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Summary Xilinx® Zynq®-7000 All Programmable SoC is an architecture that integrates a dual-core ARM® 
Cortex™-A9 processor, which is widely used in embedded products. Both ARM Cortex-A9 
cores have an advanced single instruction, multiple data (SIMD) engine, also known as NEON. 
It is specialized for parallel data computation on large data sets. This document explains how to 
use NEON to improve software performance and cache efficiency, thus improving NEON 
performance generally. 

Introduction Generally speaking, a CPU executes instructions and processes data one-by-one. Typically, 
high performance is achieved using high clock frequencies, but semiconductor technology 
imposes limits on this. Parallel computation is the next strategy typically employed to improve 
CPU data processing capability. The SIMD technique allows multiple data to be processed in 
one or just a few CPU cycles. NEON is the SIMD implementation in ARM v7A processors. 
Effective use of NEON can produce significant software performance improvements.

Document Content Overview

Technical information provided in the this document includes:

Before You Begin: Important Concepts

This document provides the following information you need to be more effective when 
optimizing your code:

• Software Optimization Basics

• NEON Basics

Software Performance Optimization Methods

This document describes four ways to optimize software performance with NEON :

• Using Using NEON Optimized Libraries

As Cortex-A9 prevails in embedded designs, many software libraries are optimized for 
NEON and have performance improvements. This document lists those libraries which are 
frequently used by the community.

• Using Compiler Automatic Vectorization

GCC, the popular open source compiler, can generate NEON instructions with proper 
compilation options. However, the C language does not excel at expressing parallel 
computations. You might need to modify your C code to add compiler hints. Lab 1 provides 
a hands-on example.

• Using NEON Intrinsics

Usually, the compiler handles simple optimizations well (optimizations such as register 
allocation, instruction scheduling, etc.). However, you might need to use NEON intrinsics 
when the compiler fails to analyze and optimize more complex algorithms. Moreover, some 
NEON instructions have no equivalent C expressions, and intrinsics or assembly are the 
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only options. So, in some situations, you might need to re-write time-critical code in NEON 
intrinsics to achieve better performance. Lab 2 provides a hands-on example.

• Optimizing NEON Assembler Code

In some situations, the compiler might be unable to generate the highest performance 
binary. When this happens, you must write functions in NEON assembler code, with 
everything under developer control. Lab 3 provides a hands-on example.

Boost NEON Performance by Improving Memory Access Efficiency

When discussing NEON performance, there is usually an underlying assumption that the 
memory subsystem can follow the pace of the CPU. In practice, this means that all data and 
instructions are using L1 cache. This cannot always be true, however, especially when a data 
set is very large. This application note discusses three techniques for improving cache 
efficiency:

• Loading and Storing Multiple Data in a Burst

• Using the Preload Engine to Improve the Cache Hit Rate

• Using Tiles to Prevent Cache Thrashing

These techniques can benefit not only NEON code, but software code generally. 

Prerequisites

This application note assumes that you know how to use Xilinx SDK (Software Development 
Kit) to create a new project, import source files, debug, and run standalone applications on 
hardware. 

Software 
Examples and 
Labs

Software examples and labs are available for this application note. You can download a ZIP file 
containing these from the following location: 
https://secure.xilinx.com/webreg/clickthrough.do?cid=359072.

The design matrix is shown in Table 1.

Table  1:  Design Matrix

Parameters Description

General

Targeted devices All Zynq-7000 devices

Source code provided Yes

Source code format C and assembler

Uses code/IP from existing Xilinx application note 
reference designs, CORE™ Generator software, or 
third-party

No

Verification

Verified on hardware Yes

Software development tools SDK 2013.4

Hardware platform used for verification ZC702 evaluation kit

http://www.xilinx.com
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Before You 
Begin: 
Important 
Concepts

Before addressing specific optimization techniques, it is important to understand some related 
concepts. The sections below describe:

• Software Optimization Basics

• NEON Basics

Software Optimization Basics

In an embedded system, you often optimize for speed, but you can also optimize for battery life, 
code density, or memory footprint. Generally speaking, embedded systems use highly 
customized hardware and software systems for specific purposes. Most of time you need to 
trade off between code density, speed, debug visibility, and other factors. This application note 
explains how to increase software speed. This has the additional benefit of improving 
performance and can be crucial to lowering power consumption and conserving battery life. If 
a task finishes in fewer cycles, you can turn off the power for longer periods.

There are several methods for optimizing software to boost performance. You can, for example:

• Change the algorithm computation order to avoid cache thrashing and improve cache 
efficiency. Usually you must do this for computation on matrices. This application note 
provides an example of this.

• Develop the algorithm to use the underlying processor architecture more efficiently, 
including but not limited to instructions. This application note focuses on how an 
understanding of CPU hardware can help to optimize code. This kind of knowledge leads 
to better optimization and to higher efficiency in the design algorithm.

The ARM Cortex-A9 processor used in the Zynq-7000 AP SoC has many advanced features 
that can increase software performance:

• Superscalar, out-of-order multi-issue with speculation

• Preload engine to load data in advance

• Media processing engine and VFPv3 to improve data processing

• Hit-under-miss behavior to minimize pipeline stalls

• Physically indexed, physically tagged (PIPT) data caches to speed up context switching

http://www.xilinx.com
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Figure 1 shows the single core Cortex-A9 processor block diagram.

One potential effect of the Cortex-A9 processor is the re-ordering of memory accesses. The 
order in which load and store instructions are executed is not necessarily the same as the order 
seen in disassembly. Hit-under-miss behaviors in cache mean that a load that goes into (hits) 
the cache can complete before a load earlier in the program which missed the cache. Besides 
load and store instructions, other instructions can also be executed out-of-order, as long as 
there are no dependencies. This makes statically analyzing code sequences very impractical.

