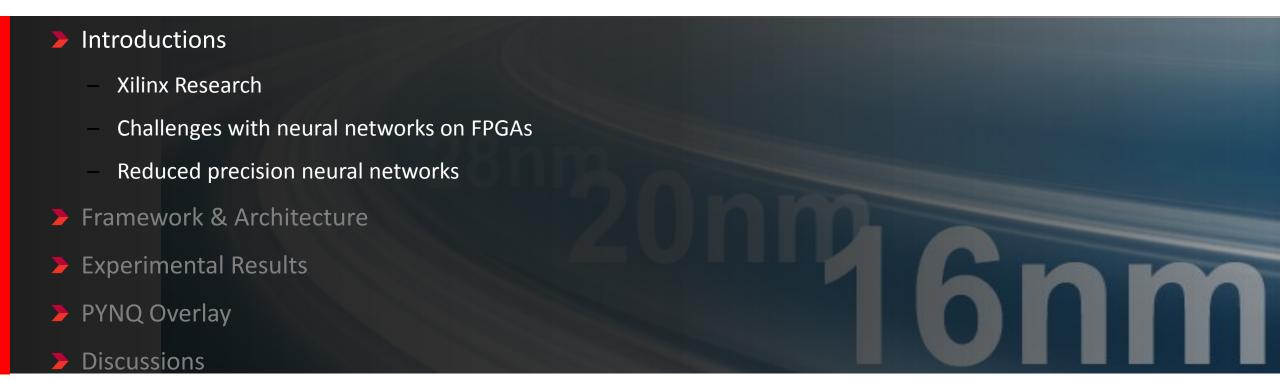
ALL PROGRAMMABLE

Binary Networks on FPGAs

Michaela Blott, Kees Vissers, Giulio Gambardella (Xilinx Research) Yaman Umuroglu (NTNU), Nick Fraser (Sydney Uni.), Gianluca Durelli (Politecnico Milano)

Agenda



Page 3

Xilinx Research - Ireland

- 8 researchers + students & visiting scholars

- 2 university program

- Est. 10 years ago

Applications & Architectures:

Through application-driven technology development with customers, partners, and engineering & marketing

Convolutional Neural Networks

➤ CNNs are the predominant machine learning algorithm

- Achieving superhuman accuracy since 2015
- Use cases span image recognition, language processing, speech recognition, time series prediction, recommender systems, medical diagnosis, autonomous vehicles and many more

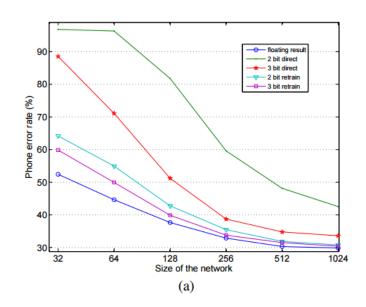
> CNNs are very high in compute and memory requirements

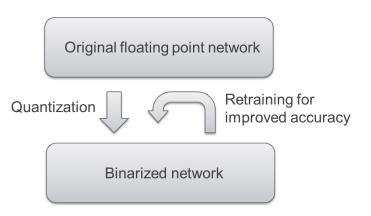
Increasing operational intensity

CNN for ImageNet datasets	Memory (SP) [MB]	Operations [GOPS]	Operational Intensity [OPS:B]
AlexNet – complete	244	1.5	5.97
VGG-16	552	31	55.84
GoogleNet	27.2	3.1	55.24

Increasingly Reduced Precision Networks

- > Floating point (FP) CNNs contain a lot of redundancy
 - Even Nvidia is moving from FP, HP to 8b fixed point integer
- ➤ Reducing precision is shown to work to 6b without loss of accuracy Dec. 2015
 - 50x and more reduction in model size (no external memory needed)
- **▶** Bill Dally (Stanford), EMDNN 2016:
 - showed TTN on par with FP for AlexNet top-1 and top-5,
 ResNet20,32,44,56
- ➤ Reducing to the extreme: binary and almost binary neural networks (BNNs) Jan 2016
 - Possible with retraining
 - No accuracy loss for small networks
 - Small drop for large networks





Potential of Binary Networks on FPGAs

▶ Multiply accumulate becomes XNOR with bit counts

Cost of operations	LUTs	DSPs
1b	2.5	0
4b	11	0
8b	40	0
32b	178	2

Roofline Assumptions: Application can fill device to 70% (fully parallelizable) FPGA cost function:

- 1b int: 2.5LUTs (with HLS)
- 4b int: 11LUTs - 8b int: 40LUTs
- 32b float: 178LUTs, 2DSP
- 250MHZ for KU115

