design “Project,”
“Applications,” or “IP Catalog.” Just tog-
gle on the tab of choice to display the
contents of that pane.

March 2006 Embedded magazine 7

Figure 1 – New 8.1 Platform Studio GUI

Xilinx has updated the main user interface of Platform Studio to provide 
an intuitive feel for both hardware and software engineers ... 



XPS will only display connection
options for compatible bus types.
This saves debug headaches with
tools that allow incompatible
connections. 

The system assembly view (see
Figure 2) more clearly displays an
example of dynamic system con-
struction using a “drag-and-drop
connectivity instantiation.” In
the figure, the gray highlighted
“opb_uartlite” IP core is selected
on the left panel from the IP
Catalog and has been dragged
and dropped into the right
assembly window, creating a new
OPB bus connection option
automatically; just mouse-click to
connect. The views on the right
also provide helpful information
such as IP types for perusing and
IP version numbers for project
version control. Now, at a glance,
you can distinguish the system
structure without reading reams
of documentation. 

However, if design documen-
tation is what your project and
team require, Platform Studio 8.1
has the powerful capability to
generate full design-reference
material, including a full block diagram
view of the system elements and their inter-
connections. This automatic generation of
the docs saves valuable time (instead of cre-
ating the materials manually) and reduces
errors by creating the materials directly
from the design. This method keeps the
docs and the design accurately in sync as
well as displaying a clear high-level view of
the entire project.

New Enhancements Help Existing Users
Current Platform Studio users will be
pleased to see advances in the support of
sophisticated software development, IP
support, and the migration or upgrades of
older designs. Figure 3 is an example of
what the IP Catalog tab might look like for
a design, including all IP cores categorical-
ly grouped on the left-hand side by logical
names.  The specific IP cores will display a
version number for design control as well

as a brief language description if the names
are too brief for context. This view allows
you to manage your old and current IP as
well as future IP upgrades (more powerful
versions of cores with more features but
often faster and smaller in size).

Additional information is available as
well, such as which processor cores the IP
supports. Because Xilinx offers flexible sup-
port for both high-performance PowerPC
hard and flexible MicroBlaze™ soft-proces-
sor cores, it is useful to know which IP cores
are dedicated to one processor, the other, or
both. In fact, a right mouse-click on the IP
from the catalog yields quick access to the
IP change history as well as complete PDF
datasheets on the specifics. Software drivers
for the peripherals have a similar platform
settings view for clarity, including version
control and embedded OS support.

When a new version of tools and IP
becomes available, the upward design

migration ought to be as painless
as possible. Nobody wants to re-
invest design, debugging, and test
time to move an older design to a
newer set of tools or IP. However,
there are often great advantages in
new IP/tools that make it advan-
tageous to upgrade. Platform
Studio 8.1 has a migration capa-
bility (Figure 4) that steps you
through a wizard to automate and
accelerate the process.

XPS 8.1 can browse existing
design projects, flag out-of-date
projects and IP cores, and then
walk you though the process of
confirming automated updates
to the new IP and project files.
The migration wizard updates
the project description files and
summarizes the migration
changes in document form.
Minimizing labor-intensive steps
means that you can take advan-
tage of new advancements with-
out as much manual re-entering
or porting of designs. 

Savvy software developers
working on more sophisticated
code applications will be happy
with the enhancements to the

XPS Software Development Kit IDE,
based on Eclipse. The XPS-SDK has an
enhanced toolbar that more logically
groups similar functions and buttons
while still allowing user customization.
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Version 8.1 introduces a more powerful
C/C++ editor supporting code folding of
functions, methods, classes, structures, and
macros, as well as new compiler advance-
ments. This new support provides the abil-
ity to specify linker scripts and customized
compiler options for PowerPC and
MicroBlaze processor cores, plus a C++
class creation wizard. Combine this power-
ful software environment with the innova-
tive performance profiling views and
unique XPS capability of integrated hard-
ware/software debuggers, and 8.1 users will
be creating better, more powerful embed-
ded systems in less time than ever before.

Conclusion
The award-winning Platform Studio has
already streamlined embedded system
design. Automated design wizards and pre-
configured hardware/software development
kits help kick-start designs while reducing
errors and tail-chasing.

Now that we have an industry-proven
success in ramping-up the “getting started”
process, it is time to improve the time-con-
suming and cyclical nature at the heart of
the development process. Create – Debug
– Edit – Repeat. Have you ever used a com-
puter-aided tool where most of the steps
were intuitive? Where you could guess
what a button did before you read the
manual or saw a screen in which the con-
tents were all self-evident? 

EDK/XPS version 8.1 focuses on ease-of-
use improvements across the board, includ-
ing enhancements to the main user
interface, the software development envi-
ronment (including editing and compiling),
the upgrading of IP, the migrating of old
projects, documenting designs, viewing and
editing bus-based systems, and much more. 

By making common tasks simple and
intuitive, we can make designing a little bit
easier for experienced embedded engineers
as well as those brand-new to designing
with processors in programmable FPGA
platforms. Use the extra time saved during
the development process to innovate your
own embedded products.

For more information about EDK ver-
sion 8.1 and all of our embedded process-
ing solutions, visit www.xilinx.com/edk. 
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by Jim Turley
Editor in Chief, Embedded Systems Design
CMP Media LLC
jim@jimturley.com

If you shout “microprocessor” in a crowded
theatre, most people will think “Pentium.”
Intel’s famous little chip has captured the
public imagination to the point where many
people think 90% of all the chips made
come streaming out of Intel’s factories.

Nothing could be further from the
truth. The fact is, Pentium accounts for
less than 2% of all of the microprocessors
made and sold throughout the world. The
lions’ share – that other 98% – are proces-
sors embedded into everyday appliances,
automobiles, cell phones, washers, dryers,
DVD players, video games, and a million
other “invisible computers” all around us.
PCs are a statistically insignificant part of
the larger world – and Pentium sales are a
rounding error.

Take heart, embedded developers, for
though you may toil in obscurity, your
deeds are great, your creations mighty, and
your number legion. With few exceptions,
most engineers are embedded systems devel-
opers. We’re the rule, not the exception.

Change Is GoodChange Is Good
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Hardware designers and software designers can’t often agree, 
but there is a middle ground that both might enjoy.
Hardware designers and software designers can’t often agree, 
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Processors As Simulators
What is exceptional is the number of differ-
ent ways we approach a problem. All PCs
look pretty much the same, but there’s no
such thing as a typical embedded system.
They’re all different. We don’t standardize
on one operating system, one processor (or
even processor family), or one power sup-
ply, package, or peripheral mix. Among 32-
bit processors alone there are more than 100
different chips available from more than a
dozen different suppliers, each one with
happy customers designing systems around
them. Hardly a homogenous group, are we?

There’s even a school of thought that
microprocessors themselves are a
mistake – a technical dead-end.
The theory goes that microproces-
sors merely simulate physical func-
tions (addition, subtraction, FFT
analysis), rather than performing
the function directly. Decoding
and executing instructions, han-
dling interrupts, and calculating
branches is all just overhead. A
close look at any modern processor
chip would seem to bear this theo-
ry out: only about 15% of the
chip’s transistors do any actual
work. The rest are dedicated to
cracking opcodes, handling flag
bits, routing buses, managing
caches, and other effluvia necessary
to make the hardware do what the
software tells it to do. 

The only reason processors
were ever invented in the first
place (so the thinking goes) is
because they were more malleable
than “real” hardware. You could change
your code over time – but you couldn’t
change your hardware.

But that isn’t true any more.
Following this line of reasoning, the

right approach is to do away with proces-
sors and software altogether and imple-
ment your functions directly in hardware.
Forget that 85% of processor overhead
logic and get right down to the nuts and
bolts. Make every one of those little tran-
sistors work for a living. And hey, if you
change your mind, you can change your
hardware – if it’s programmable.

More to the point, it’s no longer an
either/or decision. The two disciplines are
not mutually exclusive; engineering is not
a zero-sum game. We don’t have to come
down firmly on the side of hardware or
software; we can straddle the middle
ground as it suits us. When your hardware
is programmable, you can choose to “pro-
gram” it or “design” it using traditional cir-
cuitry methods. Take your pick. Let
whimsy or convention be your guide.  

Engineers, like most craftsmen, place
great stock in their tools. A recent survey
revealed that most developers choose
their tools (compiler, logic analyzer,
IDE) first and the “platform” they work
on second. For example, they let their
choice of compiler determine their
choice of processor, not vice versa. The
hardware – a microprocessor, generally –
is treated as a canvas or work piece on
which they ply their trade. This comes as
a bit of a blow to some of the more tra-
ditional microprocessor makers, who’d
always assumed that the world revolved
around their instruction set. 

The takeaway from this part of the
survey was that keeping developers in
their comfort zone is paramount.
Engineers don’t like to modify their skills
or habits to accommodate someone else’s
hardware. Instead, the hardware should
adapt to them. In the best case, the hard-
ware should even adapt to a code jockey
one day and a circuit snob the next.
Different tools for different approaches,
but with one goal in mind: to create a
great design within time and budget (and
power, and heat, and pinout, and cost,
and performance) constraints.

There hasn’t been anything to accom-
modate this flexibility until pretty recently.
Hardware was hardware; code was code.
But with “soft processors” in FPGAs living
alongside seas of gates and coprocessors,
we’ve got the ultimate canvas for creative
developers. Whether it’s VHDL or C++,
these new chips can be customized in
whatever way suits you. They’re as flexible
as any software program, and as fast and
efficient as “real” hardware implementa-
tions. We may finally have achieved the
best of both worlds. 

The Malleable Engineer
So now we’re faced with the proverbial (and
overused) paradigm shift. We can toss out
everything we know about programming,
operating systems, software, real-time code,
compilers, boot loaders, and bit-twiddling
and go straight to hard-wired hardware
implementations. 

Or not.
Maybe we like programming. There’s

something about software design that
appeals to the inner artist in us. It’s a whole
different way of thinking compared to
hardware design, at least for a lot of engi-
neers. Software is like poetry; hardware is

like architecture. There’s plenty of bad
poetry because anyone can do it, but you
don’t see people tossing up buildings just to
see if they stand. Programming requires
much less discipline and training than
hardware engineering. That’s why there are
so many programmers in the world. 

This is a good thing. Really. The easier
it is to enter the engineering profession, the
more (and better) engineers we’re likely to
have. And since hardware- and software-
design mindsets are different, we get to
draw from a bigger cross section of the
populace. Variety is good.
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by Ji r̆i Kadlec  
DSP Researcher 
UTIA Prague, Czech Republic 
kadlec@utia.cas.cz

Stephen P.G. Chappell
Director, Applications Engineering
Celoxica Ltd., Abington, UK
steve.chappell@celoxica.com 

For developers using FPGAs for the
implementation of floating-point DSP
functions, one key challenge is how to
decompose the computation algorithm
into sequences of parallel hardware
processes while efficiently managing data
flow through the parallel pipelines of
these processes.

In this article, we’ll discuss our experi-
ences exploring architectures with Xilinx®

PicoBlaze™ controllers, and present a
design strategy employing the ESL tech-
niques of model-based and C-based
design to demonstrate how you can rapid-
ly integrate highly parameterizable DSP
hardware primitives into power-efficient

high-performance implementations in
Spartan™ devices.

Hardware Acceleration and Reuse
High-performance implementations of
floating-point DSP algorithms in FPGAs
require single-cycle parallel memory
accesses and effective use of pipelined
arithmetic operators. Many common DSP
vector and matrix operations can be split
into batch calculations fulfilling these
requirements. Our architectures comprise
Xilinx PicoBlaze worker processors, each
with a dedicated DSP hardware accelerator
(Figure 1). Each worker can do preparato-
ry tasks for the next batch in parallel with
its hardware accelerator. Once the DSP
hardware accelerator finishes the computa-
tion, it issues an interrupt to the worker.
The worker’s job is to combine the acceler-
ated parts of the computation into a com-
plete DSP algorithm. 

It is ideal if you limit implementations
to the batch operations of each worker
starting in a block RAM, performing a rel-

atively simple sequence of pipelined oper-
ations at the maximum clock speed and
returning the result(s) back to another
block RAM. You can effectively map these
primitives to hardware, including the
complete autonomous data-flow control
in hardware. You can also code the related
dedicated generators of address counters
and control signals in Handel-C, using
several synchronized do-while loops.
Simulink is effective for fast derivation of
bit-exact models of the batch calculations
in DSP hardware accelerators.

Floating-Point Processor on a Single FPGA 
Let’s consider an architecture for the evalu-
ation of a 1024 x 1024 vector product in
18m12 floating point. (In the format AmB,
A is for the word length and B is for the
number of bits in the mantissa, including
the leading hidden bit representing 1.0.)

We implemented this architecture
using five PicoBlaze processors on a single
FPGA: one master and four simplified
workers (Figure 1). The master is connect-

Implementing Floating-Point DSP 
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ed to the workers by I/O-mapped dual-
ported block RAMs organized in 2,048 8-
bit words. The master maintains the
real-time base with 1 µs resolution and pro-
vides RS232 user-interface functions. Each
worker serves as a controller to a dedicated
floating-point DSP hardware accelerator
connected through three dual-ported block

using one 18m12 multiplier (FP MUL)
and one 18m12 adder (FP ADD).

Scalable, Short-Latency 
Floating-Point Modules
We used a newly released version of a scala-
ble, short-latency pipelined floating-point
library from Celoxica to build our DSP hard-
ware accelerators. Table 1 considers some of
the parameterizations of this FPGA vendor-
independent library to the formats 18m12,
32m24, and 64m53. The library includes
IEEE754 rounding, including the round to
even. It provides bit-exact results to the
Xilinx LogiCORE™ floating-point opera-
tors (v2.0), with latency set to approximately
one half. The resulting maximum system
clock is compatible with PicoBlaze and
MicroBlaze™ embedded processors.

Simulink and the DK Design Suite 
Our design flow is based on the bit-exact
modeling of Handel-C floating-point units
in a Simulink framework, where the
Handel-C is developed in the DK Design
Suite combined simulation and synthesis
environment. This enabled us to decompose
a floating-point algorithm into a sequence of
simple operations with rapid development
and testing of different combinations.

Step 1: Model in Simulink
First, we built a model of the DSP hardware
accelerator in Simulink (Figure 2). The data
sources and sinks in this model will be the
block RAMs shared with the PicoBlaze
worker in the final implementation.

Because the FPGA floating-point oper-
ations are written in cycle-accurate and
bit-exact Handel-C, we benefited from a
single source for both implementation
and simulation. For modeling, we export-
ed the Handel-C functions to S-functions
using Celoxica’s DK Design Suite. We
then incorporated these into a bit-exact
Simulink model. In this fast functional
simulation, we use delay blocks in
Simulink to model pipeline stages (see the
5-stage pipeline of the FP ADD operator
and related registers in Figure 2). We used
separate Simulink subsystems to model
the bit-exact operation of the final
“pipeline flushing,” or “wind-up opera-

RAMs organized in 1,024 18-bit words.
Two  block RAMs hold source vectors and
one holds results data. In this case, the
workers perform one quarter of the com-
putation each, namely a 256 x 256 vector
product. The DSP hardware accelerators
are implemented in hardware, from block
RAM data source to block RAM data sink,
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PicoBlaze Master

PicoBlaze Workers

DSP Hardware Accelerators

Dual-Port Block RAMs

Part: 18m12: 32m24: 64m53: 
xc2v1000-4 125 MHz 110 MHz 100 MHz
xc3s1500L-4 84 MHz 84 MHz 72 MHz

Pipelined: FF LUT Pipe FF LUT Pipe FF LUT Pipe

ADD 834 793 5 1158 1290 5 1686 2007 5

MULT 639 488 3 967 626 4 2029 1256 5

F2FIXPT 581 637 4 649 744 4 808 1053 4

FIXPT2F 695 709 6 792 787 6 1008 946 6

Sequential: Cycles Cycles Cycles

DIV 739 605 17 987 772 29 2119 1143 58

SQRT 766 604 16 1053 802 28 1729 1303 57

Table 1 – Used flip-flops, LUTs, pipeline/latency, and maximum clock for Celoxica floating-point 
modules in system implementations in the Celoxica RC200E (Virtex-II FPGA) and RC10 
(Spartan-3L FPGA) boards.  Modules are pipelined, with the exception of DIV and SQRT.  

Figure 1 – PicoBlaze-based architecture for floating-point DSP. The DSP hardware 
accelerators are modeled and implemented using Celoxica DK.



tion.” In this case, six partial
sums have to be added by a
single reused FP ADD mod-
ule (Figure 3). The corre-
sponding hardware computes
the final sum of the partial
sums by reconnecting the
pipelined floating-point
adder to different contexts
for several final clock cycles.

Step 2: Cycle-Accurate
Verification 
Our next stage was to create
test vectors using Simulink
and feed these into a bit-
exact and cycle-accurate sim-
ulation of the DSP hardware
accelerator in the DK
Design Suite’s debugger.
Once we confirmed identical
results for both the DK and
Simulink models, we com-
piled the Handel-C code to
an EDIF netlist.

Step 3: Hardware Test
We took advantage of a lay-
ered design approach by
using a single communica-
tion API for data I/O func-
tions that applies to both
simulation and implementa-
tion. This allowed us to veri-
fy the DSP hardware accelerator design on
real FPGA hardware by “linking” with an
appropriate board support library for
implementation. We can optionally insert
this hardware test back into the Simulink
model for hardware-in-the-loop simula-
tions. The test on FPGA hardware provides
reliable area and clock figures.

Step 4: Create Reusable 
Module and Connect to Worker
Finally, we treated the verified block
RAM-to-block RAM DSP hardware accel-
erator as a new module and integrated it
into our main design by compiling the
Handel-C to EDIF or RTL using the DK
Design Suite. This reusable module is con-
nected to the PicoBlaze network by wiring
the ports of the block RAMs and the

appropriate enable and controller inter-
rupt signals. At this stage we tested the
function of the DSP hardware accelerator
under worker control using memory dump
user support from the master.

Step 5: Develop Complete DSP Design
We next assembled the complete design of
workers and master, moving to assembly pro-

gramming of individual PicoBlaze
workers and their interactions. 

Performance Results
Test results using the Celoxica
RC200E (Virtex™-II FPGA)
and RC10 (Spartan™-3L FPGA)
boards are shown in Table 2. It is
interesting to compare the power
consumption of the PicoBlaze
network architecture on Virtex-II
devices (RC200E) with the iden-
tical design on the low-power 90
nm Spartan-3L device (RC10).
The latter part gives a highly
favorable floating-point perform-
ance-to-power ratio.

Conclusion 
With minimal overhead, PicoBlaze
workers add flexibility to floating-
point DSP hardware accelerators
by their ability to call and reuse
software functions (even if in
assembly language only). Our pro-
posed architecture enables more
flexible and generic floating-point
algorithms without the additional
increase of hardware complexity
associated with hardware-only
implementations due to irregulari-
ties and complex multiplexing of
pipelined structures. PicoBlaze
cores are compact, simple, and

therefore manageable, without designers
needing to combine too many new skills. 