For NEON, even though the cycle timing information can be found in the ARM document, it is 
difficult to determine how many cycles are needed even for a trivial piece of code. How 
instructions move through the pipeline depends not only on the instruction sequence generated 
by the compiler but also on the pattern of surrounding instructions. The memory system can 
also have a significant effect on the movement of instructions through the pipeline. 

Pending memory accesses (such as data loads/store instructions and instruction fetches) that 
miss in the cache can stall instructions that are dependent on them for tens of cycles. In 
extreme cases, for example, when Dynamic RAM contention or refresh conditions exist, the 
latency can increase to hundreds of cycles. Standard data processing instructions usually take 
only take one or two cycles, but this can be affected by many factors, and the theoretical 

X-Ref Target - Figure 1

Figure 1: Single Core Cortex-A9 Processor Block Diagram
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number can be different from the overall performance. The best way to evaluate the 
performance of complex application code is to measure it in a real system.

The standard method for improving software performance is to run the software at high speed 
for a period of time sufficient for the collection of the performance data. This is accomplished 
using profiling tools or the system performance monitor embedded in the Cortex-A9 processor. 
With the data collected, you can find which bottleneck or hotspot consumes the most execution 
time. Usually, the amount of such code is limited. You can focus on these relatively small pieces 
of code and improve the overall performance quickly, with minimal effort. 

Profiling tools are usually required for finding bottlenecks. Advanced use of profiling tools is 
beyond the scope of this document, but a few solutions are presented to help make you aware 
of available options.

Gprof

Gprof is a GNU tool that provides an easy way to profile a C/C++ application. To use it, the 
source code must be compiled using GCC with the -pg flag. For line-by-line profiling, the -g 
option is also needed. These options add profiling instrumentation to collect data at function 
entry and exit at run time. Then you can execute the compiled program and generate profiling 
data. After this, gprof analyzes the data and generates meaningful information. 

Gprof can only be used to profile code that has been re-built using the -pg option. It cannot be 
applied to anything that has not been built for profiling (for example, libc or the kernel). Be 
aware that operating system kernel limitations or I/O bottlenecks (such as memory 
fragmentation or file accesses) can affect profiling results.

OProfile

OProfile is a Linux whole-system profiling tool that includes the kernel in its metrics. It uses a 
statistical sampling method. That is, it examines the system at regular intervals, determines 
which code is running, and updates the appropriate counters. Because it uses interrupts, code 
that disables interrupts can cause inaccuracies. 

OProfile can also be made to trigger on hardware events and record all system activity, 
including kernel and library code execution. OProfile does not require code to be recompiled 
with any special flags. It can use a Cortex-A9 performance monitor unit (PMU) to provide useful 
hardware information, such as clock cycles and cache misses. 

ARM DS-5 Streamline

ARM DS-5 Streamline is a GUI-based performance analysis tool for Linux or Android systems. 
It is part of ARM DS-5 and consists of a Linux kernel driver, target daemon, and Eclipse-based 
UI. 

DS-5 Streamline samples the system periodically and reports data visually in a statistical way. 
It uses both a hardware performance monitor unit, which has hardware counters for processor 
events and Linux kernel metrics to trace application information. 

The issue with profiling is that it might require the operating system to be ready. Sometimes, if 
you have interest only in a specific algorithm or have a high level of confidence that you know 
the location of the bottleneck, you can extract the time-critical codes and run them in 
standalone mode. You can try several code sequences to find the one that is most optimal. 
Usually, this method requires high-precision timers. 

There are some advantages to optimizing code in standalone mode:

• Easy and convenient

• No interference from the operating system

• Fast turn-around

Correctly measuring time is important when using the ARM DS-5 Streamline tool. Usually, high- 
resolution timers are expected. Cortex-A9 processors have one global timer (64-bit) for all 
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cores, and one private timer (32-bit) for each core. The timers have a pre-scaler to lower the 
timer clock rate and to gain longer overflow time, at the cost of timer resolution. The actual timer 
clock can be calculated with the following equation:

On the Zynq-7000 AP SoC, the PERIPHCLK is half of CPU clock frequency. This means that 
the highest timer resolution is 2 nanoseconds. To make software development easier, Xilinx 
also provides APIs for these timers.

NEON Basics

This section examines why and how NEON can be used to improve software performance. 

From a software perspective, NEON technology is based on single instruction, multiple data 
(SIMD) operations in ARMv7 processors, which implement the advanced SIMD architecture 
extensions. This demands a new set of instructions with new functions, and also a new 
development methodology. From a hardware perspective, NEON is a separate hardware unit 
on Cortex-A series processors, together with a vector floating point (VFP) unit. If an algorithm 
can be designed to exploit dedicated hardware, performance can be maximized.

SIMD Introduction

SIMD is a computational technique for processing many data values (generally in powers of 
two) in parallel using a single instruction, with the data for the operands packed into special, 
wide registers.Therefore, one instruction can do the work of many separate instructions on 
single instruction, single data (SISD) architectures. For code that can be parallelized, large 
performance improvements can be achieved. 

Many software programs operate on large data sets. Each element in a data set can be less 
than 32 bits. 8-bit data is common in video, graphics, and image processing, and 16-bit data in 
audio codecs. In these contexts, the operations to be performed are simple, repeated many 
times, and have little need for control code. SIMD can offer considerable performance 
improvements for this type of data processing. It is particularly useful for digital signal 
processing or multimedia algorithms, such as:

• Block-based data processing, such as FFTs, matrix multiplication, etc.