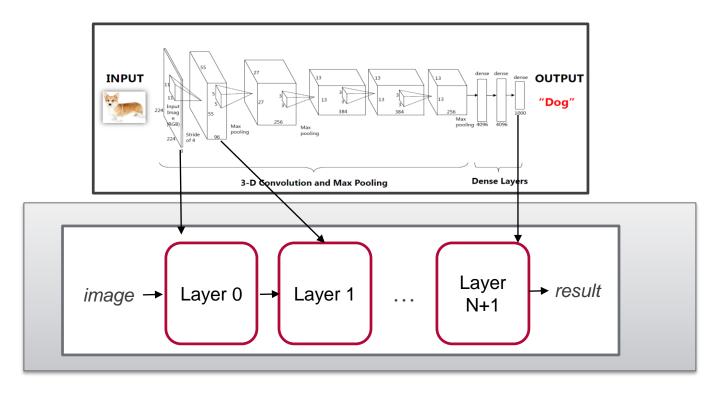
KU115:

- 663k LUTs
- 5520 DSPs
- 2160 BRAM

- ➤ Today's FPGAs have a much higher peak performance for binary operations
 - Example: KU115 offers lots of LUTs but limited DSPs for HP & SP: 5'520 DSPs and 663'360 LUTs

Peak performance	TOps/s 10x
1b	46 Nvidia today:
4b	11 4.5 TOps/s
8b	Huge performance potential for low bit measured
32b	o precision – today
	No external memory needed
Model sizes small en	oug

Potential of Dataflow Architectures on FPGAs



- > Binary networks can be implemented as feed-forward data flow architectures
 - If we had enough resources to implement a full network fully parallelized
 - ⇒ classifying 1 image @ clock rate (for example 250MHz => 250Mfps)
- > Large networks need to be folded over the input stream
 - Conceptually we have 5 orders of magnitude to play with
- ➤ Lowest storage requirements and lowest latency

Architecture

Concepts

Memory

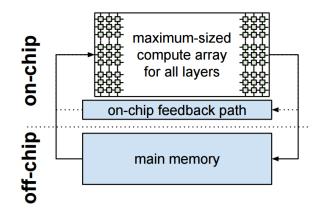
- Weights and thresholds are contained in on-chip memory

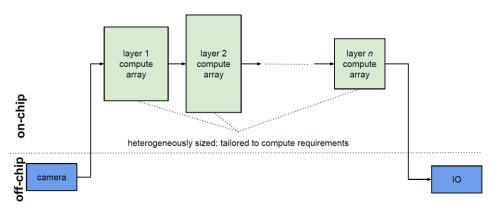
> Custom heterogeneous streaming architecture

- Not a systolic array with scheduling network on processing engines
- Customized network where all layers coexist in a data flow architecture
- Each layer consumes and produces in same order to minimize buffering and latency
- Layers are different instantiations of a C++ template classes (MVTU)
 with equivalent throughput

Custom data types & BNN specific optimizations

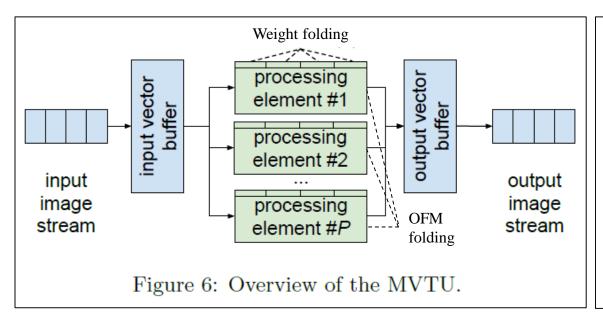
- $-\{-1/+1\}$ maps to $\{0,1\}$
- Xnor-popcount as cheap binary multiply-accumulates
- Thresholds as cheap batchnorm activations
- "OR" becomes cheap maxpool