The use of floating-point designs devel-
oped using the DK Design Suite in com-
bination with a Simulink framework
provides an effective design path that is
relatively easy to debug and scalable to
more complex designs.  

Spartan-3L technology considerably
reduces power consumption compared to
Virtex-II devices. Considering the bene-
fits in terms of performance/power/price,
Spartan-3L FPGA implementations of
floating-point DSP pipelines using net-
works of PicoBlaze processors are an
interesting option.

You can find complete information on
the design and technology discussed in
this article at www.celoxica.com/xilinx. 
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Part: MHz MFLOPs mW

xc2v1000-4 100 700 1360

xc3s1500L-4 84 588 263

Table 2 – Results for 1024 x 1024 vector 
product in 18m12 floating point on the 

Celoxica RC200E (Virtex-II FPGA) and RC10
(Spartan-3L FPGA) boards

Figure 3 – Simulink subsystem based on Handel-C 
bit-exact models, including delay model of calculation wind-up 

at the end of the vector product batch

Figure 2 – Simulink test bench for floating-point 18m12 vector 
product based on Handel-C bit-exact models
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A fundamental change is taking place in the
world of logic design. A new generation of
design tools is empowering software develop-
ers to take their algorithmic expressions
straight into hardware without having to
learn traditional hardware design techniques.

These tools and associated design
methodologies are classified collectively as
electronic system level (ESL) design, broadly
referring to system design and verification
methodologies that begin at a higher level of
abstraction than the current mainstream reg-
ister transfer level (RTL). ESL design lan-
guages are closer in syntax and semantics to
the popular ANSI C than to hardware lan-
guages like Verilog and VHDL.

How is ESL Relevant to FPGAs?
ESL tools have been around for a while,
and many perceive that these tools are pre-
dominantly focused on ASIC design flows.
The reality, however, is that an increasing
number of ESL tool providers are focusing
on programmable logic; currently, several
tools in the market support a system design
flow specifically optimized for Xilinx®

FPGAs. ESL flows are a natural evolution
for FPGA design tools, allowing the flexi-
bility of programmable hardware to be
more easily accessed by a wider and more
software-centric user base.

Consider a couple of scenarios in which
ESL and FPGAs make a great combination:

1. Together, ESL tools and programma-
ble hardware enable a desktop-based
hardware development environment
that fits into a software developer’s
workflow model. Tools can provide
optimized support for specific FPGA-
based reference boards, which soft-
ware developers can use to start a
project evaluation or a prototype. The
availability of these boards and the
corresponding reference applications
written in higher level languages
makes creating customized, hardware-
accelerated systems much faster and
easier. In fact, software programmers
are now able to use FPGA-based ref-
erence boards and tools in much the
same way as microprocessor reference
boards and tools.

2. With high-performance embedded
processors now very common in
FPGAs, software and hardware
design components can fit into a
single device. Starting from a soft-
ware description of a system, you
can implement individual design
blocks in hardware or software
depending on the applications’ per-
formance requirements. ESL tools
add value by enabling intelligent
partitioning and automated export
of software functions into equivalent
hardware functions.

ESL promotes the concept of “explo-
rative design and optimization.” Using ESL
methodologies in combination with pro-
grammable hardware, it becomes possible
to try a much larger number of possible
application implementations, as well as rap-
idly experiment with dramatically different
software/hardware partitioning strategies.
This ability to experiment – to try new
approaches and quickly analyze perform-
ance and size trade-offs – makes it possible
for ESL/FPGA users to achieve higher over-
all performance in less time than it would
take using traditional RTL methods.

Additionally, by working at a more
abstract level, you can express your intent
using fewer keystrokes and writing fewer
lines of code. This typically means a much
faster time to design completion, and less
chance of making errors that require
tedious, low-level debugging.

ESL’s Target Audience
The main benefits of ESL flows for
prospective FPGA users are their produc-
tivity and ease-of-use. By abstracting the
implementation details involved in gener-
ating a hardware circuit, the tools are mar-
keting their appeal to a software-centric
user base (Figure 1). Working at a higher
level of abstraction allows designers with
skills in traditional software programming
languages like C to more quickly explore
their ideas in hardware. In most instances,
you can implement an entire design in
hardware without the assistance of an

ESL Tools for FPGAsESL Tools for FPGAs
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experienced hardware designer. Software-
centric application and algorithm develop-
ers who have successfully applied the
benefits of this methodology to FPGAs
include systems engineers, scientists, mathe-
maticians, and embedded and firmware
developers. 

The profile of applications suitable for
ESL methodologies includes computational-
ly intensive algorithms with extensive inner-
loop constructs. These applications can
realize tremendous acceleration through the
concurrent parallel execution possible in
hardware. ESL tools have helped with suc-
cessful project deployments in application
domains such as audio/video/image process-
ing, encryption, signal and packet process-
ing, gene sequencing, bioinformatics,
geophysics, and astrophysics.

ESL Design Flows 
ESL tools that are relevant to FPGAs cover
two main design flows:  

1. High-level language (HLL) synthesis.
HLL synthesis covers algorithmic or
behavioral synthesis, which can pro-
duce hardware circuits from C or C-
like software languages. Various
partner solutions take different paths
to converting a high-level design
description into an FPGA implemen-
tation. How this is done goes to the
root of the differences between the
various ESL offerings.

You can use HLL synthesis for a vari-
ety of use cases, including: 

• Module generation. In this mode of
use, the HLL compiler can convert a
functional block expressed in C (for
example, as a C subroutine) into a
corresponding hardware block. 
The generated hardware block is 
then assimilated in the overall 
hardware/software design. In this way,
the HLL compiler generates a sub-
module of the overall design.

Module generation allows software
engineers to participate in the overall
system design by quickly generating,
then integrating, algorithmic hardware
components. Hardware engineers seek-

2. System modeling. System simulations
using traditional RTL models can be
very slow for large designs, or when
processors are part of the complete
design. A popular emerging ESL
approach uses high-speed transaction-

level models, typically written
in C++, to significantly

speed up system sim-
ulations. ESL tools

provide you with
a virtual plat-
form-based
verification
environment
where you can

analyze and
tune the func-

tional and per-
formance attributes of

your design. This means
much earlier access to a vir-
tual representation of the
system, enabling greater
design exploration and
what-if analysis. You can

evaluate and refine performance issues
such as latency, throughput, and band-
width, as well as alternative
software/hardware partitioning strate-
gies. Once the design meets its perform-
ance objectives, it can be committed to
implementation in silicon.

ing a fast way to prototype new, com-
putation-oriented hardware blocks
can also use module generation.

• Processor acceleration. In this
mode of use, the HLL compiler
allows time-critical or bottle-
neck functions running
on a processor to be
accelerated by
enabling the cre-
ation of a cus-
tom accelerator
block in the
programmable
fabric of the
FPGA. In addi-
tion to creating
the accelerator, the
tools can also auto-
matically infer memories
and generate the required
hardware-software interface
circuitry, as well as the
software device drivers that
enable communication
between the processor and
the hardware accelerator block
(Figure 2). When compared to
code running on a CPU, FPGA-
accelerated code can run orders of
magnitude faster while consuming
significantly less power. 
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HLL Synthesis

• No need to learn HDL
• No prior FPGA experience needed

FPGA

CPU
Capture Design

in "HLL"

External CPU

• Create hardware modules from software code
• Accelerate "slow" CPU code in hardware

Empowering The Software Developer

CPU
(Internal or
External to

FPGA)

Memory
(PCB, FPGA)

ESL Tools Can ...

Accelerator
(FPGA)

APU FSL PLB OPB

LCD
(PCB)

Infer Memories

Create Coprocessor
Interface

Synthesize C into
FPGA Gates

Allow Direct Access from
C to PCB Components

Figure 1 – Most of the
ESL tools for FPGAs are
targeted at a software-

centric user base.

Figure 2 – ESL tools abstract the details associated with 
accelerating processor applications in the FPGA.



The Challenges Faced by ESL Tool Providers 
In relative terms, ESL tools for FPGAs are
new to the market; customer adoption
remains a key challenge. One of the biggest
challenges faced by ESL tool providers is
overcoming a general lack of awareness as
to what is possible with ESL and FPGAs,
what solutions and capabilities already
exist, and the practical uses and benefits of
the technology. Other challenges include
user apprehension and concerns over the
quality of results and learning curve associ-
ated with ESL adoption.

Although paradigm shifts such as
those introduced by ESL will take time to
become fully accepted within the existing
FPGA user community, there is a need to
tackle some of the key issues that cur-
rently prohibit adoption. This is particu-
larly important because today’s ESL
technologies are ready to deliver substan-
tial practical value to a potentially large
target audience. 

Xilinx ESL Initiative
Xilinx believes that ESL tools have the
promise and potential to radically change
the way hardware and software designers
create, optimize, and verify complex elec-
tronic systems. To bring the full range of
benefits of this emerging technology to its
customers and to establish a common plat-
form for ESL technologies that target
FPGAs in particular, Xilinx has proactively
formed a collaborative joint ESL Initiative
with its  ecosystem partners (Table 1).

The overall theme of the initiative is to
accelerate the pace of ESL innovation for
FPGAs and to bring the technology closer
to the needs of the software-centric user
base. As part of the initiative, there are two
main areas of emphasis:

1. Engineering collaboration. Xilinx will
work closely with its partners to con-
tinue to further increase the value of
ESL product offerings. This will

include working to improve the com-
piler quality of results and enhance tool
interoperability and overall ease-of-use.   

2. ESL awareness and evangelization.
Xilinx will evangelize the value and
benefits of ESL flows for FPGAs to
current and prospective new customers.
The program will seek to inform and
educate users on the types of ESL solu-
tions that currently exist and how the
various offerings can provide better
approaches to solving existing prob-
lems. The aim is to empower users to
make informed decisions on the suit-
ability and fit of various partner ESL
offerings to meet their specific applica-
tion needs. Greater awareness will lead
to increased customer adoption, which
in turn will contribute to a sustainable
partner ESL for FPGAs ecosystem.  

Getting Started With ESL
As a first step to building greater awareness
on the various ESL for FPGA efforts, Xilinx
has put together a comprehensive ESL web-
site. The content covers the specific and
unique aspects of each of the currently

available partner ESL solutions and is
designed to  help you decide which, if any,
of the available solutions are a good fit for
your applications. To get started with your
ESL orientation, visit www.xilinx.com/esl. 

Additionally, Xilinx has also started a new
ESL for FPGAs discussion forum at
http://toolbox.xilinx.com/cgi-bin/forum. Here,
you can participate in a variety of discussions
on topics related to ESL design for FPGAs. 

Conclusion
ESL tools for FPGAs give you the power to
explore your ideas with programmable
hardware without needing to learn low-
level details associated with hardware
design. Today, you have the opportunity to
select from a wide spectrum of innovative
and productivity-enhancing solutions that
have been specifically optimized for Xilinx
FPGAs. With the formal launching of the
ESL Initiative, Xilinx is thoroughly com-
mitted to working with its third-party
ecosystem in bringing the best-in-class
ESL tools to its current and potential
future customers. Stay tuned for continu-
ing updates and new developments. 
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Handel-C, SystemC to gates

Impulse C to gates

HW/SW partitioning, acceleration

Co-processor synthesis

C to multi-core processing

Adaptable parallel processor in FPGA

SystemC to gates

SystemVerilog-based synthesis to RTL

High-performance computing

Celoxica

Impulse

Poseidon

Critical Blue

Teja

Mitrion

System Crafter 

Bluespec

Nallatech

Partner FPGA Synthesis Xilinx CPU Support FPGA Computing Solution

... today’s ESL technologies are ready to deliver substantial
practical value to a potentially large target audience. 

Table 1 – Xilinx ESL partners take different approaches 
from high-level languages to FPGA implementation.
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Today’s designers are constrained by space,
power, and cost, and they simply cannot
afford to implement embedded designs
with gigahertz-class computers. Fortunately,
in embedded systems, the greatest compu-
tational requirements are frequently deter-
mined by a relatively small number of
algorithms. These algorithms, identified
through profiling techniques, can be rapidly

converted into hardware coprocessors using
design automation tools. The coprocessors
can then be efficiently interfaced to the
offloaded processor, yielding “gigahertz-
class” performance.

In this article, we’ll explore code accel-
eration and techniques for code conversion
to hardware coprocessors. We will also
demonstrate the process for making trade-
off decisions with benchmark data through
an actual image-rendering case study
involving an auxiliary processor unit
(APU)-based technique. The design uses
an immersed PowerPC™ implemented in
a platform FPGA.

The Value of a Coprocessor
A coprocessor is a processing element that
is used alongside a primary processing unit
to offload computations normally per-
formed by the primary processing unit.
Typically, the coprocessor function imple-
mented in hardware replaces several soft-
ware instructions. Code acceleration is
thus achieved by both reducing multiple
code instructions to a single instruction as
well as the direct implementation of the
instruction in hardware.  

The most frequently used coproces-
sor is the floating-point unit (FPU), the
only common coprocessor that is tight-
ly coupled to the CPU. There are no
general-purpose libraries of coproces-
sors. Even if there were, it is still diffi-
cult to readily couple a coprocessor to a
CPU, such as a Pentium 4.  

As shown in Figure 1, the Xilinx®

Virtex™-4 FX FPGA has one or two
PowerPCs, each with an APU interface. By
embedding a processor within an FPGA,
you now have the opportunity 
to implement complete processing systems
of your own design within a single chip.  

The integrated PowerPC with APU
interface enables a tightly coupled
coprocessor that can be implemented
within the FPGA. Frequency require-
ments and pin number limits make an
external coprocessor less capable. Thus,
you can now create application-specific
coprocessors attached directly to the
PowerPC, providing significant soft-
ware acceleration. Because FPGAs are
reprogrammable, you can rapidly devel-
op and test CPU-attached coprocessor
solutions. 

Algorithmic Acceleration Through Automated
Generation of FPGA Coprocessors
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Coprocessor Connection Models
Coprocessors are available in three basic
forms: CPU bus connected, I/O connect-
ed, and instruction-pipeline connected.
Mixed variants also exist.

CPU Bus Connection
Processor bus-connected accelerators
require the CPU to move data and send
commands through a bus. Typically, a
single data transaction can require many
processor cycles. Data trans-
actions can be hindered by
bus arbitration and the
necessity for the bus to be
clocked at a fraction of the
processor clock speed. A bus-
connected accelerator can
include a direct memory
access (DMA) engine. At the
cost of additional logic, the
DMA engine allows a
coprocessor to operate on
blocks of data located on
bus-connected memory,
independent of the CPU.

I/O Connection
I/O-connected accelerators are
attached directly to a dedicated
I/O port. Data and control are
typically provided through
GET or PUT functions.
Lacking arbitration, reduced control com-
plexity, and fewer attached devices, these
interfaces are typically clocked faster than a
processor bus. A good example of such an
interface is the Xilinx Fast Simplex Link
(FSL). The FSL is a simple FIFO interface
that can be attached to either the Xilinx
MicroBlaze™ soft-core processor or a
Virtex-4 FX PowerPC. Data movement
through the FSL has lower latency and a
higher data rate than data movement
through a processor bus interface.

Instruction Pipeline Connection 
Instruction-pipeline connected accelerators
attach directly to the computing core of a
CPU. Being coupled to the instruction
pipeline, instructions not recognized by the
CPU can be executed by the coprocessor.
Operands, results, and status are passed

PowerPC. Although the APU connection is
instruction-pipeline-based, the C-to-HDL
tool set implements an I/O pipeline inter-
face with a resulting behavior more typical
of an I/O-connected accelerator.

FPGA/PowerPC/APU Interface
FPGAs allow hardware designers to imple-
ment a complete computing system with
processor, decode logic, peripherals, and
coprocessors all on one chip. An FPGA can

contain a few thousand to hun-
dreds of thousands of logic cells.
A processor can be implemented
from the logic cells, as in the
Xilinx PicoBlaze™ or MicroBlaze
processors, or it can be one or
more hard logic elements, as in
the Virtex-4 FX PowerPC. The
high number of logic cells
enables you to implement data-
processing elements that work
with the processor system and
are controlled or monitored by
the processor.

FPGAs, being reprogramma-
ble elements, allow you to pro-
gram parts and test them at any
stage during the design process.
If you find a design flaw, you
can immediately reprogram a
part. FPGAs also allow you to
implement hardware computing

functions that were previously cost-pro-
hibitive. The tight coupling of a CPU
pipeline to FPGA logic, as in the Virtex-4
FX PowerPC, enables you to create high-
performance software accelerators.

Figure 2 is a block diagram showing the
PowerPC, integrated APU controller, and
an attached coprocessor. Instructions from
cache or memory are simultaneously pre-
sented to the CPU decoder and the APU
controller. If the CPU recognizes the
instruction, it is executed. If not, the APU
controller or the user-created coprocessor
has the opportunity to acknowledge the
instruction and execute it. Optionally, one
or two operands can be passed to the
coprocessor and a result or status can be
returned. The APU interface also supports
the ability to transfer a data element with a
single instruction. The data element ranges

directly to and from the data execution
pipeline. A single operation can result in
two operands being processed, with both a
result and status being returned.

As a directly connected interface, the
instruction-pipeline connected accelerators
can be clocked faster than a processor bus.
The Xilinx implementation for this type of
coprocessor connection model through the
APU interface demonstrates a 10x clock
cycle reduction in the control and movement

of data for a typical double-operand instruc-
tion. The APU controller is also connected
to the data-cache controller and can perform
data load/store operations through it. Thus,
the APU interface is capable of moving hun-
dreds of millions of bytes per second,
approaching DMA speeds.

Either I/O-connected accelerators or
instruction-pipeline-connected accelerators
can be combined with bus-connected accel-
erators. At the cost of additional logic, you
can create an accelerator that receives com-
mands and returns status through a fast, low-
latency interface while operating on blocks of
data located in bus-connected memory.

The C-to-HDL tool set described in this
article is capable of implementing bus-con-
nected and I/O-connected accelerators. It is
also capable of implementing an accelerator
connected to the APU interface of the
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Figure 1 – Virtex-4 FX processor with APU interface and EMAC blocks



in size from one byte to four 32-bit words.
One or more coprocessors can be

attached to the APU interface through a
fabric coprocessor bus (FCB).
Coprocessors attached to the bus range
from off-the-shelf cores, such as an FPU,
to user-created coprocessors. A coproces-
sor can connect to the FCB for control
and status operations and to a processor

bus, enabling direct access to memory
data blocks and DMA data passing. A
simplified connection scheme, such as the
FSL, can also be used between the FCB
and coprocessor, enabling FIFO data and
control communication at the cost of
some performance.

To demonstrate the performance
advantage of an instruction-pipeline-con-

nected accelerator, we first implemented a
design with a processor bus-connected
FPU and then with an APU/FCB-
connected FPU. Table 1 summarizes the
performance for a finite impulse response
(FIR) filter for each case. 

As noted in the table, an FPU con-
nected to an instruction pipeline accel-
erates software floating-point
operations by 30x, and the APU inter-
face provides a nearly 4x improvement
over a bus-connected FPU.