• Audio, video, and image processing codecs, such as MPEG-4, H.264, On2 VP6/7/8, AVS, 
etc.

• 2D graphics based on rectangular blocks of pixels

• 3D graphics

• Color-space conversion

• Physics simulations

• Error correction, such as Reed Solomon codecs, CRCs, elliptic curve cryptography, etc.

On 32-bit microprocessors, such as the Cortex-A series processors, it is relatively inefficient to 
run large numbers of 8-bit or 16-bit operations. The processor ALU, registers, and datapath are 
designed for 32-bit calculations. If they are used for 8/16-bit operations, additional instructions 
are needed to handle overflow. SIMD enables a single instruction to treat a register value as 
multiple data elements and to perform multiple, identical operations on those elements.

PERIPHCLK
PRESCALERvalue 1+
-----------------------------------------------------------------

http://www.xilinx.com
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Figure 2 compares SIMD parallel add with 32-bit scalar add.

To achieve four separate additions using scalar operation requires you to use four add 
instructions, as shown in Figure 2, and additional instructions to prevent one result from 
overflowing into the adjacent byte. SIMD needs only one instruction to do this, and you do not 
need to manage the overflow. Moreover, with a dedicated ALU, SIMD instructions generally 
require fewer cycles than ARM instructions for the same functions.

Registers

NEON architecture allows for 64-bit or 128-bit parallelism. Its register bank can be viewed as 
either sixteen 128-bit registers (Q0-Q15) or as thirty-two 64-bit registers (D0-D31). Each of the 
Q0-Q15 registers maps to a pair of D registers.

Figure 3 shows the NEON register bank.

NEON and VFP

The Zynq-7000 platform has both NEON and VFP integrated. The key differences between 
NEON and VFP are that NEON only works on vectors, but VFP does not, even though it has 
“vector” in its name. In fact, calling it a floating-point unit (FPU) can be more appropriate for the 

X-Ref Target - Figure 2

Figure 2: Comparing SIMD Parallel ADD with 32-bit Scalar ADD

X-Ref Target - Figure 3

Figure 3: NEON Register Bank
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Cortex-A9 processor. For floating-point operation, VFP can support both single-precision and 
double-precision, whereas NEON only supports single-precision. VFP can also support more 
complex functions, such as square roots, division, and others, but NEON cannot.

NEON and VFP share the thirty-two 64-bit registers in hardware. This means that VFP is 
present in VFPv3-D32 form, which has 32 double-precision floating-point registers. This makes 
support for context switching simpler. Code that saves and restores VFP contexts also saves 
and restores NEON contexts.

Data Types

Data type specifiers in NEON instructions consist of a letter that indicates the type of data and 
a number that indicates the width. They are separated from the instruction mnemonic by a 
point. The following options are available:

• Unsigned integer U8 U16 U32 U64

• Signed integer S8 S16 S32 S64

• Integer of unspecified type I8 I16 I32 I64

• Floating-point number F16 F32

• Polynomial over {0,1} P8

NEON Instruction

All mnemonics for NEON instructions (as with VFP) begin with the letter V. This distinguishes 
them from ARM/Thumb instructions. You can use this indicator to find NEON instructions in 
disassembly code when checking the efficiency of a compiler. The example below shows the 
general format of NEON instructions:

V{<mod>}<op>{<shape>}{<cond>}{.<dt>}(<dest>}, src1, src2

where:

For a detailed description of each NEON instruction, refer to the NEON Programmers Guide 
[Ref 3]. It is strongly recommended that you understand the NEON instruction set because:

• NEON instructions should be used to the maximum extent when designing algorithms. 
Emulating functions with instruction sequences can lower performance significantly.

• Compilers might not be able to generate optimal code, so you might have to read the 
disassembly and determine whether or not the generated code is optimal.

• Sometimes it is difficult to express certain operations, such as saturation mathematics, 
interleaved memory access, table lookup, bitwise multiplex operations, and others, with C 
language. So, you might have to use intrinsics or assembler code for these instructions.

• For time-critical applications, you might have to write NEON assembler code to realize the 
best performance. 

For more information, see the ARM Architecture Reference Manual [Ref 2] and the Cortex-A 
Series Programmer's Guide [Ref 7].

<mod> One of the previously described modifiers (Q, H, D, R)

<op>  Operation (for example, ADD, SUB, MUL)

<shape>  Shape (L, W or N) [Ref 4]

<cond>  Condition, used with IT instruction

<.dt>  Data type

<dest>  Destination

<src1>  Source operand 1

<src2>  Source operand 2

http://www.xilinx.com
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NEON Performance Limit

When using NEON to optimize software algorithms, it is important to determine how much 
performance improvement you can expect.

An ARM document, the Cortex-A9 NEON Media Processing Engine Technical Reference 
Manual [Ref 4], contains the detailed information for each VFP and NEON instruction. Table 2 
and Table 3 are subsets of the information provided in this document for quick reference. 

The Cycles column lists the number of issued cycles the specific instruction needs and is the 
absolute minimum number of cycles if no operand interlocks are present. In other words, this 
represents the NEON performance upper limit. For example, in Table 3 you can see that the 
NEON floating-point instruction VMUL/VMLA can finish operations on Q registers in just two 
cycles. This means that NEON can do four single-precision float multiplications in two cycles. 
Thus, if NEON runs at 1 GHz, it can achieve the maximum of 2 GFLOPS single-precision 
floating-point operation. In Table 2, you can also see that VFP requires two cycles to finish one 
double-precision multiply accumulation.