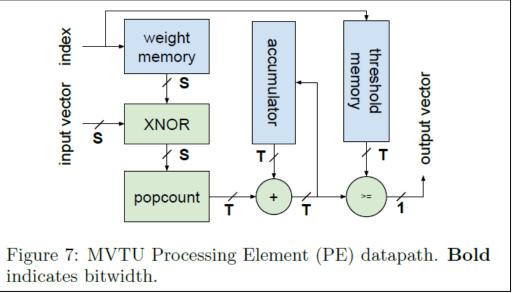




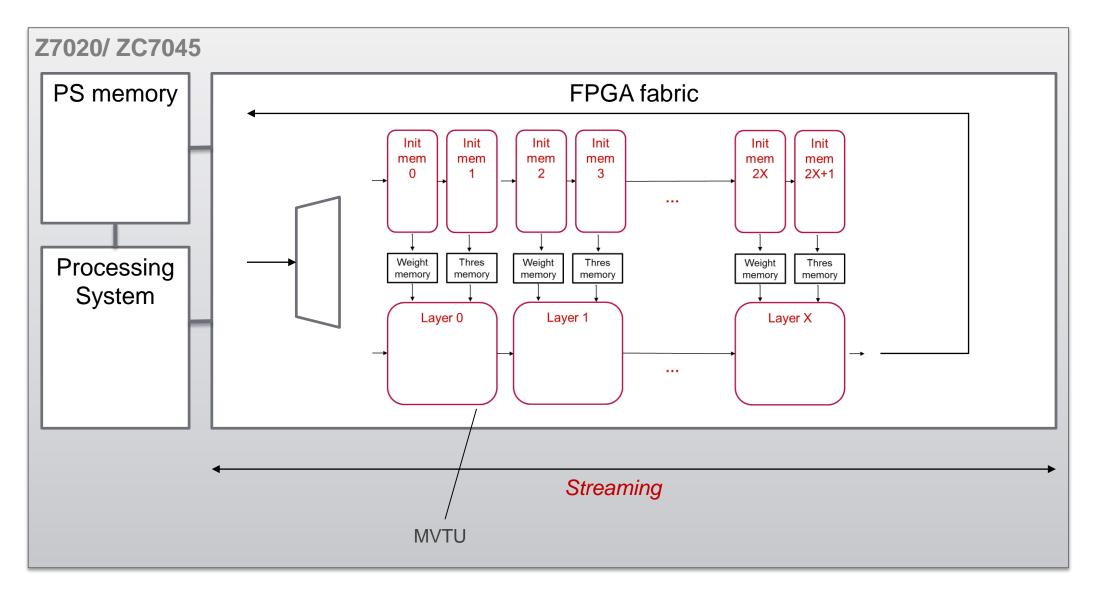
Architecture of a Matrix-Vector Threshold Unit (MVTU)

- ➤ Fully connected layers & convolutional layers are mapped on matrix-vector multiply threshold units (MVTUs)
- **▶** MVTUs support folding over OFMs (neuron) and folding over weights (synaptic)
- > Weight and output stationary (weights and popcounts are retained locally)
- **▶** Max pool units are optionally placed behind MVTUs





Architecture of Infrastructure on Zynq SOC



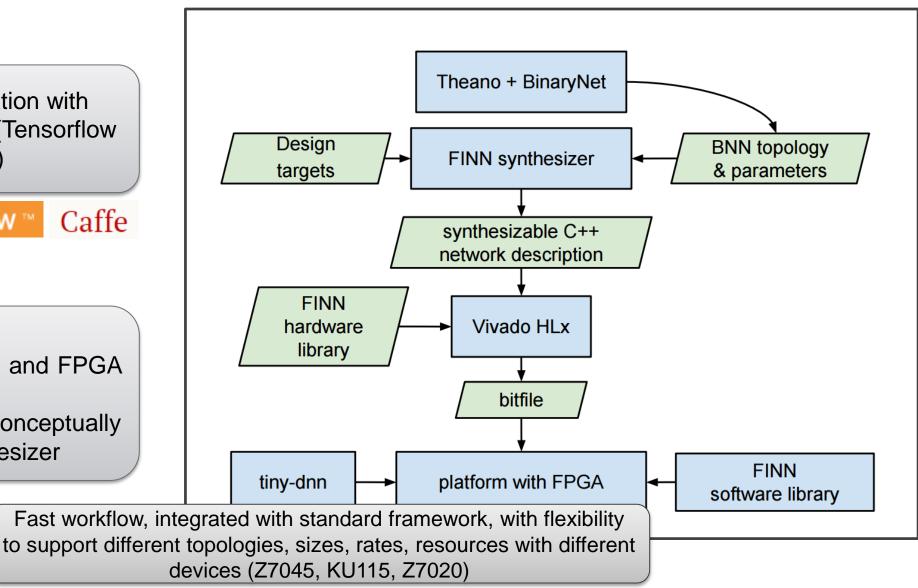
Work Flow for Exploration of BNNs

First prototype integration with tiny-dnn and Theano (Tensorflow and Caffe in progress)

theano TensorFlow ™

Caffe

- All code in C/C++
- Can execute on CPU and FPGA
 - No RTL needed
- Scheduler is conceptually packed into the synthesizer