Converting C Code to HDL
Converting C code to an HDL
accelerator with a C-to-HDL tool is
an efficient method for creating
hardware coprocessors. Figure 3 and
the steps below summarize the C-to-
HDL conversion process:

1. Implement the application or
algorithm using standard C
tools. Develop a software test
bench for baseline performance
and correctness (host or desktop
simulations). Use a profiler (such
as gprof ) to begin identifying
critical functions.

2. Determine if floating-to-fixed point
conversion is appropriate. Use libraries
or macros to aid in this conversion. Use
a baseline test bench to analyze per-
formance and accuracy. Use the profiler
to reevaluate critical functions.

3. Using a C-to-HDL tool, such as
Impulse C, iterate on each of the criti-
cal functions to:

• Partition the algorithm into parallel
processes

• Create hardware/software process
interfaces (streams, shared memories,
signals)

• Automatically optimize and paral-
lelize the critical code sections (such
as inner code loops)

• Test and verify the resulting parallel
algorithm using desktop simulation,
cycle-accurate C simulation, and
actual in-system testing.

4. Using the C-to-HDL tool, convert the
critical code segment to an HDL
coprocessor.

5. Attach the coprocessor to the APU
interface for final testing. 
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Implementation Performance

Software Implementation 2 MFLOPS

FPU Connected to Processor Bus 16 MFLOPS

FPU Connected to APU 
Interface via FCB 60 MFLOPS
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Processor Block
Instructions from
Cache or Memory

Decode Stage
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Reset
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Operands

Control
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Write Back (WB)
Stage

Load WB Stage

PPC405 APU Controller

Fabric Coprocessor
Module (FCM)
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Execution Units

APU Decode Optional Decode

Execution
Units

Figure 3 – C-to-HDL design flow

Table 1 – Non-accelerated vs. accelerated 
floating-point performance

Figure 2 – PowerPC, integrated APU controller, and coprocessor



Impulse: C-to-HDL Tool
Impulse C, shown in Figure 4, enables
embedded system designers to create
highly parallel, FPGA-accelerated applica-
tions by using C-compatible library func-
tions in combination with the Impulse

CoDeveloper C-to-hardware compiler.
Impulse C simplifies the design of mixed
hardware/software applications through
the use of well-defined data communica-
tion, message passing, and synchroniza-
tion mechanisms. Impulse C provides
automated optimization of C code (such
as loop pipelining, unrolling, and opera-
tor scheduling) and interactive tools,
allowing you to analyze cycle-by-cycle
hardware behavior.

Impulse C is designed for dataflow-ori-
ented applications, but it is also flexible
enough to support alternate programming
models, including the use of shared mem-
ory. This is important because different
FPGA-based applications have different
performance and data requirements. In

some applications, it makes more sense to
move data between the embedded proces-
sor and the FPGA through block memory
reads and writes; in other cases, a stream-
ing communication channel might pro-
vide higher performance. The ability to

quickly model, compile, and evaluate
alternate algorithm approaches is an
important part of achieving the best pos-
sible results for a given application.

To this end, the Impulse C library
comprises minimal extensions to the C
language in the form of new data types
and predefined function calls. Using
Impulse C function calls, you can define
multiple, parallel program segments
(called processes) and describe their inter-
connections using streams, signals, and
other mechanisms. The Impulse C com-
piler translates and optimizes these C-lan-
guage processes into either:

• Lower-level HDL that can be synthe-
sized to FPGAs, or

• Standard C (with associated library
calls) that can be compiled onto sup-
ported microprocessors through the use
of widely available C cross-compilers

The complete CoDeveloper develop-
ment environment includes desktop simu-
lation libraries compatible with standard C
compilers and debuggers, including
Microsoft Visual Studio and GCC/GDB.
Using these libraries, Impulse C program-
mers are able to compile and execute their
applications for algorithm verification and
debugging purposes. C programmers are
also able to examine parallel processes, ana-
lyze data movement, and resolve process-
to-process communication problems using
the CoDeveloper Application Monitor.

The output of an Impulse C applica-
tion, when compiled, is a set of hardware
and software source files that are ready for
importing into FPGA synthesis tools.
These files include:

• Automatically generated HDL files
representing the compiled hardware
process.

• Automatically generated HDL 
files representing the stream, signal,
and memory components needed to
connect hardware processes to a 
system bus.

• Automatically generated software
components (including a run-time
library) establishing the software side
of any hardware/software stream 
connections.

• Additional files, including script files,
for importing the generated applica-
tion into the target FPGA place and
route environment.

The result of this compilation process
is a complete application, including the
required hardware/software interfaces,
ready for implementation on an FPGA-
based programmable platform.
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Impulse C is designed for dataflow-oriented applications, but it is 
also flexible enough to support alternate programming models ...

Figure 4 –  Impulse C



Design Example
The Mandelbrot image shown in Figure 5,
a classic example of fractal geometry, is
widely used in the scientific and engineer-
ing communities to simulate chaotic
events such as weather. Fractals are also

used to generate textures and imaging in
video-rendering applications. Mandelbrot
images are described as self-similar; on
magnifying a portion of the image, anoth-
er image similar to the whole is obtained.

The Mandelbrot image is an ideal can-
didate for hardware/software co-design
because it has a single computation-
intensive function. Making this critical
function faster by moving it to the hard-
ware domain significantly increases the
speed of the whole system. The
Mandelbrot application also lends itself
nicely to clear divisions between hardware
and software processes, making it easy to
implement using C-to-HDL tools.

We used the CoDeveloper tool set as the
C-to-HDL tool set for this design example.
We modified a software-only Mandelbrot C
program to make it compatible with the C-
to-HDL tools. Our changes included divi-
sion of the software project into distinct
processes (independent units of sequential
execution); conversion of function interfaces

(hardware to software) into streams; and the
addition of compiler directives to optimize
the generated hardware. We subsequently
used the CoDeveloper tool set to create the
Pcore coprocessor that was imported into
Xilinx Platform Studio (XPS). Using XPS,

we attached the PC to the PowerPC APU
controller interface and tested the system.

Xilinx application note XAPP901
(www.xilinx.com/bvdocs/appnotes/xapp901.p
df) provides a full description of the design
along with design files for downloading.
User Guide UG096 (www.xilinx.com/
bvdocs/userguides/ug096.pdf) provides a
step-by-step tutorial in implementing the
design example.

Performance Improvement Examples
We measured performance improve-
ments for the Mandelbrot image textur-
ing problem, an image filtering
application, and triple DES encryption.
Table 2 documents the performance
improvements, demonstrating accelera-
tion ranging from 11x to 34x that 
of software.

Conclusion
Constrained by power, space, and cost,
you might need to make a non-ideal
processor choice. Frequently, it is a
choice where the processor is of lower
performance than desired. When the
software code does not run fast enough,
a coprocessor code accelerator becomes
an attractive solution. You can hand-
craft an accelerator in HDL or use a C-
to-HDL tool to automatically convert
the C code to HDL.

Using a C-to-HDL tool such as
Impulse C enables quick and easy accel-
erator generation. Virtex-4 FX FPGAs,
with one or two embedded PowerPCs,
enable tight coupling of the processor
instruction pipeline to software acceler-
ators. As demonstrated in this article,
critical software routines can be acceler-
ated from 10x to more than 30x,
enabling a 300 MHz PowerPC to pro-
vide performance equaling or exceeding
that of a high-performance multi-giga-
hertz processor. The above examples
were generated in just a few days each,
demonstrating the rapid design, imple-
mentation, and testing possible with a
C-to-HDL flow. 

Application PowerPC Only PowerPC + Coprocessor Acceleration
(300 MHz) (300/50 MHz)

Image Texturing 
(Mandelbrot/Fractal) 21 sec 1.2 sec 17x

Image Filter 
(Edge Detection) 0.14 sec 0.012 sec 11x

Encryption 
(Triple DES) 2.3 sec 0.067 sec 34x
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Figure 5 – Mandelbrot image and code acceleration

Table 2 – Algorithm acceleration through coprocessor accelerators





by Rick Moleres  
Manager of Software IP  
Xilinx, Inc.
rick.moleres@xilinx.com

Milan Saini
Technical Marketing Manager
Xilinx, Inc.
milan.saini@xilinx.com

Platform FPGAs with embedded processors
offer you unprecedented levels of flexibility,
integration, and performance. It is now pos-
sible to develop extremely sophisticated and
highly customized embedded systems inside
a single programmable logic device.

With silicon capabilities advancing, the
challenge centers on keeping design methods
efficient and productive. In embedded sys-
tems development, one of the key activities is
the development of the board support pack-
age (BSP). The BSP allows an embedded
software application to successfully initialize
and communicate with the hardware
resources connected to the processor. Typical
BSP components include boot code, device
driver code, and initialization code.

Creating a BSP can be a lengthy and
tedious process that must be incurred every
time the microprocessor complex (proces-
sor plus associated peripherals) changes.
With FPGAs, fast design iterations com-
bined with the inherent flexibility of the
platform can make the task of managing
the BSP even more challenging (Figure 1).
This situation clearly underscores the need
for and importance of providing an effi-
cient process for managing BSPs.

In this article, we’ll describe an innova-
tive solution from Xilinx that simplifies the
creation and management of RTOS BSPs.
We chose the WindRiver VxWorks flow to
illustrate the concept; however, the under-
lying technology is generic and equally
applicable to all other OS solutions that
support Xilinx® processors. 
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Generating Efficient Board 
Support Packages
The Xilinx Platform Studio toolset enables quick and easy BSP 
generation for Virtex FPGAs with immersed PowerPC processors.



Xilinx Design Flow 
and Software BSP Generation
Designing for a Xilinx processor involves a
hardware platform assembly flow and an
embedded software development flow.
Both of these flows are managed within the
Xilinx Platform Studio (XPS) tool, which is
part of the Xilinx Embedded Development
Kit (EDK). 

You would typically begin a design by
assembling and configuring the processor
and its connected components in XPS.
Once the hardware platform has been
defined, you can then configure the soft-
ware parameters of the system. A key fea-
ture of Platform Studio is its ability to
produce a BSP that is customized based
on your selection and configuration of
processor, peripherals, and embedded OS.
As the system evolves through iterative
changes to the hardware design, the BSP
evolves with the platform.

An automatically generated BSP enables
embedded system designers to:

• Automatically create a BSP that com-
pletely matches the hardware design

• Eliminate BSP design bugs by using
pre-certified components

• Increase designer productivity by
jump-starting application software
development

Creating BSPs for WindRiver VxWorks
Platform Studio can generate a cus-
tomized Tornado 2.0.x (VxWorks 5.4) or
Tornado 2.2.x (VxWorks 5.5) BSP for the
PowerPC™ 405 processor and its periph-

erals in Xilinx Virtex™-II Pro and
Virtex-4 FPGAs. The generated BSP con-
tains all of the necessary support software
for a system, including boot code, device
drivers, and VxWorks initialization.  

Once a hardware system with the
PowerPC 405 processor is defined in
Platform Studio, you need only follow these
three steps to generate a BSP for VxWorks:

1. Use the Software Settings dialog box
(see Figure 2) to select the OS you
plan to use for the system. Platform
Studio users can select vxworks5_4
or vxworks5_5 as their target operat-
ing system. 

2. Once you have selected the OS, you
can go to the Library/OS Parameters
tab, as shown in Figure 3, to tailor the
Tornado BSP to the custom hardware.
You have the option of selecting any
UART device in the system as the
standard I/O device (stdin and std-
out). This results in the device being
used as the VxWorks console device.

You can also choose which peripherals
are connected peripherals, or which
devices will be tightly integrated into
the VxWorks OS. For example, the
Xilinx 10/100 Ethernet MAC can be
integrated into the VxWorks Enhanced
Network Driver (END) interface.
Alternately, the Ethernet device need
not be connected to the END inter-
face and can instead be accessed direct-
ly from the VxWorks application. 

3. Generate the Tornado BSP by select-
ing the Tools > Generate Libraries
and BSP menu option. The result-
ing BSP resembles a traditional
Tornado BSP and is located in the
Platform Studio project directory
under ppc405_0/bsp_ppc405_0
(see Figure 4).

Note that ppc405_0 refers to the
instance name of the PowerPC 405
processor in the hardware design.
Platform Studio users can specify a differ-
ent instance name, in which case the sub-
directory names for the BSP will match
the processor instance name.
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Figure 1 – Platform FPGA flexibility requires the software BSP generation process to be efficient.

Figure 2 – Setting the embedded OS selection

Figure 3 – Configuring the OS-specific parameters

Figure 4 – Generated BSP directory structure



The Tornado BSP is completely self-
contained and transportable to other direc-
tory locations, such as the standard
Tornado installation directory for BSPs at
target/config. 

Customized BSP Details
The XPS-generated BSP for VxWorks
resembles most other Tornado BSPs
except for the placement of Xilinx device
driver code. Off-the-shelf device driver
code distributed with Tornado typically
resides in the target/src/drv directory in the
Tornado distribution directory. Device
driver code for a BSP that is automatical-
ly generated by Platform Studio resides in
the BSP directory itself.

This minor deviation is due to the
dynamic nature of FPGA-based embed-
ded systems. Because an FPGA-based
embedded system can be reprogrammed
with new or changed IP, the device driver
configuration can change, calling for a
more dynamic placement of device driver
source files. The directory tree for the
automatically generated BSP is shown in
Figure 4. The Xilinx device drivers are
placed in the ppc405_0_drv_csp/xsrc sub-
directory of the BSP.

Xilinx device drivers are implemented
in C and are distributed among several
source files, unlike traditional VxWorks
drivers, which typically consist of single C
header and implementation files. In addi-
tion, there is an OS-independent imple-
mentation and an optional OS-dependent
implementation for device drivers.

The OS-independent part of the driver
is designed for use with any OS or any
processor. It provides an application pro-
gram interface (API) that abstracts the func-

tionality of the underlying hardware. The
OS-dependent part of the driver adapts the
driver for use with an OS such as VxWorks.
Examples are Serial IO drivers for serial
ports and END drivers for Ethernet con-
trollers. Only drivers that can be tightly
integrated into a standard OS interface
require an OS-dependent driver. 

Xilinx driver source files are included in
the build of a VxWorks image in the same
way that other BSP files are included in
the build. For every driver, a file exists

named ppc405_0_drv_<driver_version>.c in
the BSP directory. This file includes the
driver source files (*.c) for the given
device and is automatically compiled by
the BSP makefile.

This process is analogous to how
VxWorks’ sysLib.c includes source for Wind
River-supplied drivers. The reason why
Xilinx driver files are not simply included in
sysLib.c like the rest of the drivers is because
of namespace conflicts and maintainability
issues. If all Xilinx driver files are part of a
single compilation unit, static functions and
data are no longer private. This places
restrictions on the device drivers and would
negate their OS independence.

Integration with the Tornado IDE 
The automatically generated BSP is inte-
grated into the Tornado IDE (Project
Facility). The BSP is compilable from the
command line using the Tornado make
tools or from the Tornado Project. Once
the BSP is generated, you can simply type
make vxWorks from the command line to
compile a bootable RAM image. This
assumes that the Tornado environment
has been previously set up, which you can
do through the command line using the
host/x86-win32/bin/torVars.bat script (on a
Windows platform). If you are using the
Tornado Project facility, you can create a
project based on the newly generated BSP,
then use the build environment provided
through the IDE to compile the BSP.

In Tornado 2.2.x, the diab compiler is
supported in addition to the gnu compiler.
The Tornado BSP created by Platform
Studio has a makefile that you can modify
at the command line if you would rather
use the diab compiler instead of the gnu
compiler. Look for the make variable
named TOOLS and set the value to “diab”
instead of “gnu.” If using the Tornado
Project facility, you can select the desired
compiler when the project is first created.

The file 50ppc405_0.cdf resides in the BSP
directory and is tailored during creation of
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The Tornado BSP created by Platform Studio has a makefile
that you can modify at the command line if you would rather

use the diab compiler instead of the gnu compiler.

Figure 5 – Tornado 2.x Project: VxWorks tab Figure 6 – Tornado 2.x Project: Files tab
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the BSP. This file integrates the device drivers
into the Tornado IDE menu system. The
drivers are hooked into the BSP at the
Hardware > Peripherals subfolder. Below this
are individual device driver folders. Figure 5
shows a menu with Xilinx device drivers.

The Files tab of the Tornado Project
Facility will also show the number of files
used to integrate the Xilinx device drivers
into the Tornado build process. These files
are automatically created by Platform
Studio and you need only be aware that
the files exist. Figure 6 shows an example
of the driver build files. 

Some of the commonly used devices
are tightly integrated with the OS, while
other devices are accessible from the appli-
cation by directly using the device drivers.
The device drivers that have been tightly
integrated into VxWorks include:

• 10/100 Ethernet MAC

• 10/100 Ethernet Lite MAC

• 1 Gigabit Ethernet MAC

• 16550/16450 UART

• UART Lite

• Interrupt Controller

• System ACE™ technology

• PCI

All other devices and associated device
drivers are not tightly integrated into a
VxWorks interface; instead, they are loose-
ly integrated. Access to these devices is
available by directly accessing the associat-
ed device drivers from the user application.

Conclusion
With the popularity and usage of embedded
processor-based FPGAs continuing to grow,
tool solutions that effectively synchronize
and tie the hardware and software flows
together are key to helping designer produc-
tivity keep pace with advances in silicon.

Xilinx users have been very positive
about Platform Studio and its integration
with VxWorks 5.4 and 5.5. Xilinx fully
intends to continue its development sup-
port for the Wind River flow that will
soon include support for VxWorks 6.0
and Workbench IDE. 

Microprocessor Library Definition (MLD) 
The technology that enables dynamic and custom BSP generation is based on a
Xilinx proprietary format known as Microprocessor Library Definition (MLD). This
format provides third-party vendors with a plug-in interface to Xilinx Platform
Studio to enable custom library and OS-specific BSP generation (see Figure 7). The
MLD interface is typically written by third-party companies for their specific flows.
It enables the following add-on functionality:

• Enables custom design rule checks

• Provides the ability to customize device drivers for the target OS environment

• Provides the ability to custom-produce the BSP in a format and folder structure
tailored to the OS tool chain

• Provides the ability to customize an OS/kernel based on the hardware system
under consideration

The MLD interface is an ASCII-based
open and published standard. Each
RTOS flow will have its own set of
unique MLD files. An MLD file set com-
prises the following two files:

• A data definition (.mld) file. This file
defines the library or operating sys-
tem through a set of parameters set
by the Platform Studio. The values of
these parameters are stored in an
internal Platform Studio database
and intended for use by the script file
during the output generation.

• A .tcl script file. This is the file that
is called by XPS to create the custom
BSP. The file contains a set of proce-
dures that have access to the complete design database and hence can write a
custom output format based on the requirements of the flow. 

The MLD syntax is described in detail in the EDK documentation (see “Platform
Specification Format Reference Manual” at www.xilinx.com/ise/embedded/
psf_rm.pdf.). You can also find MLD examples in the EDK installation directory
under sw/lib/bsp.