Even though the NEON cycle timing information can be found in the ARM documentation, it is 
difficult to determine how many cycles are required in real-world applications, even for a trivial 
piece of code. The actual time required depends not only on the instruction sequence but also 
on the cache and memory system.

Note: Use profiling tools (described above) to achieve the most accurate data for your application.

NEON Benefits

The merits of NEON for embedded systems include:

• Simple DSP algorithms can show a larger performance boost (4x-8x)

• Generally, about 60-150% performance boost on complex video codecs

• Better efficiency for memory access with wide registers

• Saves power because the processor can finish a task more quickly and enter sleep mode 
sooner

Table  2:  Part of VFP Instruction Timing

Name Format Cycles Source Result Writeback

VADD

VSUB

.F Sd,Sn,Sm

.D Dd,Dn,Dm
1 -,1,1 4 4

VMUL .F Sd,Sn,Sm 1 -,1,1 5 5

VNMUL .D Dd,Dn,Dm 2 -,1,1 6 6

VMLA .F Sd,Sn,Sm 1 -,1,1 8 8

VMLS

VNMLS

VNMLA

.D Dd,Dn,Dm 2 -,1,1 9 9

Table  3:  Part of Advanced SIMD (NEON) Floating-Point Instructions

Name Format Cycles Source Result Writeback

VADD
VSUB
VABD
VMUL

Dd,Dn,Dm 1 -,2,2 5 6

Qd,Qn,Qm 2 -,2,2
-,3,3

5
6

6
7

VMLA
VMLS

Dd,Dn,Dm 1 3,2,2 9 10

Qd,Qn,Qm 2 3,2,2
4,3,3

9
10

10
11

http://www.xilinx.com
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All techniques for programing with NEON listed above are discussed in detail in the following 
sections.

Software 
Performance 
Optimization 
Methods

Optimization methods include:

• Using NEON Optimized Libraries

• Using Compiler Automatic Vectorization

• Using NEON Intrinsics

Using NEON Optimized Libraries

The ARM Cortex A9 processor has seen increasing utilization and is one of the most popular 
platforms for embedded designs. The processor appears frequently in mobile, tablets, STB, 
DTV, telecommunication, industrial control, and other applications. Given the widespread use 
of the ARM Cortex A9 processor, a large user community has developed, providing a rich 
ecosystem of NEON-optimized software libraries available to software algorithm designers. 
Some of related projects are listed in Table 4.

Note that this is not an exhaustive list. Table 4 contains only some popular projects because:

• Some projects are meaningful only for special purpose and lack common interest.

• More and more software projects are moving to NEON optimization. A good example is 
OpenCV, which supports NEON in 2.3 (04/07/2011).

• The software community evolves quickly and new software projects are released 
frequently.

Table  4:  NEON Optimized Open Source Libraries

Project Name Project and Description

Project Ne10 ARM experts optimized vector, matrix, and DSP functions

OpenMAX DL sample 
software library released 
by ARM

ARMs sample implementation of OpenMAX DL (Development Layer) 
software library. It can be used for a wide range of codec and data 
computation algorithms

Google WebM Multimedia codec with NEON assembler optimization.

FFmpeg A complete, cross-platform solution to record, convert, and stream 
audio and video.

x264 A free software library and application for encoding video streams into 
the H.264/MPEG-4 AVC compression format.

Android Components, like Skia library, S32A_D565_Opaque, 5x faster using 
NEON.

OpenCV Library aiming at real-time computer vision

BlueZ Bluetooth stack for Linux

Pixman A low-level software library for pixel manipulation. It supports image 
compositing, trapezoid rasterization, etc.

Theorarm An Ogg Theora/Vorbis decoding library optimized for use on ARM 
processors. It is based on Theora decoder, as supplied by xiph.org, 
and the Tremolo library.

Eigen C++ template library for linear algebra, including matrices, vectors, 
numerical solvers, etc.

FFTW C library for computing the discrete Fourier transform (DFT) in one or 
more dimensions. It supports both real and complex data

http://www.xilinx.com
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In addition to these open source libraries, NEON is also popular with commercial providers, 
including those shown in Table 5:

Using Compiler Automatic Vectorization

This section describes:

• How to enable automatic vectorization with GCC, which is used in Xilinx SDK and Linux 
development

• How small modifications to source code can lead to large improvements in software 
performance

Introduction

The easiest way to optimize for NEON is through use of compilers. GCC has several 
optimization levels, along with a wide range of individual options to enable or disable particular 
optimizations.

Compiler optimization levels are set using the command line option -On, as follows:

• -O0. (default). No optimization is performed. Each line of source code is mapped directly 
to the corresponding instructions in the executable file. This provides the clearest view for 
source level debugging but the lowest level of performance.

• -O1. Enables the most common forms of optimization that do not require decisions 
regarding size or speed. It can often produce a faster executable than -O0.

• -O2. Enables further optimizations, such as instruction scheduling. Again, optimizations 
that have potential speed versus size implications are not being employed here.

• -O3. Enables more aggressive optimizations, such as aggressive function inlining, and it 
typically increases speed at the expense of image size. Moreover, this option enables 
-ftree-vectorize, causing the compiler to attempt to automatically generate NEON 

Table  5:  NEON 3rd Party Ecosystem

Provider Project and Description

Sasken Communication 
Technologies

H.264, VC1, MPEG-4

Skype On2 VP6 video, SILK audio (v1.08+)

Ittiam Systems MPEG-4, MPEG-2, H.263, H.264, WMV9, VC1, DD

Aricent MPEG-4, H.263, H.264, WMV9, audio

Tata Elxsi H.264, VC1

SPIRIT DSP TeamSpirit® Voice and Video Engine

VisualOn H.264, H.263, S.263, WMV, RealVideo, VC-1

Dolby Multichannel audio processing, MS10/11

Adobe Adobe Flash products

Techno Mathematical Co., Ltd. 
(TMC)

MPEG-4

drawElements 2D GUI library

ESPICO Audio: low bitrate and digital theater, consulting

CoreCodec CoreAVC, CoreMVC, CoreAAC, x264

DSP Concepts NEON optimized audio and signal processing libraries

Ace Thought Technologies NEON video and audio

http://www.xilinx.com
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code from standard C or C++. However, in practice, this optimization level cannot always 
produce binaries faster than -O2. Check the software performance case-by-case.