Top Level

```
void DoCompute(ap uint<64> * in, ap uint<64> * out) {
#pragma HLS DATAFLOW
  stream<ap uint<64> > memInStrm("memInStrm");
  stream<ap uint<64> > InStrm("InStrm");
                                                                                   Stream definitions
  stream<ap uint<64> > memOutStrm("memOutStrm");
                                                                                   Move image in from PS memory
  Mem2Stream<64, inBytesPadded>(in, memInStrm);
  StreamingMatrixVector<LO SIMD, LO PE, 16, LO MW, LO MH, LO WMEM, LO TMEM>
          (InStrm, inter0, weightMem0, thresMem0);
  StreamingMatrixVector<L1 SIMD, L1 PE, 16, L1 MW, L1 MH, L1 WMEM, L1 TMEM>
          (inter0, inter1, weightMem1, thresMem1);
                                                                                   Layer instantiation
  StreamingMatrixVector<L2 SIMD, L2 PE, 16, L2 MW, L2 MH, L2 WMEM, L2 TMEM>
                                                                                   connected by streams
          (inter1, inter2, weightMem2, thresMem2);
  StreamingMatrixVector<L3 SIMD, L3 PE, 16, L3 MW, L3 MH, L3 WMEM, L3 TMEM>
          (inter2, outstream, weightMem3, thresMem3);
    StreamingCast<ap uint<16>, ap uint<64> > (outstream, memOutStrm);

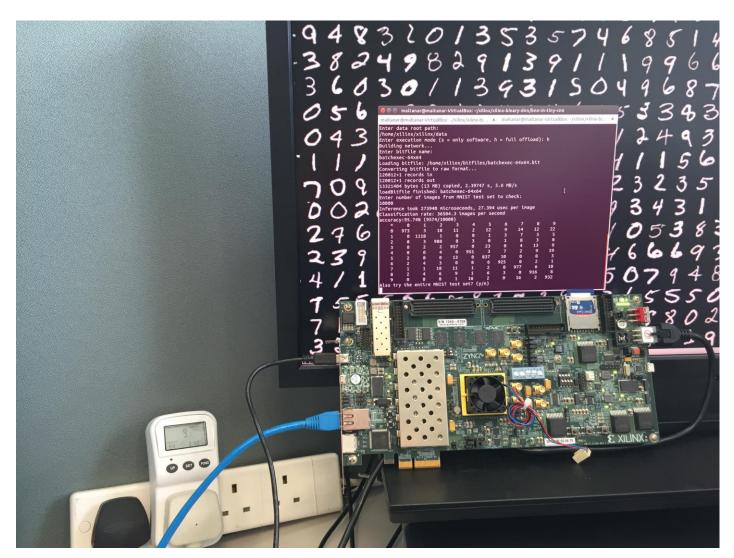
→ Move results to PS memory

   Stream2Mem<64, outBytesPadded>(memOutStrm, out);
```

MVTU

```
for (unsigned int nm = 0; nm < neuronFold; nm++) {</pre>
                                                                                        Folding
   for (unsigned int sf = 0; sf < synapseFold; sf++) {</pre>
#pragma HLS PIPELINE II=1
          ap uint<SIMDWidth> inElem;
                                                                                         Reading
         if (nm == 0) {
                                                                                         Inputs or consume
            inElem = in.read();
                                                                                         internal (when folded)
            inputBuf[sf] = inElem;
          } else {
            inElem = inputBuf[sf];
                                                                                         Indexing weight and
         for (unsigned int pe = 0; pe < PECount; pe++) {</pre>
#pragma HLS UNROLL
                                                                                         threshold memory
             ap uint<SIMDWidth> weight = weightMem[pe][nm * synapseFold + sf];
                                                                                         binary MAC
             ap uint<SIMDWidth> masked = ~(weight ^ inElem);
             accPopCount[pe] += NaivePopCount<SIMDWidth, PopCountWidth>(masked);
   ap uint<PECount> outElem = 0;
   for (unsigned int pe = 0; pe < PECount; pe++) {</pre>
                                                                                         Batchnorm
#pragma HLS UNROLL
                                                                                         activations
          outElem(pe, pe) = accPopCount[pe] > thresMem[pe][nm] ? 1 : 0;
         accPopCount[pe] = 0;  // clear the accumulator
```

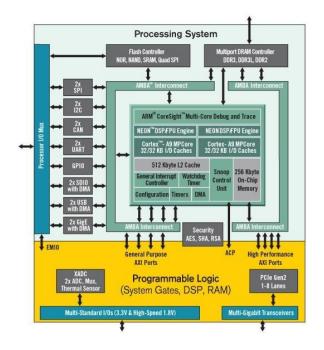

Experimental Setup



Source: Xilinx Dublin labs - BNN setup

Z706 development platform:

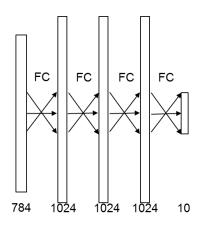
- Z7045
 - 2 A9 processors
 - 350k LUTs
 - 900DSPs
- 2x 1GB DDR3