Once MLD files for a specific RTOS flow have been created, they need to be
installed in a specific path for Xilinx Platform Studio to pick up on its next invoca-
tion. The specific RTOS menu selection now becomes active in the XPS dialog box
(Project > SW Platform Settings > Software Platform > OS).

Currently, the following partners’ MLD files are available for use within XPS:

• Wind River (VxWorks 5.4, 5.5) (included in Xilinx Platform Studio)

• MontaVista (Linux) (included in Xilinx Platform Studio)

• Mentor Accelerated Technologies (Nucleus) (download from
www.xilinx.com/ise/embedded/mld/)

• GreenHills Software (Integrity) (download from
www.xilinx.com/ise/embedded/mld/)

• Micrium (µc/OS-II) (download from www.xilinx.com/ise/embedded/mld/)

• µcLinux (download from www.xilinx.com/ise/embedded/mld/).

HW
Design

OS
Selection

HW
Netlist

RTOS
BSP

XPS
MLD
Files

.MLD .TCL

To ISE To RTOS IDE

Figure 7 – Structure of an MLD flow
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Inside microprocessors, numbers are rep-
resented as integers – one or several bytes
stringed together. A four-byte value com-
prising 32 bits can hold a relatively large
range of numbers: 232, to be specific. The
32 bits can represent the numbers 
0 to 4,294,967,295 or, alternatively, 
-2,147,483,648 to +2,147,483,647. A 32-bit
processor is architected such that basic arith-
metic operations on 32-bit integer numbers
can be completed in just a few clock cycles,
and with some performance overhead a 32-
bit CPU can also support operations on 64-
bit numbers. The largest value that can be
represented by 64 bits is really astronomical:
18,446,744,073,709,551,615. In fact, if a
Pentium processor could count 64-bit 
values at a frequency of 2.4 GHz, it would
take it 243 years to count from zero to the
maximum 64-bit integer.

Bringing Floating-Point 
Math to the Masses
Bringing Floating-Point 
Math to the Masses
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Xilinx makes high-performance floating-point processing 
available to a wider range of applications.
Xilinx makes high-performance floating-point processing 
available to a wider range of applications.



Dynamic Range and 
Rounding Error Problems
Considering this, you would think that
integers work fine, but that is not always the
case. The problem with integers is the lack
of dynamic range and rounding errors.

The quantization introduced through a
finite resolution in the number format dis-
torts the representation of the signal.
However, as long as a signal is utilizing the
range of numbers that can be represented by
integer numbers, also known as the dynam-
ic range, this distortion may be negligible.

Figure 1 shows what a quantized signal
looks like for large and small dynamic
swings, respectively. Clearly, with the
smaller amplitude, each quantization step
is bigger relative to the signal swing and
introduces higher distortion or inaccuracy. 

The following example illustrates how
integer math can mess things up. 

A Calculation Gone Bad
An electronic motor control measures the
velocity of a spinning motor, which typical-
ly ranges from 0 to10,000 RPM. The value
is measured using a 32-bit counter. To allow
some overflow margin, let’s assume that the
measurement is scaled so that 15,000 RPM
represents the maximum 32-bit value,
4,294,967,296. If the motor is spinning at
105 RPM, this value corresponds to the
number 30,064,771 within 0.0000033%,
which you would think is accurate enough
for most practical purposes.

Assume that the motor control is
instructed to increase motor velocity by
0.015% of the current value. Because we
are operating with integers, multiplying
with 1.0015 is out of the question – as is
multiplying by 10,015 and dividing by
10,000 – because the intermediate result
will cause overflow. 

The only option is to divide by integer
10,000 and multiply by integer 10,015. If
you do that, you end up with 30,094,064;
but the correct answer is 30,109,868.

1.001 can be written as 1.001 x 100.
In the first example, 3.0064771 is called

the mantissa, 10 the exponent base, and 7
the exponent.

IEEE standard 754 specifies a common
format for representing floating-point
numbers in a computer. Two grades of pre-
cision are defined: single precision and
double precision. The representations use
32 and 64 bits, respectively. This is shown
in Figure 2.

In IEEE 754 floating-point representa-
tion, each number comprises three basic
components: the sign, the exponent, and
the mantissa. To maximize the range of
possible numbers, the mantissa is divided
into a fraction and leading digit. As I’ll
explain, the latter is implicit and left out of
the representation.

The sign bit simply defines the polarity
of the number. A value of zero means that
the number is positive, whereas a 1 denotes
a negative number.

The exponent represents a range of num-
bers, positive and negative; thus a bias value
must be subtracted from the stored exponent
to yield the actual exponent. The single pre-
cision bias is 127, and the double precision
bias is 1,023. This means that a stored value
of 100 indicates a single-precision exponent
of -27. The exponent base is always 2, and
this implicit value is not stored.

Because of the truncation that happens when
you divide by 10,000, the resulting velocity
increase is 10.6% smaller than what you
asked for. Now, an error of 10.6% of 0.015%
may not sound like anything to worry about,
but as you continue to perform similar
adjustments to the motor speed, these errors
will almost certainly accumulate to a point
where they become a problem.

What you need to overcome this prob-
lem is a numeric computer representation
that represents small and large numbers
with equal precision. That is exactly what
floating-point arithmetic does.

Floating Point to the Rescue
As you have probably guessed, floating-
point arithmetic is important in industrial
applications like motor control, but also in
a variety of other applications. An increas-
ing number of applications that traditional-
ly have used integer math are turning to
floating-point representation. I’ll discuss
this once we have looked at how floating-
point math is performed inside a computer.

IEEE 754 at a Glance
A floating-point number representation on
a computer uses something similar to a sci-
entific notation with a base and an expo-
nent. A scientific representation of
30,064,771 is 3.0064771 x 107, whereas
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S Exp. [30-23] Fraction [22-0] Single precision

S Exponent [62-52] Fraction [51-0] Double precision

Figure 1 – Signal quantization and dynamic range

Figure 2 – IEEE floating-point formats



For both representations, exponent rep-
resentations of all 0s and all 1s are reserved
and indicate special numbers:

• Zero: all digits set to 0, sign bit can be
either 0 or 1

• ±∞: exponent all 1s, fraction all 0s

• Not a Number (NaN): exponent all 1s,
non-zero fraction. Two versions of NaN
are used to signal the result of invalid
operations such as dividing by zero, and
indeterminate results such as operations
with non-initialized operand(s).

The mantissa represents the number to be
multiplied by 2 raised to the power of the
exponent. Numbers are always normalized;
that is, represented with one non-zero lead-
ing digit in front of the radix point. In bina-
ry math, there is only one non-zero number,
1. Thus the leading digit is always 1, allow-
ing us to leave it out and use all the mantissa
bits to represent the fraction (the decimals).

Following the previous number exam-
ples, here is what the single precision repre-
sentation of the decimal value 30,064,771
will look like:

The binary integer representation of
30,064,771 is 1 1100 1010 1100 0000
1000 0011. This can be written as
1.110010101100000010000011 x 224. The
leading digit is omitted, and the fraction –
the string of digits following the radix
point – is 1100 1010 1100 0000 1000
0011. The sign is positive and the exponent
is 24 decimal. Adding the bias of 127 and
converting to binary yields an IEEE 754
exponent of 1001 0111.

Putting all of the pieces together, the
single representation for 30,064,771 is
shown in Figure 3.

Gain Some, Lose Some
Notice that you lose the least significant bit
(LSB) of value 1 from the 32-bit integer
representation – this is because of the lim-
ited precision for this format.

The range of numbers that can be rep-

resented with single precision IEEE 754
representation is ±(2-2-23) x 2127, or approx-
imately ±1038.53. This range is astronomical
compared to the maximum range of 32-bit
integer numbers, which by comparison is
limited to around ±2.15 x 109. Also, where-
as the integer representation cannot repre-
sent values between 0 and 1,
single-precision floating-point can repre-
sent values down to ±2-149, or ±~10-44.85. And
we are still using only 32 bits – so this has
to be a much more convenient way to rep-
resent numbers, right?

The answer depends on the requirements.

• Yes, because in our example of multi-
plying 30,064,771 by 1.001, we can
simply multiply the two numbers and
the result will be extremely accurate.

• No, because as in the preceding exam-
ple the number 30,064,771 is not rep-
resented with full precision. In fact,
30,064,771 and 30,064,770 are repre-
sented by the exact same 32-bit bit
pattern, meaning that a software algo-
rithm will treat the numbers as identi-
cal. Worse yet, if you increment either
number by 1 a billion times, none of
them will change. By using 64 bits and
representing the numbers in double
precision format, that particular exam-
ple could be made to work, but even
double-precision representation will
face the same limitations once the
numbers get big – or small enough.

• No, because most embedded processor
cores ALUs (arithmetic logic units)
only support integer operations, which
leaves floating-point operations to be
emulated in software. This severely
affects processor performance. A 32-bit
CPU can add two 32-bit integers with
one machine code instruction; howev-
er, a library routine including bit
manipulations and multiple arithmetic
operations is needed to add two IEEE
single-precision floating-point values.

With multiplication and division, the
performance gap just increases; thus
for many applications, software float-
ing-point emulation is not practical.

Floating Point Co-Processor Units
For those who remember PCs based on
the Intel 8086 or 8088 processor, they
came with the option of adding a float-
ing-point coprocessor unit (FPU), the
8087. Though a compiler switch, you
could tell the compiler that an 8087 was
present in the system. Whenever the
8086 encountered a floating-point oper-
ation, the 8087 would take over, do the
operation in hardware, and present the
result on the bus.

Hardware FPUs are complex logic cir-
cuits, and in the 1980s the cost of the
additional circuitry was significant; thus
Intel decided that only those who needed
floating-point performance would have to
pay for it. The FPU was kept as an option-
al discrete solution until the introduction
of the 80486, which came in two versions,
one with and one without an FPU. With
the Pentium family, the FPU was offered
as a standard feature.

Floating Point is Gaining Ground
These days, applications using 32-bit
embedded processors with far less process-
ing power than a Pentium also require float-
ing-point math. Our initial example of
motor control is one of many – other appli-
cations that benefit from FPUs are industri-
al process control, automotive control,
navigation, image processing, CAD tools,
and 3D computer graphics, including
games.

As floating-point capability becomes
more affordable and proliferated, applica-
tions that traditionally have used integer
math turn to floating-point representa-
tion. Examples of the latter include high-
end audio and image processing. The
latest version of Adobe Photoshop, for
example, supports image formats where
each color channel is represented by a
floating-point number rather than the
usual integer representation. The increased
dynamic range fixes some problems inher-
ent in integer-based digital imaging.
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Figure 3 – 30,064,771 represented in IEEE 754 single-precision format



If you have ever taken a picture of a
person against a bright blue sky, you know
that without a powerful flash you are left
with two choices; a silhouette of the per-
son against a blue sky or a detailed face
against a washed-out white sky. A floating-
point image format partly solves this prob-
lem, as it makes it possible to represent
subtle nuances in a picture with a wide
range in brightness.

Compared to software emulation, FPUs
can speed up floating-point math opera-
tions by a factor of 20 to 100 (depending
on type of operation) but the availability of
embedded processors with on-chip FPUs is
limited. Although this feature is becoming
increasingly more common at the higher
end of the performance spectrum, these
derivatives often come with an extensive
selection of advanced peripherals and very
high-performance processor cores – fea-
tures and performance that you have to pay
for even if you only need the floating-point
math capability.

FPUs on Embedded Processors
With the MicroBlaze™ 4.00 processor,
Xilinx makes an optional single precision
FPU available. You now have the choice
whether to spend some extra logic to
achieve real floating-point performance or
to do traditional software emulation and
free up some logic (20-30% of a typical
processor system) for other functions. 

Why Integrated FPU is the Way to Go
A soft processor without hardware support
for floating-point math can be connected to
an external FPU implemented on an

FPGA. Similarly, any microcontroller can
be connected to an external FPU. However,
unless you take special considerations on
the compiler side, you cannot expect seam-
less cooperation between the two.

C-compilers for CPU architecture fam-
ilies that have no floating-point capability
will always emulate floating-point opera-
tions in software by linking in the necessary
library routines. If you were to connect an
FPU to the processor bus, FPU access
would occur through specifically designed
driver routines such as this one:

void user_fmul(float *op1, float *op2, float *res)

{

FPU_operand1=*op1; /* write operand a to FPU */

FPU_operand2=*op2; /* write operand b to FPU */

FPU_operation=MUL; /* tell FPU to multiply  */

while (!(FPU_stat & FPUready));  /* wait for FPU to finish */

*res = FPU_result /* return result     */

}

To do the operation, z = x*y in the main
program, you would have to call the above
driver function as:

float x, y, z;

user_fmul (&x, &y, &z);

For small and simple operations, this
may work reasonably well, but for complex
operations involving multiple additions,
subtractions, divisions, and multiplica-
tions, such as a proportional integral deriv-
ative (PID) algorithm, this approach has
three major drawbacks:

• The code will be hard to write, 
maintain, and debug

• The overhead in function calls will
severely decrease performance

• Each operation involves at least five bus
transactions; as the bus is likely to be
shared with other resources, this not only
affects performance, but the time needed
to perform an operation will be depend-
ent on the bus load in the moment

The MicroBlaze Way
The optional MicroBlaze soft processor with
FPU is a fully integrated solution that offers
high performance, deterministic timing, and
ease of use. The FPU operation is completely
transparent to the user.

When you build a system with an
FPU, the development tools automatical-
ly equip the CPU core with a set of float-
ing-point assembly instructions known to
the compiler.

To perform y = x*y, you would simply write:

float x, y, z;

y = x * z;

and the compiler will use those special
instructions to invoke the FPU and per-
form the operation.

Not only is this simpler, but a hardware-
connected FPU guarantees a constant num-
ber of CPU cycles for each floating-point
operation. Finally, the FPU provides an
extreme performance boost. Every basic
floating-point operation is accelerated by a
factor 25 to 150, as shown in Table 1.

Conclusion
Floating-point arithmetic is necessary to meet
precision and performance requirements for
an increasing number of applications.

Today, most 32-bit embedded proces-
sors that offer this functionality are deriva-
tives at the higher end of the price range.

The MicroBlaze soft processor with FPU
can be a cost-effective alternative to ASSP
products, and results show that with the
correct implementation you can benefit not
only from ease-of-use but vast improve-
ments in performance as well.

For more information on the
MicroBlaze FPU, visit www.xilinx.com/
ipcenter/processor_central/microblaze/
microblaze_fpu.htm. 
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Operation CPU Cycles without FPU CPU Cycles with CPU Acceleration

Addition 400 6 67x

Subtraction 400 6 67x

Division 750 30 25x

Multiplication 400 6 67x

Comparison 450 3 150x

Table 1 – MicroBlaze floating-point acceleration
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As the world gets connected, more and more
systems rely on access to the network as a
standard part of product configuration.
Traditional circuit-based communications
systems like the telephone infrastructure are
gradually moving towards packet-based tech-
nology. Even technologies like Asynchronous
Transfer Mode (ATM) are starting to yield to
the Internet Protocol (IP) in places. All of
this has dramatically increased the need for
packet-processing technology.

The content being passed over this
infrastructure has increased the demands
on available bandwidth. Core routers target
10 Gbps; edge and access equipment work
in the 1-5 Gbps range. Even some end-user
equipment is starting to break the 100
Mbps range. The question is how to design
systems to accommodate these speeds.

These systems implement a wide variety
of network protocols. Because the protocols
start out as software, it’s easiest for network
designers if as much of the functionality as
possible can remain in software. So the fur-
ther software programmability can be
pushed up the speed range, the better.
Although FPGAs can handle network
speeds as high as 10 Gbps, RTL has typical-
ly been required for 1 Gbps and higher. 
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Packet Subsystem on a ChipPacket Subsystem on a Chip
Teja’s packet-engine technology integrates all of 
the key aspects of a flexible packet processor.
Teja’s packet-engine technology integrates all of 
the key aspects of a flexible packet processor.



Teja Technologies specializes in packet-
processing technologies implemented in
high-level software on multi-core environ-
ments. Teja has adapted its technology to
Xilinx® Virtex™-4 FPGAs, allowing high-
level software programmability of a packet-
processing engine built out of multiple
MicroBlaze™ soft-processor cores. This
combination of high-level packet technology
and Xilinx silicon and core technology –
using Virtex-4 devices with on-board MACs,
PHYs, PowerPC™ hard-core processors,
and ample memory – provides a complete
packet-processing subsystem that can process
more than 1 Gbps in network traffic.

The Typical Packet Subsystem
The network “stack” shown in Figure 1 is
typically divided between the “control
plane” and the “data plane.” All of the
packets are handled in the data plane; the
control plane makes decisions on how the
packets should be processed. The lowest
layer sees every packet; higher layers will
see fewer packets. 

The control plane comprises a huge
amount of sophisticated software. The
data-plane software is simpler, but must
operate at very high speed at the lowest lay-
ers because it has such a high volume of
packets. Packet-processing acceleration
usually focuses on layers one to three of the
network stack, and sometimes layer four.

Most traffic that goes through the sys-
tem looks alike, and processors can be opti-
mized for that kind of traffic. For this
reason, data-plane systems are often divid-
ed into the “fast path,” which handles aver-
age traffic, and the “slow path,” which
handles exceptions. Although the slow path
can be managed by a standard RISC
processor like a PowerPC, the fast path
usually uses a dedicated structure like a net-
work processor or an ASIC. The focus of
the fast path is typically IP, ATM, VLAN,
and similar protocols in layers two and
three. Layer four protocols like TCP and
UDP are also often accelerated.

Memory is required for packet storage,
table storage, and for program and data
storage for both the fast and slow paths.
Memory latency has a dramatic impact
on speed, so careful construction of the
memory architecture is paramount.

Finally, there must be a way for the con-
trol plane to access the subsystem. This is
important for initialization, making table
changes, diagnostics, and other control func-
tions. Such access is typically accomplished
through a combination of serial connections
and dedicated Ethernet connections, each
requiring logic to implement.

A diagram of this subsystem is shown
in Figure 2; all of the pieces of this sub-
system are critical to achieving the highest
performance.

The Teja Packet Pipeline
One effective way to accelerate processing is
to use a multi-core pipeline. This allows you
to divide the functionality into stages and
add parallel elements as needed to hit per-
formance. If you were to try to assemble such
a structure manually, you would immediate-

Of course, to process packets, there
must be a way to deliver the packets to and
from the fast-path processor. Coming off
an Ethernet port, the packets must first tra-
verse the physical layer logic (layer one of
the stack, often a dedicated chip) and then
the MAC (part of layer two, also often its
own dedicated chip).

One of the most critical elements in
getting performance is the memory.
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Most traffic that goes through the system looks alike, 
and processors can be optimized for that kind of traffic.



ly encounter the kinds of challenges faced by
experienced multi-core designers: how to
structure communication between stages,
scheduling, and shared resource access.

Teja has developed a pipeline structure by
creating its own blocks that implement the

necessary functions for efficient processing
and inter-communication. By taking advan-
tage of this existing infrastructure, you can
assemble pipelines easily in a scalable fashion.