• -Os. Selects optimizations that attempt to minimize the size of the image, even at the 
expense of speed. (This is not a point of focus in this document.)

• -Ofast. Disregards strict standards compliance. '-Ofast' enables all '-O3' 
optimizations. It also enables optimizations that are not valid for all standard compliant 
programs. It turns on '-ffast-math'.

In addition to the optimization levels, you must set other compiler options to tell the compiler to 
generate NEON instructions:

• -std=c99. The C99 standard introduces some new features that can be used for NEON 
optimization.

• -mcpu=cortex-a9. Specifies the name of the target ARM processor. GCC uses this 
name to determine what kind of instructions it can issue when generating assembly code. 

• -mfpu=neon. Specifies which floating-point hardware (or hardware emulation) is 
available on the target. Because the Zynq-7000 device has an integrated NEON hardware 
unit, and because you plan to use it to accelerate software, you must specify your intention 
to the compiler clearly, using the name 'neon'.

• -ftree-vectorize. Performs loop vectorization on trees. By default, this is enabled at 
'-O3'.

• -mvectorize-with-neon-quad. By default, GCC 4.4 vectorizes for double-word only. 
In most cases, using quad-word can better code performance and density, at the cost of 
smaller numbers of usable registers.

• -mfloat-abi=name. Specifies which floating-point ABI is used. Permitted values are: 
'soft', 'softfp', and 'hard'. 

• 'soft' causes the GCC to generate output containing library calls for floating-point 
operations. This is used when there are no hardware floating-point units in the system. 

• 'softfp' allows the generation of instructions using a hardware floating-point unit, 
but still uses the soft-float calling conventions. This results in better compatibility. 

• 'hard' allows generation of floating-point instructions and uses FPU-specific calling 
conventions. If using the option 'hard', you must compile and link the entire source 
code with the same setting.

• -ffast-math. This option is not turned on by any '-O' option except 
'-Ofast'because it can result in incorrect output for programs that depend on an exact 
implementation of IEEE or ISO rules/specifications for math functions. It might, however, 
yield faster code for programs that do not require the guarantees of these specifications.

In practice, you can set the optimization level to '-O2' or '-O3' and use the options in the 
other optimization flags field, as shown in Figure 4. In Xilinx SDK, you can right-click the 
project and click C/C++ Build Settings > Optimization to display the optimization-related 
fields.

-mcpu=cortex-a9 -mfpu=neon -ftree-vectorize -mvectorize-with-neon-quad 
-mfloat-abi=softfp -ffast-math

http://www.xilinx.com
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Figure 4 shows the setting optimization flags.

The compiler might not always vectorize C language code as expected, so you must ensure 
that compilers generate appropriate instructions:

• Read the disassembly. This is the most straightforward method, but it requires a full 
understanding of NEON instructions.

• Use the compiler option -ftree-vectorizer-verbose=n. This option controls the 
amount of debugging output the vectorizer prints. This information is written to standard 
error, unless '-fdump-tree-all' or '-fdump-tree-vect' are specified, in which 
case it is output to the usual dump listing file, .vect. For n=0, no diagnostic information is 
reported. For n=9, all the information the vectorizer generated during its analysis and 
transformation is reported. This is the same verbosity level that 
'-fdump-tree-vect-details' uses.

C Code Modifications

Because the C and C++ standards do not provide syntax that specifies parallel behavior, it is 
difficult for compilers to determine when it is safe to generate NEON code. Without enough 
proof, compilers do not vectorize the code, so you must modify code to provide additional hints 
to the compiler. Such source code modifications are within the standard language 
specifications, so they do not affect code portability across platforms and architectures.

The following are recommended techniques for modifying code for NEON:

• Indicate the number of loop iterations

• Avoid loop-carried dependencies

• Avoid conditions inside loops

• Use the restrict keyword

X-Ref Target - Figure 4

Figure 4: Setting Optimization Flags
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• Use suitable data types

An example of a standard dot product algorithm is used here. The following function calculates 
the dot product of two float vectors, with each vector having len number of float type elements.

float dot_product(float * pa, float *  pb, unsigned int len)
{

float sum=0.0;
unsigned int i;

for( i = 0; i < len; i++ )
sum += pa[i] *pb[i];

return sum;
}

Indicate the Number of Loop Iterations

You can write code to permit the compiler to perform otherwise unsafe operations under the 
following conditions:

• A loop has a fixed iteration count

• The iteration count can be decided as a multiple of N (register length/data type size) at the 
coding stage

For the example above: if you know that the value of len is always a multiple of four, you can 
indicate this to compiler by masking off the bottom two bits when comparing the loop counter to 
len. Because this loop now always executes a multiple of four, the compiler knows it is safe to 
vectorize it.

Note: the iteration count as a multiple of four is only an example. In fact, it should be a multiple of the 
number of lanes in a vector. For example, if you plan to use the NEON Quad-word register and the 
data type is 32-bit float, an iteration count with a multiple of 4 is desired, as indicated by masking off 
the 2 low bits as shown in the next code snippet (page 15). 