Test Networks

> Fully connected networks

- Input images: 28x28 pixels, binarized MNIST
- Number of layers: 3 FC layers, 256, 512 and 1024 neurons each
- Compute requirement: 0.67, 1.86 and 5.8 MOPS/Frame

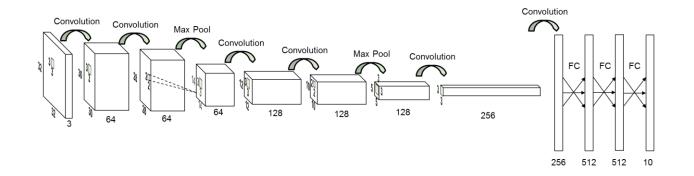


> CNV (VGG-16 derivative)

- Input images: 32x32 pixels, RGB image
- Number of layers: 2 (3x3) Conv + Max Pool + 2 (3x3) Conv + Max Pool +
 2 Convolutional + 3 FC
- Compute requirement: 0.113 and 1.2 GOPS/Frame

DoReFaNet (AlexNet)

- Reduced precision with 2b activations
- Input Images: 227x227, RGB
- In progress



Test Networks & Input Data

Results - Performance, Latency, Power & Resources

Max	Throug	ahput
111007		7' 'P G G

77045	FPS	GOPS/s	BRAM	Ultra-low latency	Latency [us]	Power [W]
Unprecedented	12.3M	8'200	130.5	(P4 ~11ms)	0.31	21.2
classification rates	1.5M	9'085	398	For robotics, AR,	2.44	22.6
On ARTO Small	21.9K	2'465	192	UAVs (2070)	283	11.7
Z7020 (PYNQ)	FPS	GOPS/s	BRAM	LUT	Latency [us]	Power [W]
MNIST – small	307k	203.5	64.5	23'756 (44%)	13	-

12K FPS target

Z7045	FPS	GOPS/s RRAM	LUT	Latency [us]	Power [W]
MNIST - small	12.2k	Scalability to	4'810 (2%)	240	8.1
MNIST – large	12.2k	extremely small footprints	6'156 (3%)	282	7.9
CIFAR10 - small	11.6k	1 300 130.3	40'404 (18%)	550	10

Comparable to AlexNet

AlexNet

KU115

FPS

GOF:

Over best measured

Dumbors on GPLI today

Latency [us] Power [W]

CIFAR10 -

High performance, latency, low power with:
 equal accuracy on small networks and promising results for larger networks

ROGRAMMABLE

Machine Learning Applications

Applications that require large networks and low accuracy (performance, power)

Recommender systems

Data analysis

Applications that require small networks (low latency & speed)

- Wireless: channel equalization
 - High Frequency Trading
 - Identifying malaria cells
- Speech recognition for voice control

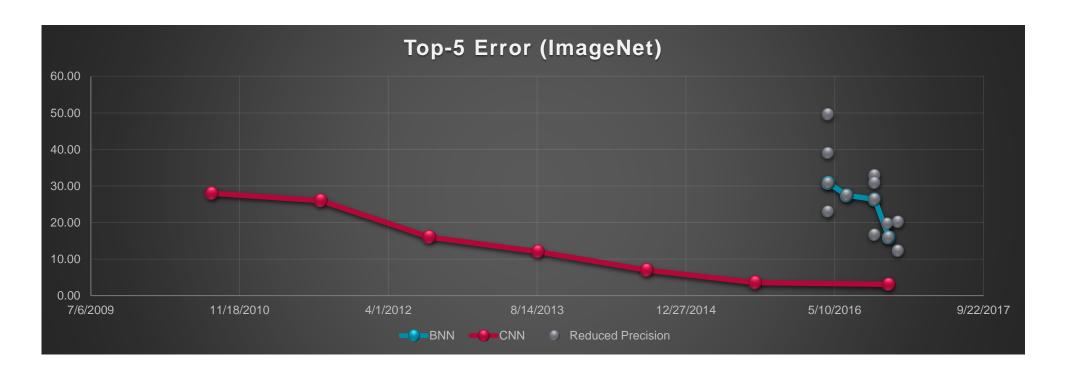
Applications that require large networks and high accuracy

Autonomous driving

Different use cases require different networks & different levels of accuracy
 Statistics, recommender systems, UAV and medical diagnosis have very different requirements