The pipeline comprises processing
engines connected by communication
blocks and accessed through packet access
blocks. Figure 3 illustrates this arrangement.

The engine consists primarily of a
MicroBlaze processor and some private
block RAM on the FPGA. In addition, if
a stage has a particularly compute-inten-
sive function like a checksum, or a longer-
lead function like an external memory
read or write, an offload can be included
to accelerate that function. Because the
offload can be created as asynchronous if
desired, the MicroBlaze processor is free
to work on something else while the
offload is operating.

The communication blocks manage the
transition from stage to stage. As packet
information moves forward, the communi-
cation block can perform load balancing or
route a packet to a particular engine.
Although the direction of progress is usual-
ly “forward” (left to right, as shown in
Figure 3), there are times when a packet
must move backwards. An example of this
is with IPv4/v6 forwarding, when an IPv6
packet is tunneled on IPv4. Once the IPv4
packet is decapsulated, an internal IPv6
packet is found, and it must go back for
IPv6 decapsulation.

Access to the pipeline is provided by a
block that takes each packet and delivers the
critical parts to the pipeline. Because this
block is in the critical path for every packet,
it must be very fast, and has been designed
by Teja for very high performance.

The result of this structure is that each
MicroBlaze processor and offload can be
working on a different packet at any given
time. High performance is achieved
because many in-flight packets are being
handled at once. 

The key to this structure is its scalability.
Anytime additional performance is needed,

you can add more parallel processing, or
create another pipeline stage. The reverse is
also true: if a given pipeline provides more
performance than the target system
requires, you can remove engines, making
the subsystem more economical.

The Rest of the Subsystem
What is so powerful about the combina-
tion of Teja’s data-plane engine and the
Virtex-4 FX devices is that most of the rest
of the subsystem can be moved on-chip.
Much of the external memory can now be
moved into internal block RAM. Some
external memory will still be required, but
high-speed DRAM can be directly accessed
by the Virtex-4 family, so no intervening
glue is required. The chips have built-in
Ethernet MACs which, combined with the
available PHY IP and RocketIO™ tech-
nology, allow direct access from Ethernet
ports onto the chip.

The integrated PowerPC cores (as many
as two) allow you to implement the slow
path and even the entire control plane on
the same chip over an embedded operating
system such as Linux. You can also provide
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control access through serial and Ethernet
ports using existing IP.

As a result, the entire subsystem shown
in Figure 2 (with the exception of some
external memory) can be implemented on
a single chip, as illustrated in Figure 4.

Flexibility: Customizing, Resizing, Upgrading
Teja’s packet-processing infrastructure pro-
vides access to our company’s real strength:
providing data-plane applications that you
can customize. We deliver applications
such as packet forwarding, TCP, secure
gateways, and others with source code. The
reason for delivering source code is that if

you need to customize the operation of the
application, you can alter the delivered
application using straight ANSI C. Even
though you are using an FPGA, it is still
software-programmable, and you can
design using standard software methods.

An application as delivered by Teja is
guaranteed to operate at a given line rate.
When you modify that application, howev-
er, the performance may change. Teja’s scal-
able infrastructure allows you to tailor the
processor architecture to accommodate the
performance requirements in light of
changed functionality.

In a non-FPGA implementation, if you
cannot meet performance, then you typical-
ly have to go to a much larger device, which
will most likely be under-utilized (but cost
full price). The beauty of FPGA implemen-
tation is that the pipeline can be tweaked to
be just the right configuration, and only the
amount of hardware required is used. The
rest is available for other functions.

One of the most important aspects of
software programmability is field upgrades.
With a software upgrade, you can change
your code – as long as you stay within the
amount of code store available. As the Teja
FPGA packet engine is software-program-
mable, you can perform software upgrades.
But because it uses an FPGA, you can also
upgrade the underlying hardware in the
field. For example, if a software upgrade
requires more code store than is available,
you can make a hardware change to make
more code store available, and then the
software upgrade will be successful. Only
an FPGA provides this flexibility.

Because a structure like this is typically
designed by high-level system designers
and architects, it is important that ANSI C
is the primary language. At the lowest level,
the hardware infrastructure, the mappings
between software and hardware, and the
software programs themselves are expressed
in C. Teja has created an extensive set of
APIs that allow both compile-time and
real-time access from the software to the
various hardware resources. Additional
tools will simplify the task of implementing
programs on the pipeline.

IPv4 Forwarding Provides Proof
Teja provides IPv4 and IPv6 forwarding as
a complete data-plane application. IPv4 is a
relatively simple application that can illus-
trate the power of this packet engine. It is
the workhorse application under most of
the Internet today. IPv6 is gradually gain-
ing some ground, with its promise of plen-
ty of IP addresses for the future, but for

now IPv4 still dominates. At its most basic,
IPv4 comprises the following functions:

• Filtering

• Decapsulation

• Classification

• Validation

• Broadcast check

• Lookup/Next Hop calculation

• Encapsulation

Teja has implemented these in a two-stage
pipeline, as shown in Figure 5. Offloads are
used for the following functions:

• Checksum calculation

• Hash lookup

• Longest-prefix match

• Memory access

This arrangement provides full gigabit
line-rate processing of a continuous stream
of 64-byte packets, which is the most strin-
gent Ethernet load.

Conclusion
Teja Technologies has adapted its packet-
processing technology to the Virtex-4 FX
family, creating an infrastructure of IP
blocks and APIs that take advantage of
Virtex-4 FX features. The high-level cus-
tomizable applications that Teja offers
can be implemented using software
methodologies on a MicroBlaze multi-
core fabric while achieving speeds higher
than a gigabit per second. Software pro-
grammability adds to the flexibility and
ease of design already inherent in the
Virtex family.

The flexibility of the high-level source
code algorithms is bolstered by the fact that
the underlying hardware utilization can be
specifically tuned to the performance
requirements of the system. And once
deployed, both software and hardware
upgrades are possible, dramatically extending
the potential life of the system in the field.

Teja Technologies, the Virtex-4 FX fam-
ily, and the MicroBlaze core provide a sin-
gle-chip customizable, resizable, and
upgradable packet-processing solution.
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FPGAs are compelling platforms for hard-
ware acceleration of embedded systems.
These devices, by virtue of their massively
parallel structures, provide embedded sys-
tems designers with new alternatives for
creating high-performance applications.

There are challenges to using FPGAs as
software platforms, however. Historically,
low-level hardware descriptions must be

written in VHDL or Verilog, languages
that are not generally part of a software
programmer’s expertise. Other challenges
have included deciding how and when to
partition complex applications between
hardware and software and how to struc-
ture an application to take maximum
advantage of hardware parallelism.

Tools providing C compilation and
optimization for FPGAs can help solve
these problems by providing a new level of
programming abstraction. When FPGAs
first appeared two decades ago, the pri-
mary method of design for these devices
was the venerable schematic. FPGA appli-
cation developers used schematics to
assemble low-level components (registers,
logic gates, and larger blocks such as coun-
ters and adders/subtractors) to create
FPGA-based systems. As FPGA devices
became more complex and applications
targeting them grew larger, schematics
were gradually replaced by higher level

methods involving hardware description
languages like VHDL and Verilog. Now,
with ever-higher FPGA gate densities and
the proliferation of FPGA embedded
processors, there is strong demand for
even higher levels of abstraction. C repre-
sents that next generation of abstraction,
allowing you to access the resources of
FPGAs for application acceleration. 

For applications that involve embedded
processors, a C-to-hardware tool such as
Impulse C (Figure 1) can abstract away
many of the details of hardware-to-soft-
ware communication, allowing you to
focus on application partitioning without
having to worry about the low-level details
of the hardware. This also allows you to
experiment with alternative software/hard-
ware implementations.

Although such tools can dramatically
improve your ability to create FPGA-
based applications, for the highest per-
formance you still need to understand

Accelerating FFTs in Hardware 
Using a MicroBlaze Processor
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A simple FFT, generated as hardware from C language, illustrates how quickly a software concept can be
taken to hardware and how little you need to know about FPGAs to use them for application acceleration.



tively, through an analysis of how the appli-
cation is being compiled to the hardware
and through the experimentation that C-
language programming allows.

Graphical tools (see Figure 2) can help
to provide initial estimates of algorithm
throughput such as loop latencies and
pipeline effective rates. Using such tools,
you can interactively change optimization
options or iteratively modify and recompile
C code to obtain higher performance. Such
design iterations may take only a matter of
minutes when using C, whereas the same
iterations may require hours of even days
when using VHDL or Verilog.

Case Study: Accelerating an FFT
The Fast Fourier Transform (FFT) is an
example of a DSP function that must
accept sample data on its inputs and gener-
ate the resulting filtered values on its out-
puts. Using C-to-hardware tools, you can
combine traditional C programming meth-
ods with hardware/software partitioning to
create an accelerated DSP application. The
FFT developer for this example is compati-
ble with any Xilinx® FPGA target, and
demonstrates that you can achieve results
similar to hand-coded HDL without resort-
ing to low-level programming methods.

Our FFT, illustrated in Figure 3, uti-
lizes a 32-bit stream input, a 32-bit stream
output, and two clocks, allowing the FFT
to be clocked at a different rate than the
embedded processor with which it com-
municates. The algorithm itself is
described using relatively straightforward,
hardware-independent C code, with some
minor C-level optimizations for increased
parallelism and performance.

The FFT is a divide and conquer algo-
rithm that is most easily expressed recur-
sively. Of course, recursion is not possible
on the FPGA, so the algorithm must be
implemented using iteration instead. In
fact, almost all software implementations
are written iteratively (using a loop) for
efficiency. Once the algorithm has been
implemented as a loop, we are able to
enable the automatic pipelining capabilities
of the Impulse compiler.

Pipelining introduces a potentially high
degree of parallelism in the generated

certain aspects of the underlying hardware.
In particular, you must understand how
partitioning decisions and C coding styles
will impact performance, size, and power
usage. For example, the acceleration of crit-
ical computations and inner-code loops
must be balanced against the expense of
moving data between hardware and soft-
ware. Fortunately, modern tools for FPGA
compilation provide various types of analy-
sis tools that can help you more clearly
understand and respond to these issues.

Practically speaking, the initial results of
software-to-hardware compilation from C-
language descriptions will not equal the
performance of hand-coded VHDL, but
the turnaround time to get those first results
working may be an order of magnitude bet-
ter. Performance improvements occur itera-
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logic, allowing us to achieve the best pos-
sible throughput. Our radix-4 FFT algo-
rithm on 256 samples requires
approximately 3,000 multiplications and
6,000 additions. Nonetheless, using the
pipelining feature of Impulse C, we were
able to generate hardware to compute the
FFT in just 263 clock cycles.

We then integrated the resulting FFT
hardware processing core into an embed-
ded Linux (µClinux) application running
on the Xilinx MicroBlaze™ soft-proces-
sor core. MicroBlaze µClinux is a free
Linux-variant operating system ported at
the University of Queensland and com-
mercially supported by PetaLogix.

The software side of the application
running under the control of the operating
system interacts with the FFT through data
streams to send and receive data, and to ini-
tialize the hardware process. The streams
themselves are defined using abstract com-
munication methods provided in the
Impulse C libraries. These stream commu-
nication functions include functions for
opening and closing data streams and read-
ing and writing those streams. Other func-
tions allow the size (width and depth) of
the streams to be defined.

By using these functions on both the soft-
ware and hardware sides of the application, it
is easy to create applications in which hard-
ware/software communication is abstracted
through a software API. The Impulse com-
piler generates appropriate FIFO buffers and
Fast Simplex Link (FSL) interconnections
for the target platform, thereby saving you
from the low-level hardware design that
would otherwise be needed.

Embedded Linux Integration
The default Impulse C tool flow targets a
standalone MicroBlaze software system. In
some applications, however, a fully featured
operating system like µClinux is required.
Advantages of embedded Linux include a
familiar development environment (appli-

cations may be prototyped on desktop
Linux machines), a feature-rich set of net-
working and file storage capabilities, a
tremendous array of existing software, and
no per-unit distribution royalties.

The µClinux (pronounced “you-see-
Linux”) operating system is a port of the
open-source Linux version 2.4. The µClinux
kernel is a compact operating system appro-
priate for a wide variety of 32-bit, non-mem-
ory management unit (MMU) processor
cores. µClinux supports a huge range of
microprocessor architectures, including the

Xilinx MicroBlaze processor, and is deployed
in millions of consumer and industrial
embedded systems worldwide.

Integrating an Impulse C hardware core
into µClinux is straightforward; the Impulse
tools include support for µClinux and can
generate the required hardware/software
interfaces automatically, as well as generate a
makefile and associated software libraries to
implement the streaming and other func-
tions mentioned previously. Using the
Xilinx FSL hardware interface, combined
with a freely available generic FSL device
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/* example 1 – simple use of ImpulseC-generated HW coprocessor and
* Linux FSL driver
* /

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

#define BUFSIZE 1024

void main(void)
{

unsigned int buffer[BUFSIZE];

/* Open the FSL device (Impulse HW coprocessor)*/
int fd = open(“/dev/fslfifo0”,O_RDWR);

while(1)
{

/* Get incoming data – application dependent*/
get_input_data(buffer);

/* Send data to ImpulseC HW processor on FSL port */
write(fd, buffer,BUFSIZE*sizeof(buffer[0]);

/* Read the processed data back from the HW coprocessor */
read(fd, buffer,BUFSIZE*sizeof(buffer[0]));

/* Do something with the data – application dependent */
send_output_data(buffer);

}
}

The Impulse compiler generates appropriate FIFO buffers and Fast 
Simplex Link (FSL) interconnections for the target platform, thereby saving 

you from the low-level hardware design that would otherwise be needed.

Figure 4 – Simple communication between µClinux applications and 
ImpulseC hardware using the generic FSL FIFO device driver



driver in the MicroBlaze µClinux kernel,
makes the process of connecting the software
application to the Impulse C hardware accel-
erator relatively easy.

The generic FSL device driver maps the
FSL ports onto regular Linux device nodes,
named /dev/fslfifo0 through to fslfifo7, with
the numbers corresponding to the physical
FSL channel ID.

The FIFO semantics of the FSL channels
map naturally onto the standard Linux soft-
ware FIFO model, and to the streaming pro-
gramming model of Impulse C. An FSL port
may be opened, read, or written to, just like
a normal file. Here is a simple example that
shows how easily a software application can
interface to a hardware co-processing core
through the FSL interconnect (Figure 4).

You can easily modify this basic structure
to further exploit the parallelism available.
One easy performance improvement is to
overlap I/O and computation, using a dou-
ble-buffering approach (Figure 5).

From these basic building blocks, you
are ready to tune and optimize your appli-
cation. For example, it becomes a simple
matter to instantiate a second FFT core in
the system, connect it to the MicroBlaze
processor, and integrate it into an embed-
ded Linux application.

An interesting benefit of the embedded
Linux integration approach is that it allows
developers to take advantage of all that
Linux has to offer. For example, with the
FFT core mapped onto FSL channel 0, we
can use MicroBlaze Linux shell commands
to drive and test the core:

$ cat input.dat > /dev/fslfifo0 &; cat /dev/fslfifo0
> output.dat;

Linux symbolic links permit us to alias
the device names onto something more
user-friendly:

$ ln -s /dev/fslfifo0 fft_core

$ cat input.dat > fft_core &; cat fft_core > 
output.dat;

Conclusion
Although our example demonstrates how
you can accelerate a single embedded applica-
tion using one FSL-attached accelerator,
Xilinx Platform Studio tools also permit mul-
tiple MicroBlaze CPUs to be instantiated in
the same system, on the same FPGA. By con-
necting these CPUs with FSL channels and
employing the generic FSL device driver
architecture, it becomes possible to create a
small-scale, single-chip multiprocessor system
with fast inter-processor communication. In
such a system, each CPU may have one or
more hardware acceleration modules (gener-
ated using Impulse C), providing a balanced
and scalable multi-processor hybrid architec-
ture. The result is, in essence, a single-chip,
hardware-accelerated cluster computer.

To discover what reconfigurable cluster-
on-chip technology combined with C-to-
hardware compilation can do for your
application, visit www.petalogix.com and
www.impulsec.com. 
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/* example 2 – Overlapping communication and computation to exploit
* parallelism 
* /

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

#define BUFSIZE 1024

void main(void)
{

unsigned int buffer1[BUFSIZE],buffer2[BUFSIZE];
unsigned int *buf1=buffer1;
unsigned int *buf2=buffer2;
unsigned int *tmp;

/* Open the FSL device (Impulse HW coprocessor)*/
int fd = open(“/dev/fslfifo0”,O_RDWR);

/* Get incoming data – application dependent*/
get_input_data(buf1);

while(1)
{

/* Send data to ImpulseC HW processor on FSL port */
write(fd, buf1,BUFSIZE*sizeof(buffer[0]);

/* Read more data while HW coprocessor is working */
get_input_data(buf2);

/* Read the processed data back from the HW processor */
read(fd, buf1,BUFSIZE*sizeof(buffer[0]));

/* Do something with the data – application dependent */
send_output_data(buf1);

/* Swap buffers */
tmp=buf1;
buf1=buf2;
buf2=tmp;

}
}

Figure 5 – Overlapping communication and computation for greater system throughput
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Embedded systems often operate in less
than ideal power conditions. Power distur-
bances ranging from spikes to brown-outs
can cause a significant amount of data and
storage system corruption, causing field
failures and potential loss of revenue from
equipment returns. You must consider
how your storage solution will operate in
environments with varying power input
stability. If the host system loses power in
the middle of a write operation, critical
data may be overwritten or sector errors
may result, causing the system to fail. 

Data Corruption
The host system reads and writes data in
minimum 512-byte increments called sec-
tors. Data corruption can occur when the
system loses power during the sector write
operation, either because the system did
not have time to finish or because the data
was not written to the proper location. 

In the first scenario, the data in the sec-
tor does not match the sector’s error-
checking information. A read sector error
will occur the next time the host system
attempts to read that sector. Many appli-
cations that encounter such an error will
automatically produce a system-level error
that will result in system downtime until
the error is corrected.

Eliminating Data Corruption 
in Embedded Systems
Eliminating Data Corruption 
in Embedded Systems
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SiliconSystems’ patented PowerArmor technology eliminates unscheduled 
system downtime caused by power disturbances.
SiliconSystems’ patented PowerArmor technology eliminates unscheduled 
system downtime caused by power disturbances.



In addition to losing the data, the solid-
state drive may thereafter interpret the
read sector error as defective, and may
unnecessarily replace it with a spare. In
general, about 1% of the storage capacity
is reserved for spares. Once the factory-
defined spares are depleted, the drive will
fail and must be replaced.

In another potential problem, a brown-
out or low-power condition could cause
the address lines of the storage device to
become unstable. If this happens – but
there is still enough power to program the
non-volatile storage component – data
could be written to the wrong address. This
again could result in a critical failure,
requiring drive replacement.