The requirement to have fixed iteration count or iteration count decided at the coding stage is not a 
must. When the iteration count can only be decided at run time, you can split the loop into two loops. 
One has the iteration count as a multiple of the number of lanes, and another processes the 
remaining iterations. 

Avoid Loop-Carried Dependencies

If the code contains a loop in which the result of one iteration is affected by the result of 
previous iterations, the compiler will be unable to vectorize it. Re-structuring the code, if 
possible, to remove any loop-carried dependencies is necessary for the compiler to do 
vectorization.

Avoid Conditions Inside Loops

If possible, process data only inside a loop. Generally speaking, it is difficult for the compiler to 
vectorize loops containing conditional sequences. In the best of cases, it duplicates the loop, 
but in many cases, this kind of code cannot be vectorized at all. 

Use the Restrict Keyword

C99 introduced a new keyword, restrict, which can inform the compiler that the location 
accessed through a specific pointer is not to be accessed through any other pointer within the 
current scope. In other words, the memory regions targeted by the pointers in the current scope 
do not overlap with each other. 

Without this keyword, the compiler might assume that pointer pa refers to the same location as 
pointer pb. This implies the possibility of a loop-carried dependency, which prevents the 
compiler from vectorizing the sequence. With the restrict keyword, you inform the compiler 
that memory to which pa and pb point does not overlap. The compiler ignores the possibility of 
aliasing and assumes that it can vectorize the sequence without creating errors.
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Using the techniques above, you can modify the C source code to the following style to help the 
compiler do automatic vectorization. 

float dot_product(float * restrict pa, float *  restrict pb, unsigned int 
len)
{
float sum=0.0;
unsigned int i;

for( i = 0; i < ( len & ~3); i++ )
sum += pa[i] *pb[i];

return sum;
}

GCC also supports the alternative forms __restrict__ and __restrict when not 
compiling for C99. You can specify the standard used in coding the compiler with the option 
-std=C99. Possible standards are c90, gnu99, and others.

Some publications state that manually unrolling the loop, as shown in the example below, 
makes automatic vectorization by the compiler easier. However, recent GCC compilers are 
better at recognizing and automatically vectorizing the above codes than the manually unrolled 
codes. In practice, compilers might not vectorize the manually unrolled loop. 

float dot_product(float * restrict pa, float *  restrict pb, unsigned int 
len )
{
float sum[4]={0.0,0.0,0.0,0.0};
unsigned int i;
for(i = 0; i < ( len & ~3); i+=4)
{
sum[0] += pa[i] *pb[i];
 sum[1] += pa[i+1] *pb[i+1];
sum[2] += pa[i+2] *pb[i+2];
sum[3] += pa[i+3] *pb[i+3];

}
return sum[0]+sum[1]+sum[2]+sum[3];

}

Use Suitable Data Types

When optimizing algorithms operating on 16-bit or 8-bit data without SIMD, treating the data as 
32-bit variables can sometimes yield better performance. This is because the compiler must 
generate additional instructions to ensure the result does not overflow by a half-word or byte. 

However, when targeting automatic vectorization with NEON, using the smallest data type that 
can hold the required values is always the best choice. In a given time period, the NEON engine 
can process twice as many 8-bit values as 16-bit values. Also, some NEON instructions do not 
support some data types, and some only support certain operations. For example, NEON does 
not support double-precision floating-point data types, so using a double-precision where a 
single-precision float is adequate can prevent the compiler from vectorizing code. NEON 
supports 64-bit integers only for certain operations, so avoid use of long variables where 
possible. 

NEON includes a group of instructions that can perform structured load and store operations. 
These instructions can only be used for vectorized access to data structures where all 
members are of the same size. Accessing 2/3/4-channel interleaved data with these 
instructions can also accelerate NEON memory access performance.

Deviation of NEON Computation Results

For integers, the order of computation does not matter. For example, summing an array of 
integers forward or backward always produces the same result. However, this is not true for 
floating-point numbers because of the coding precision. Thus, the NEON-optimized code might 
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produce a result different from non-NEON optimized code for floating-point numbers. Typically, 
however, the difference is not significant. When you need to validate the code by comparing the 
computational result, be aware that the term “equal” for a data type of float or double does not 
mean exactly the same thing, but the difference is acceptable.

Lab 1
1. Create a new project in SDK.

2. Import lab1 source files.

3. Run the application on hardware, and check the output on the console.

4. Open the generated ELF file to check how the instructions are being generated.

5. Observe the following:

- The manually unrolled loop is vectorized and takes more time.

- The execution time of the automatic vectorized codes is about 10.8 s, even when the 
optimization level is set to -O3, and NEON automatic vectorization is enabled.

- When optimization levels are set to -O3, PLD instructions are inserted. (This is 
discussed later.)

Using NEON Intrinsics 

NEON C/C++ intrinsics are available for armcc, GCC/g++, and llvm. Because they use the 
same syntax, source code that uses intrinsics can be compiled by any of these compilers and 
provide excellent code portability.

Essentially, NEON intrinsics are a C function wrapper of NEON assembler instructions. They 
provide a way to write NEON code that is easier to maintain than NEON assembler code, while 
preserving fine-granularity control of the generated NEON instructions. In addition, there are 
new data type definitions that correspond to NEON registers (both D-registers and Q-registers) 
containing different sized elements, allowing C variables to be created that map directly onto 
NEON registers. These variables can be passed to NEON intrinsic functions directly. The 
compiler then generates NEON instructions instead of incurring an actual subroutine call.

NEON intrinsics provide low-level access to NEON instructions but with the compiler doing 
some of the hard work normally associated with writing assembly language, such as:

• Register allocation.