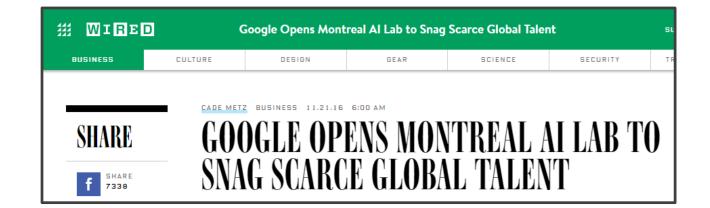
Accuracy of Binary Networks Improving

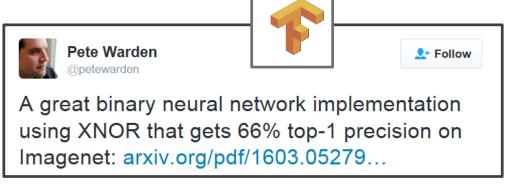
Published Results for FP CNNs, BNNs and Extreme Reduced Precision NNs



BNNs are new and accuracy results are improving rapidly

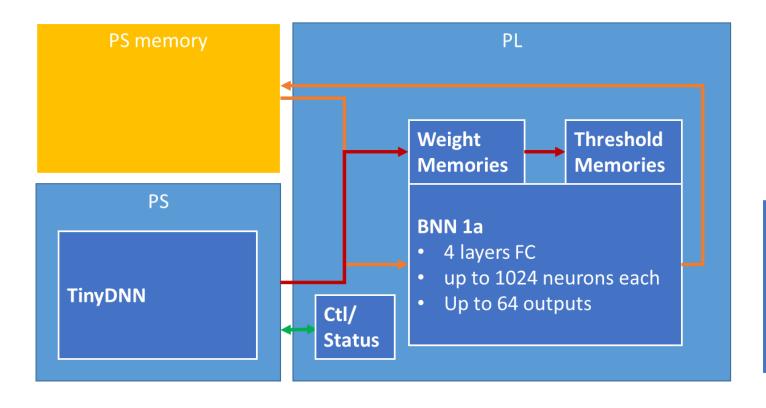
Others are considering it too Facebook, Google, Intel





PYNQ Overlay Architecture for BNN

First release: Rigid networks with high performance, basic tool support



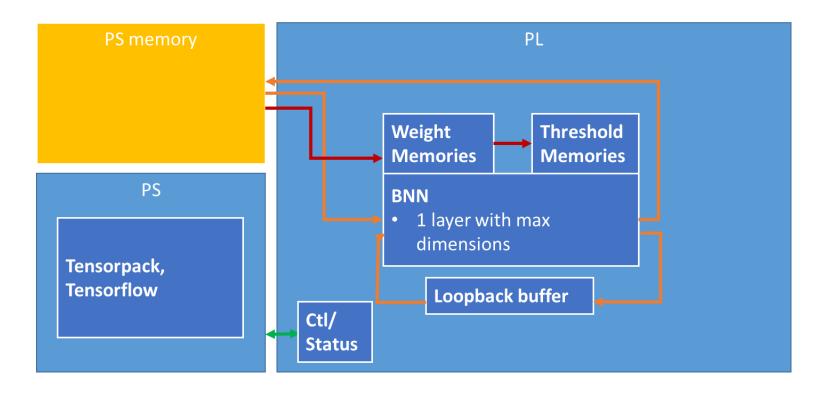
BNN 1b

- 6 layers conv
- 3 layers pooling
- 3 layers FC
- Up to 64 outputs

- > 1a and 1b support fixed topologies that fit into the given foot print
- Classify images up to 28x28 pixels (1a) or 32x32 (1b)
- > Very high classification speeds (1a => 70kfps, 1b => 6kfps?), very low latency (<1ms)
- > Example use cases: solitaire, handwriting, small colour images, HFT, speech recognition (voice control for robots)
- > (While smaller networks can be mapped onto this architecture, not sure it helps other than training time)

PYNQ Overlay Architecture for BNN

Second release: Flexible networks, lower performant, high power efficiency



- > 2 supports networks that consist of convolutional, max pool,
- > Classify images up to 32x32 pixels (1b or 24b)
- > Value: Energy efficiency, experimental platform to get comfortable with FPGAs, gaining trust
- Example use cases: ImageNet or vision processing tasks

Software Flow

Provisional Timelines

- **▶** Early release of 1a and 1b for FPGA 2017 with Theano and fixed networks
- > Release of 2 end of March 2017 with Tensorpack and flexible network design

Page 29

Summary

- ➤ Binary networks provide some interesting performance resource (cost) trade-offs within the design space
 - Extremely small footprint for slower classification rates for smallest devices (4,6k (2%) LUTs for 60fps)
 - Very high classification rates (12Mfps)
 - Low latency for applications with real-time requirements such as AR, automotive and robotics
- ➤ Proposed architecture is flexible to support different types of neural network topologies (all in C/C++)
 - Number of layers
 - Size and types of layers (convolutions, max pool, fully connected)
 - Experiment without hardware knowhow
- > PYNQ provides a release mechanism that makes technology available to a wide audience

Many Open Questions

- > Real use cases
 - Medical images?