These types of errors can be frustrating
for you to find. At the point the drive fails,
it is sent back to the factory. The factory
then validates the error during the failure
analysis process. However, for the vendor
to determine whether or not it is a compo-
nent failure, they must re-initialize the
drive back to factory settings. After re-ini-
tialization, the drive operates normally and
is sent back. This is the typical return sce-
nario that flags a power issue.

The critical point to understand is that
the drive is not physically damaged, nor is
it “worn out.” In both cases, the data will
be lost and downtime will occur, but the
drive can be used again. 

Solid-State Drives versus Flash Cards
Not all solid-state storage products are cre-
ated equal. Even though they physically
look the same, solid-state drives in a
CompactFlash (CF) form factor differ
greatly from CompactFlash cards designed
for the consumer electronics market. The
inherent technology differences are out-
lined in Table 1.

The term “standard CompactFlash
card” can be a bit misleading. Flash cards
must pass the test suite defined by the
CompactFlash Association (CFA). These
tests allow for a relatively wide range in
some timing parameters, which can vary
with both hardware and firmware changes.
Most consumer-oriented products have
enough other system overhead to render
these changes insignificant.

embedded systems can integrate various
techniques for mitigating these power-relat-
ed issues. These techniques are not econom-
ically viable for consumer-based applications,
but are essential to eliminate unscheduled
downtime in embedded systems. 

SiliconSystems patented its PowerArmor
technology to eliminate drive corruption
caused by power disturbances. Figure 1
shows how PowerArmor integrates voltage-
detection circuitry to provide an early warn-
ing of a possible power anomaly. Once a
voltage threshold has been reached, the
SiliconDrive sends a busy signal to the host
so that no more commands are received
until the power level stabilizes. 

Next, address lines are latched (as shown

Embedded systems, on the other hand,
usually have very strict timing require-
ments. Even the slightest changes to the
host interface can cause significant issues. 

The most industry-recognized differen-
tiator between solid-state storage and com-
mercial flash cards is in write/erase cycle
endurance. Solid-state drives have superior
error-correction capabilities and wear level-
ing algorithms that can significantly extend
the life of standard storage components.
The power issues I’ve described are signifi-
cantly less well-known but are much more
prevalent in embedded applications.
Approximately 75% of field failures are the
result of power-related corruption.

Solid-state drives specifically designed for
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Parameter SiliconSystems SiliconDrive CF CompactFlash Card

Write/Erase Endurance >2 M Cycles per Block <100 K Cycles per Card

Error Correction (ECC) 6 bit 1-2 bit

Wear Leveling Algorithm Over the Entire SiliconDrive Over Free Space Only

Power-Down Protection Yes No

R/W Speed (MBps)
Single Sector 1-2 MBps 30-40 KBps
Large File 6-8 MBps 3-5 MBps

Re-Qualification Cycle 3-5 Years 1 Year

Maximum Capacity 8 GB 4 GB

Table 1 – Key performance metrics distinguishing solid-state drives designed 
for embedded systems from flash cards used in consumer electronic devices

Figure 1 – SiliconDrive with integrated PowerArmor technology



in Figure 2) to ensure that data is written to
the proper location. In contrast, most
microcontroller-based flash cards’ address
lines can float to undetermined states if
input power drops below the specified
minimum operating level.

SiliconDrive technology integrates a
RISC-based DSP that allows for a 512-byte

buffer size. This is 1/4 to 1/8 the size of a
microcontroller-based flash card. The
smaller buffer size limits the time that data
is in volatile memory, thereby reducing the
power and time required to clear the buffer,
update the control bytes, and complete the
data transaction. 

Larger buffer sizes require additional
capacitance to hold the power up longer.
This extra capacitance is physically very
large and will generally not scale to form
factors smaller than 2.5- or 3.5-inch drives.
SiliconDrive technology does not require
this added capacitance and can therefore
scale to virtually any industry-standard
form factor.

Testing for Power Issues
Many companies have included power-
down testing in the qualification process for
any new storage media they are considering.

The ability to handle power problems has
an impact on overall reliability, customer
goodwill, and total cost of ownership. 

You must consider many factors when
developing a test system that characterizes
the effects of power disturbances on the
storage device. First, the power-down ramp
rate on power and all I/O pins must obvi-

ously be fast enough to emulate the loss of
system power. In the case of implementing
a CF or PC card form factor, the ramp rate
must also be able to emulate the steeper
ramp associated with pulling out the prod-
uct during a write cycle.

A robust, repeatable power-down test
requires power disturbances at various inter-
vals of the write cycle. The ability to strictly
control and repeat this variable will expose
any weaknesses in the write cycle and accel-
erate any failures. It is also extremely impor-
tant to cut power to I/O and Vcc at the
same time. Many test platforms may only
cut power to Vcc and leave the I/O pow-
ered. This will result in invalid test data and
potential damage to the device under test.

The amount of verification performed
will directly impact the test time. Testing
after every cycle could be prohibitive, and
read sector errors may occur at any point in

time – yet the storage device may contin-
ue to operate. The worst-case scenario is
that the first read sector error occurs in a
system file or critical data area. You may
choose to run the test until it encounters
the first read sector error or until the drive
becomes inoperable.

SiliconSystems has designed a general-
purpose power-down tester based on the
Xilinx® ML401 development platform.
This system, along with available source
code to facilitate multi-threaded opera-
tion, allows you to quickly qualify and val-
idate various storage media based on
individual application needs.

Conclusion
Solid-state storage will continue to replace
rotating hard disk drives in embedded sys-
tems as the cost per usable gigabyte (that
is, the cost for the capacity required by the
application) continues its rapid decline.
The immense success of Apple’s iPod
nano, which uses solid-state storage
instead of hard drives, is currently the
most visible example of things to come.

This trend will, however, come with a
price.  The engineering tradeoffs between
storage component reliability – lower
write/erase cycle endurance and higher bit-
error rates – and cost will accelerate the
need for PowerArmor, enhanced error cor-
rection, and wear leveling capabilities.  In
addition, new technologies like
SiliconSystems’ SiSMART, which moni-
tors and predicts the SiliconDrive’s
remaining usable life span, will be required
for embedded systems with multi-year
deployments.  This will drive an even larg-
er differentiation between solid-state
drives designed specifically for embedded
systems and flash cards designed for con-
sumer electronic applications.

For more information, visit www.
siliconsystems.com. 
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Solid-state storage will continue to replace rotating hard disk drives in
embedded systems as the cost per usable gigabyte (that is, the cost for the

capacity required by the application) continues its rapid decline.  

Figure 2 – Latching the address lines when Vcc reaches its lower threshold 
will ensure data is written to the proper location.



A “little” Mistake That Could 
Cost You $100,000 Per Year

SiliconDrive is certified for use with the Xilinx®

System ACE™ Development Environment.

To learn more about SiliconDrive and 
its many advantages, visit us at 
www.siliconsystems.com/xilinx

A “little” mistake is in thinking that all solid-state 
storage is engineered equal.

Not even close.

SiliconSystems SiliconDrive is advanced storage 
technology engineered to overcome the problems 
associated with hard drives and flash cards.

What does this mean to you?

For starters, thousands of dollars in costs savings 
from eliminating unscheduled downtime resulting 
from field failures, product wear-out or forced 
product re-qualifications.

SiliconSystems™, SiliconDrive™, PowerArmor™ and SiSMART™ and the SiliconSystems logo are trademarks or registered trademarks of SiliconSystems and may be used publicly only with 
permission from SiliconSystems and require proper acknowledgement. Other listed names and brands and trademarks are trademarks or registered trademarks of their respective owners.
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Rapid increases in FPGA platform capa-
bility are fueling a corresponding increase
in complex SOC designs. This added
complexity is pushing designers to rethink
their traditional design flow. Designers are
looking to system-level tools to aid them
in making critical architectural decisions;
they are also using pre-defined cores to
simplify their design tasks and reduce the
overall design cycle. The additions of
embedded processors like the PowerPC™
and Xilinx® MicroBlaze™ soft-core
processor have greatly expanded the capa-
bility of these platforms and have likewise
added to the overall complexity. 

Boost Your Processor-Based
Performance with ESL Tools
Boost Your Processor-Based
Performance with ESL Tools
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Shorten design cycles and lower costs while increasing performance 
for Xilinx FPGAs using Poseidon’s breakthrough ESL technology.
Shorten design cycles and lower costs while increasing performance 
for Xilinx FPGAs using Poseidon’s breakthrough ESL technology.



The embedded processor provides real
advantages over discrete implementations
when developing complex systems: reduced
silicon area, higher flexibility, and a shorter
design cycle. These advantages are con-
firmed with the current rapid growth of
embedded FPGA designs, but they do have
some limitations. The major challenges of
these designs are:

• Insufficient processor performance to
support ever-increasing functional
demands

• Complex memory hierarchy and 
system architecture bottlenecks

• Hardware/software partitioning 

• Implementing closely coupled 
interfaces such as APU or FSL

• Productivity limitations and dealing
with the complexity of RTL design 

Processor solutions run out of process-
ing power rapidly when implementing
math-intensive operations. It is very costly
to simply increase the clock rate or move
the newest technology to enable the design
to be scalable. These designs must be able
to scale the performance of the processor
architecture to match the ever-increasing
demand placed on the system. It is costly to
move to new processor architectures or uti-
lize higher performance FPGAs.

methodologies to augment your architec-
tural design methodology. It is also difficult
to perform an effective partition of the
hardware/software early in the design,
which is critical to an effective develop-
ment of the architecture.

To maximize the benefits of processor-
based designs, you must verify architectures
early in the design cycle. You cannot wait
until RTL development to discover that your
architecture does not support your system
requirements. This “redesign loop” quickly
erodes time-to-market advantages, which
makes FPGA-based systems preferred. 

With Poseidon tools, you can overcome
these design challenges.

Triton Tool Suite 
Poseidon’s Triton Tool suite is a system
design and acceleration environment that
enables you to quickly develop, analyze,
and optimize system architectures. With
these ESL tools, the abstraction level of the
design is above RTL – you can quickly
address system issues without having to
solve the detailed issues surrounding RTL
implementation. Thus, you can quickly
perform architectural “what-if ” analysis
and accelerate time to market. The tool
suite was created specifically for processor-
based systems requiring efficient, robust
architectures with the need to optimize
performance, power, and cost.

Triton comprises two main tools:

• Triton Tuner – a system and software
analysis tool

• Triton Builder – a hardware/software
partitioning tool

Triton Tuner is a simulation and analy-
sis environment based on SystemC.
Simulation is performed at the transaction
level from models of both the processor
and surrounding buses and peripherals.
Using Tuner, you co-simulate the hardware
with the application software. 

During simulation, the tool collects
both hardware and software performance
data. The environment then provides tools
to visualize and analyze the data, reducing
the effort required to identify inefficiencies
in the design. Figure 1 shows a bus activity

The second critical issue is the need to
support complex memory hierarchies and
system peripherals. To reach the perform-
ance potential of modern-day processors,
designers have turned to memories and
architectures, which rely on special burst
modes and caching to keep up with proces-
sor data requirements. It is critical that the
memories and architectures operate in
these modes to have a high-efficiency 
system design.

Effective hardware and software parti-
tioning can be a confusing task. It is diffi-
cult to determine the proper mix of
hardware and software to meet system
requirements without the costly and time-
consuming task of moving large portions of
an algorithm to hardware.

Special interfaces bring expanded capa-
bility to the system architecture. These fea-
tures add an efficient high-speed interface
to the processor core and are ideal for par-
titioning certain processing-intensive func-
tions to hardware. But this capability does
come at a price. These interfaces are com-
plex and take a substantial amount of time
and expertise to effectively utilize when
interfacing to custom logic. 

Designing an efficient processor-based
system architecture with overall system per-
formance and optimized for a specific
application is not trivial; accomplishing
this feat requires breakthrough tools and
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Figure 1 – Bus activity graph



graph – a visualization tool to help identify
bus congestion and bottlenecks in the sys-
tem design.

Triton Tuner also links hardware and
software events, giving you a key tool in
determining causal relationships between
hardware and software systems. This fea-
ture greatly simplifies the task of evaluat-

ing and optimizing system performance.
Triton Tuner also provides tools to opti-
mize the memory structure. This can
greatly reduce the need for costly caches
and other high-speed memories. 

Triton Builder is an automated parti-
tioning tool, which simplifies the task of
accelerating the performance of processor-
based algorithms. With Triton Builder,
you can easily offload compute-intensive
loops and functions from software to
hardware. The tool automatically creates a
direct memory access (DMA)-based hard-
ware accelerator to perform the offloaded
task. All hardware and source-code modi-
fications are also created to greatly simpli-
fy the re-partitioning process.

With the Builder tool, you can control
a number of key parameters in which to
optimize the solution to your system
requirements. Together, these tools pro-
vide a system design and optimization

environment that unobtrusively plugs
into a Xilinx EDK design flow, enabling
you to quickly make dramatic improve-
ments in the performance and power con-
sumption of your application. 

Triton Builder generates the RTL for
the complete accelerator, as well as the
driver required to invoke the accelerator,

and inserts the driver into the proper
place in the original application. The
RTL can be generated in either Verilog or
VHDL. This integral generation process
ensures that necessary hardware and soft-

ware components are exactly matched for
trouble-free design. The tool also gener-
ates an RTL test bench and SystemC
model for verifying the new hardware.

FPGA-Based Accelerator Design Architecture 
The Builder tools create a design architec-
ture ideally matched to FPGA design.
Using Triton Builder, you can quickly cre-
ate a peripheral using the C code that runs
on the processor. The tool moves the com-
putationally intensive portions of the code
into a hardware accelerator. This accelera-
tion hardware is connected directly onto
the processor bus or the tightly coupled
interface (APU or FSL) and is implement-
ed on the FPGA fabric. A block diagram
of a typical accelerated architecture is
shown in Figure 2. 

If while executing the application code
the processor hits a section of code that has
been moved to hardware, control is passed
to the accelerator through the inserted
driver, which then performs the accelerat-
ed function. The accelerator runs inde-
pendently from the processor, freeing it to
perform other tasks. When the accelerated
task is completed, the results are passed
back to the application program. You can
implement multiple independent accelera-
tors within the same system. 

To create a complete accelerator periph-
eral, you need more than just a C synthe-
sis tool. Poseidon Builder includes not just
a C-to-RTL synthesizer that creates the
compute core; it also generates the com-
munication and control hardware. The
Poseidon tool creates a complete accelera-
tor peripheral, the block diagram of which
is shown in Figure 3. In addition to the
compute core, the accelerator includes a
multi-channel DMA controller, bus inter-
face, local memories, and other logic to
create a plug-and-play peripheral.

Interfacing to Xilinx Tools
Triton Tools are extremely flexible, allow-
ing you to use either Triton Tuner or
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Figure 3 – Accelerator block diagram

Figure 2 – Accelerated system architecture

With Triton Builder, you can easily offload compute-intensive 
loops and functions from software to hardware. 



Triton Builder independently or together
as an integrated suite. These tools were
developed to enhance the productivity in
developing processor-based designs and
vastly increase their capability.

Triton Tools link seamlessly to EDK
tools. A typical system design flow is usu-
ally an iterative process where you would

analyze system performance, determine
inefficiencies, modify the system, and
check the resulting performance. When
the architecture performs to the desired
level, the system is then transferred back
into the Xilinx tool chain. Triton Tools
accelerate the process of identifying prob-
lem areas and establish an integrated flow

that allows you to move between the tools
to develop the optimal architecture. 

A typical flow (shown in Figure 4) com-
prises these steps: 

• The designer develops the target archi-
tecture using selected Xilinx tools

• The architecture description is read
from the microprocessor hardware spec-
ification file (.mhs) from EDK, and the
ANSI C application source code is read
into the Triton tools

• Triton Tuner profiles the ANSI C code,
reveals bottlenecks in the code or archi-
tecture, and eliminates inefficiencies

• The designer selects which software will
be partitioned to hardware 

• Triton Builder partitions compute-
intensive algorithms in ANSI C into
hardware and generates a hardware
accelerator

• Triton Tuner verifies that the new sys-
tem performs to the desired level

• RTL, test bench, modified C code,
driver, and architecture are exported
back into the Xilinx environment

Conclusion
Poseidon’s Triton Tool suite enables you to
rapidly and predictability analyze, optimize,
and accelerate processor-based architec-
tures. With Triton Tuner’s SystemC simula-
tion environment, you can develop robust
efficient processor architectures. With
Triton Builder, you can add sophisticated
hardware acceleration to your processor-
based systems and generate RTL from C.

The Triton tool suite enables design
architects to achieve higher system through-
put, reduced power consumption, and cost,
as well as shorten design cycles. This is for
FPGAs  implementing DSP-intensive
applications using embedded Xilinx
PowerPC and MicroBlaze processors.

For more information, visit our website
at www.poseidon-systems.com or contact a
sales representative at (925) 292-1670. To
be qualified for a free tool evaluation of the
Poseidon Builder and Tuner and a free
white paper, e-mail farzad.zarrinfar@
poseidon-systems.com. 
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By Roger Smith
Chief Engineer
Echolab LLC, Inc.
rsmith@echolab.com

Television mixers have historically been
built with dedicated hardware to achieve a
specific fixed functionality. As mixers have
evolved from devices built with discrete
transistors to more modern mixers with
advanced large-scale integration (LSI) inte-
grated circuits, a common limitation has
been that these devices were built with
fixed signal and data paths that pre-define
the topology of the mixer. Thus, a mixer
targeted for two mix/effects (M/Es) and
two keyers per M/E is built specifically for
that function, with limited or no future
adaptability.

The Echolab Nova series completely
breaks with tradition in this regard, moving
to a completely reconfigurable platform
based on a system-on-chip architecture.

We used a single Xilinx® Virtex™-II
Pro FPGA to create a completely repro-
grammable video switching system. By
absorbing the interconnects of the mixer
into a single FPGA, the limitations of a
fixed signal path architecture have been
removed, and the topology of the mixer
can be redefined again and again through-
out the life of the product.
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Nova Family
In 2004, Echolab launched the first mem-
ber of the Nova series, the Nova 1716. This
product is a full program/preset mixer with
16 inputs and 16 outputs, two downstream
keyers, and a full M/E upstream complete
with two effects keyers. In 2005, we intro-
duced several new members of the family.
The Nova 1932 is a 32-input program/pre-
set mixer, with two upstream M/Es and a

full complement of six keyers. The identity4
is a 1 M/E 16-input look-ahead preview
mixer. The identity4 brings tremendous
advances in video layering, with four
upstream and two downstream keyers and
five internal pattern generators, all in a
flight-pack-size panel and frame.

As shown in Figure 1, what is unique
about these  mixers is that they share a
common frame and electronics, which are
simply re-programmed to fit the target
mixer design.

I/O
Major advances in FPGA design were nec-
essary to undertake such a dramatic shift in
mixer architectures. One of the first chal-
lenges that we had to overcome was how to
get the video bandwidth into and out of
the FPGA.

Even the smallest Nova family member
(shown in Figure 2) has 16 SDI inputs and
16 SDI outputs. At 270 Mbps, this is an
aggregate video data bandwidth of more
than 8.5 Gbps. The Nova 1732 and 1932
family members have 32 inputs and 16 out-
puts, approaching approximately 13 Gbps.