• Code scheduling or re-ordering instructions to achieve the highest performance. The C 
compilers can be told which processor is being targeted, and they can reorder code to 
ensure the CPU pipeline is running in an optimized way.

The main disadvantage with intrinsics is that you cannot force the compiler to output exactly the 
code you want. So in some cases, there is still a possibility of further improvement by using 
NEON assembler code.

For details about NEON intrinsics, see the following: 

• RealView Compilation Tools Compiler Reference Guide [Ref 9]

• GCC documentation [Ref 10]

NEON Types in C

The ARM C Language Extensions [Ref 9] contains a full list of NEON types. The format is:

<basic type>x<number of elements>_t

To use NEON types and intrinsics, a header file, arm_neon.h, must be included.
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Table 6 can give developers some basic ideas about NEON types.

There are also combination types, which include two, three, or four of each of the above in a 
larger ‘struct’ type. These types are used to map the registers accessed by NEON 
load/store operations, which can load/store up to four registers in a single instruction. For 
example:

struct int16x4x2_t
{
int16x4_t val[2];
}<var_name>;

These types are only used by loads, stores, transpose, interleave, and de-interleave 
instructions. To perform operations on the actual data, select the individual registers using the 
syntax shown below:

<var_name>.val[0] and <var_name>.val[1]

Techniques Specific to NEON Intrinsics

Declaring a Variable

Example:

uint32x2_t vec64a, vec64b; // create two D-register variables

Using Constants

The following code replicates a constant into each element of a vector:

uint8x8 start_value = vdup_n_u8(0);

To load a general 64-bit constant into a vector:

uint8x8 start_value =
vreinterpret_u8_u64(vcreate_u64(0x123456789ABCDEFULL));

Moving Results Back to Normal C Variables

To access a result from a NEON register, you can store it to memory using VST or move it back 
to ARM using a get lane type operation:

result = vget_lane_u32(vec64a, 0); // extract lane 0

Table  6:  NEON Type Definitions

64-bit type (D-register) 128-bit type (Q-register)

int8x8_t int8x16_t

int16x4_t int16x8_t

int32x2_t int32x4_t

int64x1_t int64x2_t

uint8x8_t uint8x16_t

uint16x4_t uint16x8_t

uint32x2_t uint32x4_t

uint64x1_t uint64x2_t

float16x4_t float16x8_t

float32x2_t float32x4_t

poly8x8_t poly8x16_t

poly16x4_t poly16x8_t

http://www.xilinx.com


Software Performance Optimization Methods

XAPP1206 v1.1 June 12, 2014 www.xilinx.com  18

Accessing Two D-registers of a Q-register

This can be done using vget_low and vget_high, as shown below:

vec64a = vget_low_u32(vec128); // split 128 bit vector
vec64b = vget_high_u32(vec128); // into 2x 64 bit vectors

Casting NEON Variables Between Different Types

NEON intrinsics are strongly typed, and you cannot perform type casts as freely as you can in 
C language. If there must be casts between vectors of different types, use vreinterpret, 
which does not actually generate any code but does enable you to cast the NEON types:

uint8x8_t  byteval;
uint32x2_t wordval;
byteval = vreinterpret_u8_u32(wordval);

Note that the destination type u8 is listed first after vreinterpret.

To give you a broader perspective on how NEON intrinsics can be used, the following is an 
example of calculating a dot product from two vectors, with moderate complexity:

float dot_product_intrinsic(float * __restrict vec1, 
float * __restrict vec2, int n)
{
float32x4_t vec1_q, vec2_q;
float32x4_t sum_q = {0.0, 0.0, 0.0, 0.0};
float32x2_t tmp[2];
float result;

for( int i=0; i<( n & ~3); i+=4 )
{
    vec1_q=vld1q_f32(&vec1[i]);
    vec2_q=vld1q_f32(&vec2[i]);

    sum_q = vmlaq_f32(sum_q, vec1_q, vec2_q );
}
tmp[0] = vget_high_f32(sum_q);
tmp[1] = vget_low_f32 (sum_q);
tmp[0] = vpadd_f32(tmp[0], tmp[1]);
tmp[0] = vpadd_f32(tmp[0], tmp[0]);
result = vget_lane_f32(tmp[0], 0);
return result;

}

Note: As stated above, to use NEON types and intrinsics, a header file, arm_neon.h, must be included.

Compiling NEON Intrinsics with GCC

Unlike the complex options for compiling C code with automatic vectorization, compiling NEON 
intrinsics is fairly simple, and only a few compiler options are needed:

• -On. (default). Set the optimization levels.

• -mcpu=cortex-a9. Set the processor type for Zynq-7000 AP SoC as 'cortex-a9'

• -mfpu=neon. Tell the compiler to generate NEON instructions for Zynq-7000 AP SoC.

Optimizing NEON Assembler Code

Sometimes NEON assembler code is the only way to achieve optimal performance. When 
looking at NEON intrinsics, it is apparent that in some cases the compiler might not be able to 
generate the fastest binary possible. In these cases, carefully hand-written assembler code can 
yield the best results from NEON, especially for performance-critical applications.
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The disadvantage is obvious. First, it is difficult to maintain assembler code. Even though all 
Cortex-A series processors support NEON instructions, the hardware implementations are 
different, so instruction timing and movement in the pipeline are different. This means that 
NEON optimization is processor-dependent. Code running faster on one Cortex-A series 
processor might not work as well on another Cortex-A series processor. Second, it is difficult to 
write assembler code. To be successful, you must know the details of the underlying hardware 
features, such as pipelining, scheduling issues, memory access behavior, and scheduling 
hazards. These factors are briefly described below.