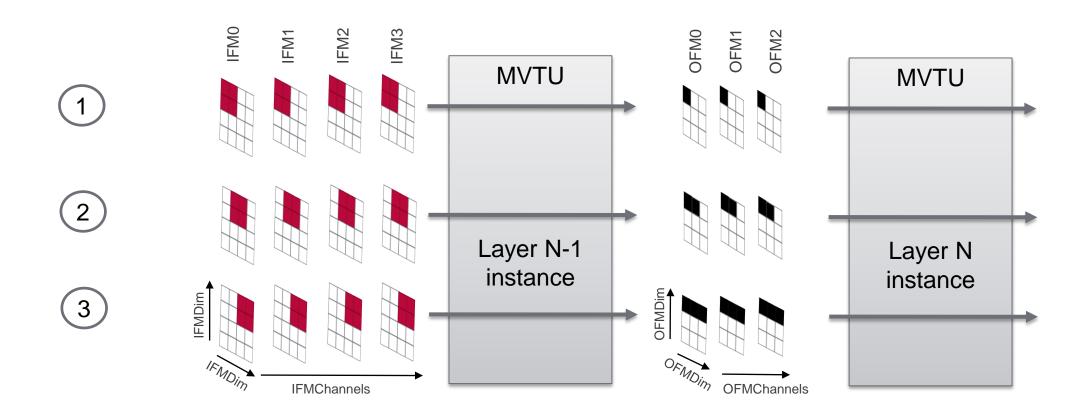
Accuracy

- Research needed in large binarized neural networks with high accuracy
- Design space exploration/navigation accuracy- resource frame rate
- ➤ Adaptation & Integration & Cloud service of standard tool chains (for example Caffe)
- **▶** Performance comparisons with GPUs, CPUs, Phis
 - Microbenchmarks

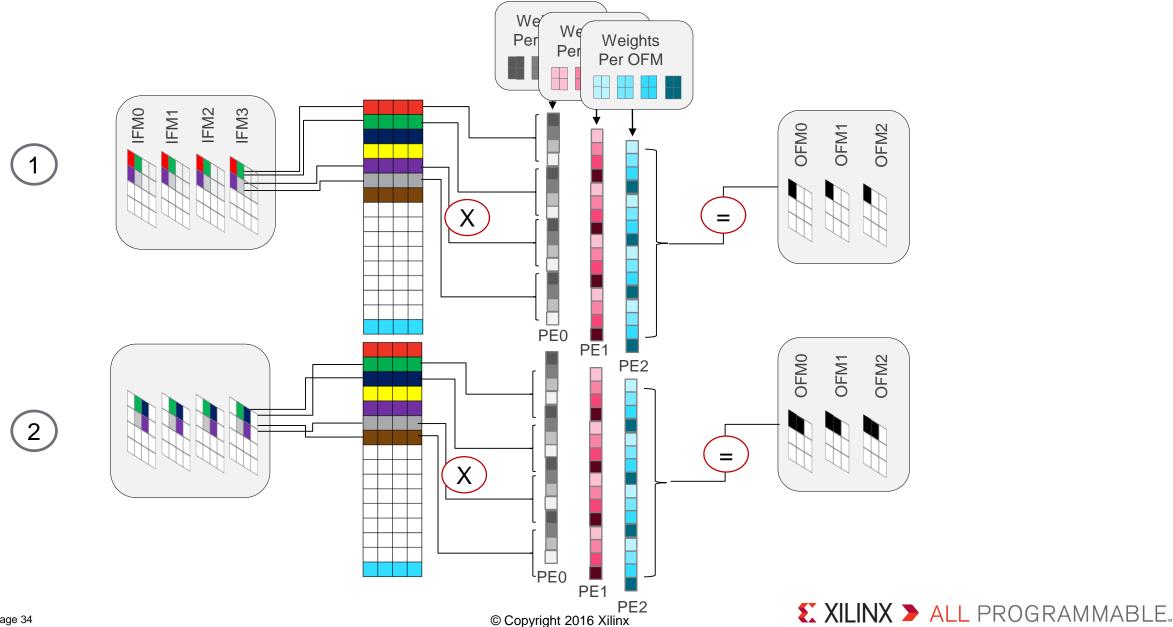
> Architecture

- Improving architecture & adding more precision flexibility & adding inception & skip layers
- Pruning & sparse representations

Consuming and Producing in Same Sequence For Minimal Buffering & Latency



IFM & Weight Arrangements in Input Buffer & Sequencing



Experimental Results (Server)