One of the key aspects of the Virtex-II
Pro device is its ability to support I/O
bandwidths in excess of 400 MHz on all
FPGA I/O pins. Another key feature of

clock cannot be initially used to sample all
of the incoming signals. 

Typically, most SDI mixers use individ-
ual clock and data separator circuits on each
input so that the hardware can recover the
individual bits from each stream. After the
data streams are separated and decoded,
sync detector circuits are used to write these
streams into FIFO memories. A common
genlock clock and reference is then used to
read out the video streams from the memo-
ries for effects processing downstream.

This topology is not viable for Echolab’s
system-on-chip architecture. The large
number of clocks created by these front-
end clock and data separators would over-
whelm the FPGA’s support for the total
number of clocks, as well as the inherent
need to crowd these parts near the FPGA.
The video interface to the FPGA must be
simpler, and require few or no parts near
the FPGA. Thus, traditional clock and data
separation techniques do not work here.

Echolab applied an asynchronous data-
recovery technique from Xilinx application
note XAPP224 (“Data Recovery”) original-
ly developed for the networking market.
The technique uses precise low-skew clocks
to sample the inputs in excess of a gigahertz.
The samples are examined to determine the
location of the data bit cell transitions. The
encoded data is extracted from the stream
and can cross into the genlock clock
domain without ever extracting the clock
from the input stream. For more informa-
tion about this technique, see  www.
xilinx.com/bvdocs/appnotes/xapp224.pdf.

The FPGA’s ability to route nets and
guarantee skew performances on the order of
picoseconds has enabled development and
implementation of this unique SDI input.

Another design challenge in digital mix-
ers has been the implementation of video
line delays and FIFOs, which have histori-
cally been used in large numbers to time
internal video paths and outputs. It is often
necessary to add delay lines to AUX bus
outputs to keep them in time with the pri-
mary mixer outputs. These delay lines and
FIFOs have typically been implemented
with discrete memory devices.

The Xilinx FPGA solution contains
large numbers of video line-length memo-

Xilinx parts is support for internal termina-
tion of high-speed differential inputs.
Because of the high-speed nature of this
video I/O, the wires must be treated as
transmission lines, with great care paid to
electrical termination. Historically, these
termination resistors would be placed
directly outside the chip, as close as possi-
ble to the end of the line. The need for a
substantial amount of terminations so close

to the chip would be a layout complication.
Because Xilinx can support internal termi-
nation of these high-speed video signals,
this has greatly simplified the architecture,
making the support of large blocks of high-
speed video I/O possible.

The next challenge was deciphering the
SMPTE 259M stream. Because the SDI
streams are coming from all over the stu-
dio, even when genlocked (synchronizing a
video source with other television signals to
allow the signals to be mixed), there can be
large phase shifts of +/- half a line between
these signals, and therefore, a common
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Figure 1 – The Nova switcher family

Figure 2 – Nova SDI I/O



ries on chip, which lend themselves natu-
rally to delay lines. Xilinx has enough of
these memories on-chip to allow all AUX
bus outputs on the Nova series to be timed.

Crosspoint Array
The next challenge was to implement a
crosspoint array of sufficient size to support
these large mixers without overwhelming
the resources of the chip. Although the
crosspoint array appears to be a reasonable
size from the front panel, the array is often
much larger because it must support all of
the internal sources and functions inside
the mixer.

The Nova 1716 has 16 external inputs,
but it also has 3 internal colorizers, black,
three internal frame buffers, and several
intermediate sources generated by the
upstream M/E. For outputs from the
array, each M/E requires seven video
buses (A/B, key 1 cut and fill, key 2 cut
and fill, as well as video for borders).
There are also 12 AUX bus feeds and ded-
icated buses to support capture on the
internal frame buffers.

By the time you add it all up, the
required internal crosspoint array is easily
30 x 30 for the 16-input mixer. To develop
this crosspoint array as a 10-bit wide paral-
lel implementation would consume a large
amount of resources within the FPGA.

A more effective use requires the
design of high-speed serializers and de-

serializers within the part. The
Virtex-II Pro FPGA’s ability to
generate multiples of the gen-
lock clock within the part with
low skew allows you to create
whole sections of the chip that
can run at the SMPTE 259M
bit-serial rate of 270 MHz. This
implementation of an SDI serial
rate crosspoint array (Figure 3)
effectively limits the use of valu-
able FPGA fabric to less than 10
percent of the capacity of the
target chip. 

Effects Generation
Once the streams have gone
through the crosspoint array and
have been de-serialized, the video
buses, now “timed,” can be rout-
ed to the appropriate processing
blocks within the FPGA to per-
form various video effects (see
Figure 4).

The creation of video effects
within the FPGA such as wipes,
mixes, and keys is easily per-

formed with the basic building blocks of the
FPGA. Most basic video effects can be per-
formed with nothing more than simple
combinations of addition, subtraction, and
multiplication. Hundreds of embedded
high-speed multipliers within the FPGA
fabric allow a variety of video effects to be
performed effortlessly with very high preci-
sion.

Embedded memory can also be used
for LUTs and filter coefficient storage. An
example of an often-used filter would be
an interpolating filter for 4:4:4 up-sam-
pling before a DVE or Chromakey.

A high-precision circle wipe requires a
square-root function.  This complicated
mathematical function was implemented
with a CORDIC core provided by Xilinx.
These blocks of pre-built and tested IP
from Xilinx and other third-party devel-
opers allow you to rapidly deploy designs
without having to develop and test every
building block from scratch.
Development with these IP cores can
remain at a very high level, providing
quick time to market. Also, the optimized
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size of these cores allows the design of
complex mixers within a single chip.

Embedded PowerPC
The computer horsepower necessary to run
today’s large vision mixers has grown
immensely over the last dozen years. The
need to accurately support field-rate effects
on multiple M/E banks while at the same
time communicating with complex control
panels and many external devices has tested
the limits of earlier 8- and 16-bit micro-
processors.

Most manufacturers have either used
several smaller distributed processors or a
larger, faster 32-bit microprocessor.
Echolab’s system-on-chip architecture (see
Figure 5 – PowerPC™ implementation)
takes advantage of two 32-bit PowerPCs

(running at 270 MHz) embedded directly
in the fabric of the Xilinx FPGA. This tight
coupling between the processor and the
mixer hardware leads to substantial per-
formance improvements.

A vast library of pre-built processor
peripherals from Xilinx and third parties
makes it easy for functions like serial ports,
memory controllers, and even Ethernet
peripherals to be dropped right into the
design. Custom peripherals are also easy to
design.

Several large switcher manufacturers
have gone to commercial operating systems
like Windows or Linux to improve their
software productivity. Although the early
benefits can be appealing, the downside to
this transition is a loss of control over the
reliability of the switcher’s code base, mak-
ing a device that is not as robust and bul-

letproof as previous generations of mixers.
Echolab has chosen Micrium’s µC/OS-

II real-time operating system (RTOS) for
the Nova series (see www.micrium.com).
This OS is a priority-based, pre-emptive
multitasking kernel that has been certified
for use in safety-critical applications in
medical and aviation instruments. Time-
critical video processing is assigned to the
highest priority task.  Management of the
file system, console I/O, and network stack
are allocated to lower priority tasks, allow-
ing the processor to utilize spare processor
cycles in the background without ever
interfering with the video hardware.

The tasks communicate with each other
– and synchronize their activity – with
thread-safe semaphores and message
queues provided by the OS.

System Connectivity
All Nova series switchers have multiple
ports for broadcast studio interconnectivi-
ty. An industry-standard RS-422 port
allows for the implementation of industry-
standard editing protocols. A standard RS-
232 port is available for PC connectivity.
An Ethernet port allows the switcher to be
directly connected to a network.

Under control of Nova’s µC/OS-II, sev-
eral servers are running concurrently that
provide an integrated Web server for
remote status and display, an embedded
XML-RPC server for remote control, as
well as a full TFTP server for remote
upload and download of graphics and stills.

Compact Flash and Re-Configurability
At the heart of the Nova system is an indus-
try-standard Compact Flash card (Figure

6), designed to hold all of the firmware and
software to configure and boot the Nova.
With a user-accessible mode switch, you
can load as many as eight different on-line
configurations of Nova firmware and soft-
ware from a single flash card.

The remaining storage on the card is
available to store user data such as
sequences and panel saves, as well as key
memories and other user settings. Also, the
Compact Flash is designed to hold all of
the graphics and stills online. Support for
cards up to 2 GB or more provides an
immense storage capacity, well beyond the
archaic floppy disks found in competitive
products.

Given Nova’s unique architecture, it is
easy for the product to be extended
through downloadable firmware updates.
These updates can be as simple as a routine

software patch, as complex as adding a
keyer to an AUX bus output, or restructur-
ing the internal video flow within an ME
for a specialized application.  Architectures
as different as the 2 ME Nova 1716 (with
its program/preset architecture) and the
Nova identity4 (with a six-keyer look-
ahead preview structure) can be loaded into
the same hardware.

Roadmap to the Future
Next-generation Virtex-4 FPGA technology
from Xilinx will allow Echolab to move its
system-on-chip architecture to support high-
definition products. Virtex-4 FPGAs bring a

Figure 5 – PowerPC implementation

Figure 6 – Compact Flash



March 2006 Embedded magazine 55

higher level of performance to the embedded
logic, as well as the embedded peripherals.
Some of these enhancements include:

Fabric enhancements
• Larger arrays

• Faster 

• Lower power

I/O enhancements
• General-purpose I/O speeds to 1 GHz

• Dedicated Rocket IO™ transceiver
speeds beyond 10 GHz

Dedicated hardware resources
• Multiple tri-mode Ethernet MACs

• 500 MHz multipliers with integrated
48-bit accumulators for DSP functions

• Block memories now have dedicated
address generators for FIFO support

Conclusion
Television mixers have grown larger and
more complex in the last dozen years.
More and more, they are the focal point
for the interconnection of a wide range of
studio equipment.

One of the primary benefits of the sys-
tem-on-chip architecture is reduced parts
count. This reduction in parts count con-
tributes directly to lower power, reduced
PCB complexity, higher reliability, and
reduced cost.

Another major benefit of the system-on-
chip architecture is that it is almost entire-
ly reconfigurable. This has allowed
multiple products with different video
architectures to be built on a common plat-
form. This also lends itself to easy cus-
tomization for specialized applications or
specific vertical markets.

As the computer network continues to
play more of a role in today’s modern tele-
vision studio, the Nova series will be ready
with support for streaming video over
Gigabit Ethernet. H.264 and WMV9
codecs will drop right into the Nova’s sys-
tem-on-chip architecture, providing future
features on today’s hardware.

For more information, please feel free to
see Echolab’s complete line of television
mixers at www.echolab.com. 
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The Tri-Mode Ethernet MAC (TEMAC)
UltraController-II Module (UCM) is a min-
imal footprint, embedded network process-
ing engine based on the PowerPC™ 405
(PPC405) processor core and the TEMAC
core embedded within a Xilinx® Virtex™-4
FX Platform FPGA. It allows you to interact
with your Virtex-4-based system through an
Ethernet connection and to control or mon-
itor your system remotely using TCP/IP
from miles away. Our design uses minimal
resources and ensures that you will have
enough logic area for your application.

In this article, we will explain the
advantage of our design and how it is
implemented on an ML403 board. We will
also introduce a few applications that you
can build on top of this implementation.

Implementing a Lightweight Web
Server Using PowerPC and Tri-Mode
Ethernet MAC in Virtex-4 FX FPGAs

Implementing a Lightweight Web
Server Using PowerPC and Tri-Mode
Ethernet MAC in Virtex-4 FX FPGAs
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Implementation
The TEMAC UCM leverages key innova-
tions in Virtex-4 FPGAs to implement
TCP/IP applications with minimal
resource usage, as shown in Figure 1. The
whole implementation takes one embed-
ded PPC405, one integrated TEMAC, two
Virtex-4 FIFO16s, 20 slice flip-flops, and
18 look-up tables (LUTs).

On the ML403 board, the TEMAC
UCM connects to an external PHY through
a gigabit media independent interface
(GMII) and a management data input/out-
put (MDIO) interface, and auto-negotiates
tri-mode (10/100/1000 Mbps) Ethernet
speeds. Other physical interfaces like
RGMII and SGMII are possible and take a
minimum amount of change in the refer-
ence design that is provided as source code.

The software is ported from the open-
source µIP TCP/IP stack and runs com-
pletely out of the PPC405’s 16 KB
instruction and 16 KB data cache. It access-
es Ethernet frames in two FIFO16s through
the PPC405 on-chip memory (OCM)
interface. One FIFO buffers inbound while
the other buffers outbound Ethernet frames.
The FIFOs also act as entities to synchronize
clock domains between the PPC405 OCM
and the TEMAC. The PPC405 is capable of
running the software at maximum frequen-
cy, for example, 350 MHz in a -10 speed
grade FPGA.

The application implemented in Xilinx
Application Note XAPP807, “Minimal
Footprint Tri-Mode Ethernet MAC
Processing Engine,” (www.xilinx.com/
bvdocs/appnotes/xapp807.pdf) runs a Web
server on top of the µIP TCP/IP stack. The
Web server serves a Web form to connect-
ing clients. You simply enter a string in a
text field and submit it to the server, which
interprets the data and displays the string
on a two-line character LCD. See Figure 2
for a picture of the process.

The µIP TCP/IP stack has a well-
defined API and comes with other demon-
stration applications like telnet. Based on
the well-written µIP documentation, you
can implement your own application with-
out much effort. The stack is optimized for
minimal footprint at the cost of perform-
ance. The restriction on TCP/IP perform-
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ance is not a limiting issue for most moni-
tor and control applications.

Implementation Flow
Implementing the TEMAC UCM is
straightforward. The implementation flow
comprises three main parts: one flow in
Project Navigator for hardware bit file gen-
eration; one flow in EDK for software ELF
file generation; and another flow to com-
bine the software and hardware file into a
single  bitstream or PROM file to program
the Virtex-4 FX12 FPGA or the Platform
Flash on the ML403 board, respectively.
Project files and scripts for all of these flows
are included in XAPP807. The hardware
source code for the TEMAC UCM is avail-
able in Verilog and VHDL. The software
source code is written in C.

The TEMAC UCM is based on
UltraController-II, as shown in Figure 3 and
documented in XAPP575, “UltraController-
II: Minimal Footprint Embedded Processing
Engine” (www.xilinx.com/bvdocs/appnotes/
xapp575.pdf). UltraController-II is a black-
box processing engine that includes 32 bits of
user-defined general-purpose input and out-
put, as well as interrupt handling capability.

Loading the Software into Caches
Loading software into the instruction and
data caches of the PowerPC has been possi-
ble for some time through System ACE™
CF technology or other JTAG-based meth-
ods. However, for the first time, the
TEMAC UCM makes this also possible
through all configuration modes, including
JTAG mode, slave and master serial modes,
and slave and master SelectMap modes.
Other configuration solutions besides
System ACE CF can load code and data
into the PPC405 caches. Such solutions
include Xilinx Platform Flash as well as
external processors and methods described
in application notes such as XAPP058,
“Xilinx In-System Programming Using an

Embedded Microcontroller” (www.xilinx.
com/bvdocs/appnotes/xapp058.pdf).

The cache loading solution emphasizes
another new feature in the Virtex-4 FPGA
family. The USER_ACCESS register is a
32-bit register that provides a port from
the configuration block into the FPGA
fabric. For loading the caches, the
USER_ACCESS register is connected
through a small state machine to the
JTAG port of the PPC405. A script con-
verts a software ELF file into a bitstream
that you can load into the processor
caches with Impact or the ChipScope™
Analyzer. If you are interested in finding
out more about this solution, Xilinx
Application Note XAPP719, “PowerPC
Cache Configuration Using the
USR_ACCESS_VIRTEX4 Register,”
(www.x i l i n x . c om /bvdo c s / a ppno t e s /
xapp719.pdf) provides full details.

Use Cases for the TEMAC UCM
Figure 4 shows some use cases for the
TEMAC UCM. Besides monitoring and
control application, other applications
include statistics gathering, system diag-

nostics, display control, or math and data
manipulation operations.

A system application that deals with
MPEG transport streams gathers statistical
information about the video and audio
streams. The TEMAC UMC makes this
information available through the Web
interface. On the control side, the content
provider dynamically loads decryption
keys for encrypted streams into the system
through the same Web interface.

In another example, an FPGA con-
trolled machine gathers information about
erroneous conditions that the machine
manufacturer accesses locally or remotely
for diagnosis. In return, the manufacturer
loads new machine parameters into the
system to adjust undesired behavior.

In a third example, some networking
equipment reports its operational status on
a regular basis through e-mail to a control
center where the information is processed.
The control center equipment or personnel
takes action if the equipment reports a
malfunction or fails to report at all.

In all of these cases, the TEMAC
UCM fits into a design for which it was
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not originally designed. Its small hard-
ware and software footprint makes it suit-
able for designs that already use all of the
available FPGA resources.

Network-Attached Co-Processor
In a recent experiment, we combined the
TEMAC UCM with the auxiliary proces-
sor unit (APU) on the PPC405. The APU
provides a direct way to access hardware
accelerators by the way of user-defined

instructions (UDI). Typically, a software
application running on the PPC405 uses
the APU to accelerate the execution speed.
In this case, however, the application soft-
ware runs on a regular PC that distributes
the workload to multiple ML403 boards
with integrated TEMAC UCM and APU,
as shown in Figure 5. The ML403 acts as a
network-attached co-processor, speeding
up the application running on the PC.

For example, we compute pictures gener-

ated by the Mandelbrot function. The soft-
ware running on the PC divides the whole
picture into smaller areas and distributes the
parameters for these smaller areas to the
ML403 boards through TCP connections.
The PPC405 on each ML403 board reads
the parameters from the TCP socket, loops
through the area, and calculates every pixel
using a MandelPoint co-processor connect-
ed to the APU interface. The PPC405 sends
the results of this calculation back to the PC
through the same TCP connection. Finally,
the PC collects all the results from the net-
work-attached co-processors and displays
the final picture on the screen.

Figure 6 shows the result of the acceler-
ation. A single ML403 connected to the PC
computes a 1024 x 768 picture in about
three seconds, including communication
overhead. Adding more ML403 boards
brings the overall computation time down
below 1.5 seconds for three boards. Four
boards do not show a significant improve-
ment, as communication overhead
becomes the main part of the computation.

Solving the same problem natively on a
high-end Linux workstation takes about
three seconds, about the same amount of
time as one network-attached ML403 with
TEMAC UMC and APU acceleration.

Conclusion
The TEMAC UCM provides a conven-
ient and inexpensive way of adding
Ethernet functionality to any design. It
uses a minimal amount of FPGA
resources and the software runs from the
embedded PPC405 caches. As a result of
these simple interfaces, development
time is reduced. The Web server applica-
tion is used to demonstrate the design,
but you can use it for other solutions, as
shown with the example of the network-
attached co-processors.

For more information about the
TEMAC UltraController Module, down-
load XAPP807, including the reference
design for the Xilinx ML403 board, and see
the Xilinx Webcast, “Learn about the
UltraController-II Reference Design with
PowerPC and Tri-Mode EMAC in Virtex-4
FPGAs,” at www.xilinx.com/events/webcasts/
110105_ultracontroller2.htm. 
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Figure 6 – Use multiple boards to shorten computation time
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Do you always have the best balance of
processor, performance, IP, and peripherals
on your first embedded application design
partition? Would experimenting with cus-
tomizable IP and a choice of hard- and/or
soft-processor cores give you a better feel
for the best fit to your embedded applica-
tion before committing to devices and
hardware? Programmable platforms allow
powerful customization of processor-based
systems, but which one do you start with?
Why not utilize a development kit that
supports it all? 

Ideally, modern development kits pro-
vide a comprehensive design environment
with everything embedded developers
require to create processor-based systems.
They should include both the hardware
platform and software tools so that you
can get started creating modules to prove
out a design concept before the time-con-

suming task of building custom hard-
ware. By starting with a “working” hard-
ware platform, embedded teams can
evaluate the merits of one processor core
versus another, begin writing application
code, and even experiment with IP
peripherals before prematurely commit-
ting to a specific hardware design.

A development kit should provide a
stable hardware evaluation environment,
complete with all required cables and
probes, so that you can focus on your
own application and not worry about
debugging problems with a new board or
broken connection. Imagine the time-to-
market advantages of being able to imme-
diately write, test, and debug code on a
working reference board well in advance
of any custom hardware being ready. 

Processor “P” or Processor “M”?
Choosing the most appropriate processor
for a specific embedded application is
always a design concern. A processor used
on a previous project may not be a good fit
for the next project. Requirements for per-
formance, features, size, and cost may

change wildly from one product to the
next. Having multiple processor core
choices and the flexibility to change the
design after the development cycle has
started is highly desirable. 

Xilinx offers system developers the
choice of high-performance, “hard”
PowerPC™ or flexible “soft” Xilinx®

MicroBlaze™ processor cores for embed-
ded designs. The PowerPC cores provide
high performance because they are hard-
immersed into the Virtex™-4 FPGA
device fabric. They also have additional per-
formance-enhancing features, such as inte-
grated 10/100/1000 Mbps Ethernet and
Auxiliary Processor Unit (APU) controllers.

The 32-bit RISC MicroBlaze soft IP
processor can be instantiated in any of the
Xilinx Platform FPGAs because it is built
like a macro out of FPGA elements.
Although the hard PowerPC processor will
always be faster and smaller by nature, the
MicroBlaze soft-processor core has the
flexibility to instantiate at any time dur-
ing the design cycle. MicroBlaze cores can
also be used as complements to PowerPC
cores in Virtex-4 platforms, often provid-
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processor design. 
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Development Kit supports 
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processor design. 



ing workload distribution to optimize total
system performance. 

With a unified strategy of supporting
both processors with the same IP library
and design tool suite, you have the power to
choose the best processor/IP configuration
for any given design requirement. With this
scenario, you do not have to throw away
good work or start a design over again with
different tools or IP libraries just because a
processor change has been made. 

Best of Both Worlds
The Virtex-4 FX family of FPGAs com-
bines the best of both hard- and soft-pro-
cessing options with a unique format for
the embedded industry. For example, the
powerful Virtex-4 FX12 device implement-
ed on the Xilinx ML403 development
board (Figure 1) offers an immersed
PowerPC core at a value price point. This
same device and board can easily support
the addition of MicroBlaze soft-processor
designs, creating one unique platform sup-
porting two core options.

Engineers researching the appropriate
processor choice for their next project can
now experiment with a broader set of
processor and IP offerings while making
their decision. With a single tool suite and
IP library supporting both processor
options, you can really do an apples-to-
apples evaluation of the benefits versus your
own design requirements for the best fit.

The ML403 development board pro-
vides a rich set of features, including periph-
erals, memory, audio, video, and user
interfaces, enabling you to easily and cost-
effectively prototype your embedded system
design. The actual board itself includes:

• Memory interfaces for DDR SDRAM,
ZBT SRAM, and flash

• Audio and video interfaces 

• Numerous user interfaces: dual PS/2,
IIC Bus, RS-232, USB, and tri-mode
Ethernet

• Multiple FPGA programming modes:
Platform Flash, the System ACE™
solution, Linear Flash, and PC4

• Support for multiple clock sources and
differential clock inputs

for Virtex-4 FX12 designs. The kit compris-
es the following contents (Figure 2):

• Virtex-4 FX12 development 
board – ML403

• Platform Studio embedded tool 
suite and Embedded Development 
Kit (EDK)

• ISE™ (Integrated Software
Environment) FPGA tools

• JTAG probe, Ethernet, and 
serial cables

• ChipScope™ Pro Analyzer 
(Evaluation Version)

• Reference designs

In addition to the ML403 board, the kit
showcases the IEC DesignVision award-
winning Xilinx Platform Studio (XPS)
embedded tool suite. XPS is the integrated
development environment that includes the
design GUI, automated configuration wiz-
ards, compiler, and debugger. XPS is built
on the Eclipse framework and supports the
GNU tool chain. Design wizards automate
the process of configuring the processor-
based system, connect and customize the IP,
and organize the project. Additionally,
Platform Studio can automatically generate
example test code, software drivers, and even
BSPs for some of the most popular RTOSs. 

The Virtex-4 FX device also supports an
APU controller that provides a high-band-
width interface between the PowerPC 405
core and co-processors to execute custom
instructions in the FPGA fabric.
Additionally, the ML403 showcases the
FX12 implementation of two fully inte-
grated 10/100/1000 Ethernet MACs for
system communication and management
functions. These FX capabilities enable
developers to optimize their designs for
high performance. 

Completely Integrated Development Kit
The Xilinx PowerPC and MicroBlaze
Development Kit Virtex-4 FX12 Edition
integrates a complete environment for
embedded development. The kit supports
both the PowerPC 405 immersed hard
processor and the MicroBlaze soft processor
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Figure 1 – ML403 development board

Figure 2 – Virtex-4 FX12 PPC/MicroBlaze Development Kit



XPS is fully aware of the ML403 devel-
opment board and, unlike “universal”
tools, automatically populates the GUI
with the feature options supported by that
board. Intelligent tools automate the flow,
reduce learning curves, and accelerate the
design process. Users are amazed that they
can create a basic embedded system using
Platform Studio’s automated flow in less
than 15 minutes.

EDK bundles the XPS tool suite with
the impressive embedded IP library and
MicroBlaze processor license. This is a one-
time license; there is no royalty to be paid
for MicroBlaze designs shipped. The IP
library supports the CoreConnect bus,
bridge, and arbiters, and offers a large
peripheral catalog including more than 60
memory controllers, Ethernet, UARTs,
timers, GPIO, DMA, and interrupt con-
trollers, as well as many other cores. 

ISE FPGA tools are the design utilities
employed for the FPGA implementation,
including entry, synthesis, verification,
and place and route. This design flow can
be invoked directly from the Platform
Studio IDE.

Target boards need a connection for
the various kinds of communication com-
ing from the host computer where tools
are executed and design files created. The
most common method of connection to
an embedded target board is through an
industry-standard JTAG probe. Xilinx
offers a choice of either parallel or USB
for JTAG probes; this single connection
can be used for both FPGA
download/debugging and embedded soft-
ware download/debugging. This capabili-
ty reduces your need for multiple probes
and the inconvenience of constantly
swapping probes. The FX12 kit also
includes Ethernet and serial cables.

One unique, powerful feature that
Xilinx offers is “platform debug” – the inte-
gration of the embedded software debugger
and hardware debugger. By integrating the
cross-triggering of both hardware and soft-
ware debuggers, embedded engineers can
now find and fix system bugs faster. Can’t
detect the problem when the software goes
off into the weeds? Have the software
debugger cross-trigger the hardware debug-

ger so that you can examine the state of the
hardware. Alternatively, if you locate a
problem after a hardware event, cross-trig-
ger the software debugger to step through
the code that is executing at that time. The
FX12 kit includes an evaluation version of
the Xilinx ChipScope Pro hardware debug-
ging tool to encourage you to explore the
merits of platform debug.

Pre-Verified Reference Designs
The last and critical ingredient of the inte-
grated development kit that can really jump-
start your entire design process is a collection
of reference designs or reference systems. By
including pre-verified or pre-existing work-
ing example designs with the kit, you can
unpack the box and have the basic system up
and running in minutes. Reference designs
can prove that the hardware and connections
are working before you start creating new
code or IP, and prevent you from mistakenly
debugging your design when what you really
have is a bad board or cable. 

These reference systems also act as
examples for the broad set of features on
the ML403 platform, such as Ethernet,
DDR memory, video, and audio functions.
You can use these examples as templates to
get your own design features modeled, or
run as-is if your custom board targets the
same feature. 

The FX12 Development Kit includes
boot-able eOS (embedded operating sys-
tems) or RTOS examples for Wind River
Systems’ VxWorks and MontaVista embed-
ded Linux from a Compact Flash device. The
ML403 board is supported by other third-
party embedded RTOS or hardware/software
design tool partners as well.  

Sample reference systems include:

• PowerPC Reference System with
VxWorks and Linux

• MicroBlaze Reference System

• DCM Phase Shift Using MicroBlaze
Reference System

• UltraController-II Reference Design

• Gigabit System Reference Design
(GSRD)

• APU Co-Processing Acceleration

These reference systems can save you
days and even months of development time
compared to manually generating every
design module yourself. Leveraging existing
examples jump-starts your design cycle.

Conclusion
A complete development environment of
hardware board, design tools, IP, and pre-
verified reference designs can dramatical-
ly accelerate embedded development.
Additionally, for a quick, out-of-the-box
experience, the ideal development envi-
ronment also provides all of the extra
JTAG probe, serial, and Ethernet cables.
Intelligent, award-winning design tools
that are “platform aware” make the kit
easy to use, providing wizards that help
you configure the system by automating
the flow for the known features on the
development board. 

The programmable platform and intelli-
gent XPS tools provided with the PowerPC
and MicroBlaze Development Kit enable
you to craft embedded systems with the
optimal combination of features, perform-
ance, area, and cost. You can choose the
most effective processor core for the target
application, customize IP, optimize the per-
formance, and validate the software on a
development board before your own hard-
ware is even back from the shop.

Engineers need options and flexibility
when trying to satisfy all of their project
requirements. The Xilinx Virtex-4 FX12
Development Kit uniquely offers two
processor cores for easy evaluation in a sin-
gle, integrated environment. A single IP
library and common tool suite unifies the
design environment for both cores, pro-
viding total embedded architecture flexi-
bility. The inclusion of numerous
pre-verified reference designs empowers
you to jump-start the development cycle
so that you can spend more time adding
value to your end application. 

To learn more about the low-cost Virtex-
4 FX12 Development Kit supporting both
PowerPC and MicroBlaze processor cores,
please visit www.xilinx.com/embdevkits. A
good starting point to learn about all of
our embedded processing solutions is
www.xilinx.com/processor. 
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Finding a processor to meet

performance, feature, and cost

targets can be very challenging

in today’s competitive environ-

ment. With the continued

advances in FPGA technology

features, increased performance

and higher density devices,

scalable processor systems can

now be offered as an economical,

superior alternative for real-time

processing needs. A flexible

processor system that’s easy-to-

use, area-efficient, optimized 

for cost-sensitive designs, and

able to support you well into

the future is delivered by

the award-winning Xilinx

MicroBlaze™ solution.

The Xilinx MicroBlaze

processor, named to EDN’s Hot

100 Products of 2005, is a 32-bit

RISC “soft” core operating at up

to 200 MHz on the Virtex™-4

FPGA and costs less than 50

cents to implement in the

Spartan™-3E FPGA. Because the

processor is a soft core, you can

choose from any combination

of highly customizable features

that will bring your products 

to market faster, extend your

product’s life cycle, and avoid

processor obsolescence.

The MicroBlaze Advantage 
Xilinx unleashes the potential of embedded FPGA designs with the award-winning
MicroBlaze soft processor solution. The MicroBlaze core is a 3-stage pipeline 32-bit
RISC Harvard architecture soft processor core with 32 general purpose registers, ALU,
and a rich instruction set optimized for embedded applications. It supports both on-
chip block RAM and/or external memory. With the MicroBlaze soft processor solution,
you have complete flexibility to select any combination of peripherals, memory and
interface features that you need to give you the best system performance at the lowest
cost on a single FPGA.

Hardware Acceleration using Fast Simplex Link 
The MicroBlaze Fast Simplex Link (FSL) lets you connect hardware co-processors to
accelerate time-critical algorithms. The FSL channels are dedicated uni-directional
point-to-point data streaming interfaces. Each FSL channel provides a low latency 
interface to the processor pipeline making them ideal for extending the processor’s 
execution unit with custom hardware accelerators.

Floating-Point Unit Support 
MicroBlaze introduces an integrated single precision, IEEE-754 compatible Floating Point
Unit (FPU) option optimized for embedded applications such as industrial control,
automotive, and office automation. The MicroBlaze FPU provides designers with a
processor tailored to execute both integer and floating point operations.

Hardware Configurability 
The MicroBlaze processor solution provides a high level of configurabilty to tailor the
processor sub-system to the exact needs of the target embedded application.
Configurable features such as: the barrel shifter, divider, multiplier, instruction and data
caches, FPU, FSL interfaces, hardware debug logic, and the hardware exceptions, provide
great flexibility but does not add to the cost if they are not used.

Award-Winning Platform Studio Tool Suite 
The Embedded Development Kit (EDK) is an all encompassing solution for designing
embedded programmable systems. This pre-configured kit includes the award-winning
Platform Studio™ Tool Suite, the MicroBlaze soft processor core as well as all the documen-
tation and soft peripheral IP that you require for designing FPGA-based embedded 
processor systems.

MicroBlaze – The Low-Cost 
and Flexible Processing Solution 

www.edn.com
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MicroBlaze Hardware Options and Configurable Blocks  
Hardware Functions 
• Hardware Barrel Shifter 
• Hardware Divider
• Machine Status Set and Clear Instructions 
• Hardware Exception Support 
• Pattern Compare Instructions 
• Floating-Point Unit (FPU) 
• Hardware Multiplier Enable 
• Hardware Debug Logic 

Cache and Cache Interface 
• Data Cache (D-Cache) 
• Instruction Cache (I-Cache) 
• Instruction-side Xilinx Cache Link (IXCL) 
• Data-side Xilinx Cache Link (DXCL) 

Bus Infrastructure
• Data-side On-chip Peripheral Bus (DOPB) 
• Instruction-side On-chip Peripheral Bus (IOPB) 
• Data-side Local Memory Bus (DLMB) 
• Instruction-side Local Memory Bus (ILMB) 
• Fast Simplex Link (FSL) 

Take the Next Step 
Visit our website www.xilinx.com/microblaze for more information .
To order your Embedded Development Kit visit www.xilinx.com/edk.

Virtex-II Pro

Device Family Max Clock Frequency

Virtex-4 

Spartan-3

Note: The maximum clock frequency and maximum Dhrystone 2.1 performance benchmarks are not
based on the same system. Depending on the configured options, the MicroBlaze soft processor core 
size is about 900 – 2600 LUTs.

170 MHz

200 MHz

100 MHz

138 DMIPS

166 DMIPS

92 DMIPS

Max Dhrystone 2.1 Performance
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Embedded Development Kit 
and Platform Studio Tool Suite 
For development, Xilinx offers the Embedded Development Kit (EDK),
which is the common design environment for both MicroBlaze and
PowerPC-based embedded systems. The EDK is a set of microprocessor
design tools and common software platforms, such as device drivers
and protocol stacks. The EDK includes the Platform Studio tool suite,
the MicroBlaze core, and a library of peripheral IP cores.

Using these tools, design engineers can define the processor subsystem
hardware and configure the software platform, including generating a
Board Support Package (BSP) for a variety of development boards.
Platform Studio Software Development Kit (SDK) is based on the
Eclipse open-source C development tool kit and includes a full-featured
development environment and a feature-rich GUI debugger. The
MicroBlaze processor is supported by the GNU compiler and debugger
tools. The debugger connects the MicroBlaze via JTAG. For debugging
visibility and control over the embedded system, design engineers can
add the ChipScope Pro™ verification tools from Xilinx, which are 
integrated into the hardware/software debug capabilities of the EDK.
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/**********************************/
/*     FPGA embedded challenge    */
/**********************************/

volatile project;
const    short schedule;
complex  hardware, software;

if (FPGA && CPU) {
   success = seamless_FPGA(symbolic_debug,
                   early_HW_access, easy2use);
   performance = 1000 * faster;
   visibility++;
}
else {
   visibility = NULL;
   performance = SLOW;
   vacation = 0;
}

// evaluate it at www.seamlessFPGA.com

Hardware/Software Integration You work late nights and weekends, but that can only 

get you so far when you have a huge device with logic, memory, processors, complex IP – 

and a tight schedule. How do you ensure that hardware/software integration goes 

smoothly? Seamless FPGA from Mentor Graphics is the only hardware/software

integration tool that matches support for the Virtex FPGA family with models for 

the PowerPC and MicroBlaze processor architectures, giving you full software and

hardware visibility and the performance you need to spot hardware/software integration 

issues early in the design cycle. To learn more about Seamless FPGA, go to 

www.seamlessFPGA.com, email seamless_fpga@mentor.com or call 800.547.3000.

®®

TO UNDERSTAND
NOT ALL CODE IS HARD
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Discover endless possibilities as Xilinx brings you hands-on, FREE workshops
at ESC Silicon Valley. You’ll gain valuable embedded design experience in real
time. And only Xilinx Platform FPGAs offer programmable flexibility with the
optimal choice of integrated hard and/or soft processors — that means fast
and flexible solutions for your processing needs.

FREE Hands-On Workshops (90 minutes each) Room C1

� High Performance Design with the Embedded PowerPC and 
Co-Processor Code Accelerators  (April 4 — 10am, 2pm & 4pm)

� Learn to Build and Optimize a MicroBlaze Soft Processor System 
in Minutes (April 5 — 10am, Noon, 2pm & 4pm)

� Design and Verify Video/Imaging Algorithms with the Xilinx 
Video Starter Kit (April 6 — 9am, 11am & 1pm)

Live Demonstrations

Explore embedded processing with the flexible PowerPC™ and MicroBlaze
32-bit processor cores, plus XtremeDSP performance and our PCI Express
solutions. And see for yourself why the embedded industry has recognized
award-winning products like Platform Studio and MicroBlaze.

Xilinx will also offer numerous Theatre Presentations and Technical Program
Papers. Check in at booth #315 for a program schedule, and find out why
Xilinx is embedded processing.

©2006 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners. 

Visit Xilinx at Embedded Systems Conference Silicon Valley, April 4 –6, 2006 — Booth #315
IN-DEPTH PRODUCT DEMONSTRATIONS & PRESENTATIONS  | FREE HANDS-ON WORKSHOPS

Xilinx is
Embedded Processing
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