State of the Art - Comparison

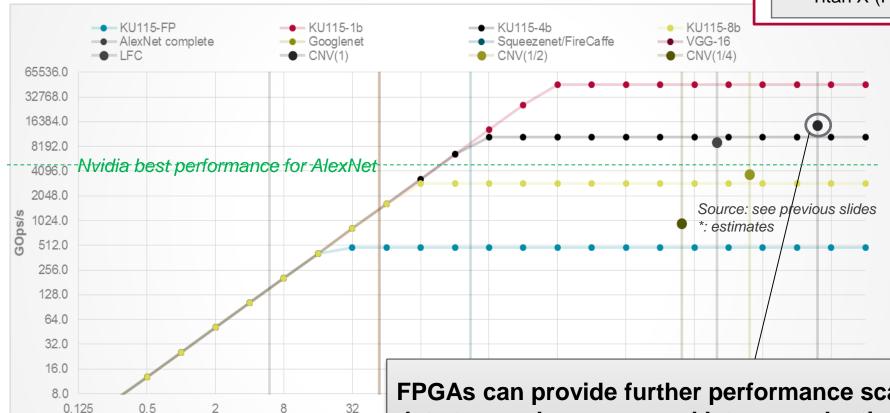
Platform

* - estimated

[GOPS/s]

Titan X (FP32)

5'750

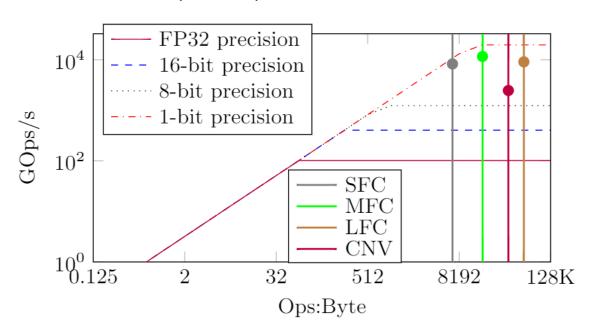


FPGAs can provide further performance scaling using custom data types plus power and latency reductions

- Demonstrator shows 14.8TOps/s
- Potential to scale up to 46 TOps/s for data center applications
- Consuming < 41Watt

Experimental Results (Embedded)

Z7045 (ZC706)



State of the Art - Comparison					
Platform * - estimated	[GOPS/s]				
Tegra X1 (FP16)	335				
Source: see previous slides *: estimates					

Roofline Assumptions:

Z7045:

- 218k LUTs
- 900 DSPs
- 545 BRAM

Network	FPS	GOPS/s	BRAM	LUT	Latency [us]	Board Power [W]
FC	12.3M	8'200	130.5	86'110 (39%)	0.31	21.2
FC	12.2k	0.66	15.5	4'810 (2%)	240	8.1
CNV	21.9K	2'465	192	54'538 (25%)	283	11.7

Results- Power and Latency

Network	FPS	Latency [us]	Power (a) [W]	Power (b) [W]
SFC	12.3M	0.31	7.3	21.2
LFC	1.5M	2.44	8.8	22.6
CNV	21906	283	3.6	11.7

Network	FPS	Latency [us]	Power (a) [W]	Power (b) [W]
SFC	12.2k	240	0.43	8.1
LFC	12.2k	282	0.8	7.9
CNV	11.6k	550	2.3	10

Network	FPS	Latency [us]	Power (a) [W]	Power (b) [W]
SFC	996	43029	0.4	8
LFC	190	14551	0.3	7.4
CNV	6.83			

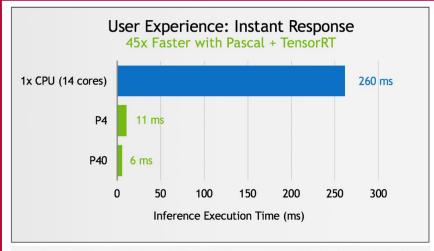


Figure 3: Inference execution time on Tesla P4 and P40 using TensorRT 2 to optimize the trained neural network, compared to IntelCaffe on CPU. (Based on VGG-19 from IntelCaffe Github. CPU: IntelCaffe, batch size = 4, Intel E5-2690v4, using Intel MKL 2017. GPU: Caffe, batch size = 4, using TensorRT internal version.)

Source:

https://devblogs.nvidia.com/parallelforall/new-pascal-gpus-accelerate-inference-in-the-data-center/

(a) PL power

(b) Board level power

Very Low latency

• Small network: 12Mfps, 8.2TOPS/s: 310nsec latency

Large network: 21.9Mfps, 2.5TOPS/s: 283usec latency

Required for real-time applications