Memory Access Optimizations

Typically, NEON is used to process large amounts of data. One crucial optimization is to ensure 
that the algorithm uses cache in the most efficient way possible. It is also important to consider 
the number of active memory locations. A typical optimization is one in which you design the 
algorithm to process small memory regions called tiles, one by one, to maximize the cache and 
translation lookaside buffer (TLB) hit rate, and to minimize memory access to external Dynamic 
RAM.

NEON includes instructions that support interleaving and de-interleaving, and can provide 
significant performance improvements in some scenarios, if used properly. VLD1/VST1 
loads/stores multiple registers to/from memory, with no de-interleaving. Other VLDn/VSTn 
instructions allow you to interleave and de-interleave structures containing two, three, or four 
equally sized elements. 

Alignment

Even though NEON architecture provides full unaligned support for NEON data access, 
instruction opcode contains an alignment hint which permits implementations to be faster when 
the address is aligned and a hint is specified.

The base address specified as [<Rn>:<align>]

In practice, it is also useful to arrange the data as cache line aligned. Otherwise, when the data 
crosses cache line boundaries, additional cache line fill might be incurred, and the overall 
system performance drops. 

Instruction Scheduling

To write faster code for NEON, you must be aware of how to schedule code for the specific ARM 
processor. For the Zynq-7000 AP SoC, this would be the Cortex-A9. 

Result-use scheduling is the main performance optimization when writing NEON code. NEON 
instructions typically issue in one or two cycles, but the result is not always ready in the next 
cycle (except when the simplest NEON instructions are issued, such as VADD and VMOV). 
Some instructions have considerable latency, for example the VMLA multiply-accumulate 
instruction (five cycles for an integer; seven cycles for a floating-point). To prevent a stall, take 
into consideration the amount of time between the current instruction and the next one using its 
result. Despite having a few cycles result latency, these instructions are fully pipelined, so 
several operations can be in flight at once.

Another typical scheduling issue is interlock. Without adequate hardware knowledge, it is 
possible to load the data from memory to registers, then process them immediately. If the 
memory access receives a cache hit, there is no problem. However, if a cache hit is missed, the 
CPU must wait tens of cycles to load data from external memory into the cache before 
proceeding. Thus, you usually need to place instructions that are not dependent upon the VLD 
instruction between the VLD and the instruction using its result. Using the Cortex-A9 preload 
engine can improve the cache hit rate. This is discussed later.

Also be aware that external memory is slow and has a long latency compared to on-chip 
memory. The CPU uses cache and write buffers to alleviate this issue. Sometimes, if there are 
long bursts of memory write, the write buffer fills up, and the next VST instruction stalls. 
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Therefore, when writing assembly instructions, it is best to distribute memory access 
instructions with data processing instructions.

Boost NEON 
Performance by 
Improving 
Memory Access 
Efficiency

When talking about processor core performance, developers typically make some assumptions 
that are not always accurate in real-world applications, specifically:

• The processor pipeline is optimal and there is no interlock.

• The memory subsystem is ideal (zero wait state), that is, the processor does not need to 
wait for memory to return data or instructions.

On-chip static RAM is very fast, but too costly, and you cannot integrate large RAM sizes into 
the SoC. To lower the bill of materials (BOM) cost, dynamic RAM is often used as the main 
memory. In the past decade, processor clock frequencies have evolved at a much faster pace 
than dynamic RAM. The slower dynamic RAM can make the high clock frequency of a 
processor less meaningful. Another issue with dynamic RAM is that it normally has a long 
latency to return data. For a CPU, this is a serious issue because a CPU is more sensitive to 
latency than throughput.

When the memory subsystem cannot return the data or instructions needed by processor 
cores immediately, processors have nothing to do but wait. The out-of-order execution of an 
ARM Cortex-A9 core can alleviate this issue, but it still exists.

To reduce the gap between processor and memory subsystems, engineers introduced cache 
into modern SoCs. Cache is made up of fast on-chip static RAM and a cache controller to 
determine when data can be moved in or out. But cache is not a panacea for embedded 
systems. To use it efficiently, you need to know some details about the underlying hardware 
system.

Cache improves system performance by temporal and spatial locality. Temporal locality means 
that a resource accessed now will be accessed again in the near future. Spatial locality means 
that the likelihood of accessing a resource is higher if a resource near it was just referenced. 
When the data needed by the CPU can be found in cache, it is called a cache hit. Cache can 
return the data with low latency. When the data is not in cache, it is called a cache miss, and the 
cache controller must fetch the data into cache first and then return it to the CPU. This results 
in much longer latency, and thus lower actual CPU performance. Preloading data into cache 
before actually using it can improve the cache hit rate, thus improving system performance. The 
ARM Cortex-A9 implements a preload engine and provides instructions to do this.

In a real SoC, cache is implemented as a trade-off between performance and complexity. Direct 
mapped cache is simple but low efficiency. Fully associative cache has the highest efficiency, at 
the cost of very complicated hardware design. In practice, N-way set associative cache is 
frequently used. There is one potential issue with this. If the code is not well written, cache 
thrashing can occur, and that can lower system performance significantly. In this case, you 
must access data as tiles to improve the cache hit rate.

The following sections introduce some techniques for improving memory efficiency:

• Loading and Storing Multiple Data in a Burst

• Using the Preload Engine to Improve the Cache Hit Rate

• Using Tiles to Prevent Cache Thrashing

Loading and Storing Multiple Data in a Burst

Loading and storing multiple instructions allows successive words to be read from or written to 
memory. These are extremely useful for stack push/pop and for memory copying. Only word 
values can be operated in this way on a word aligned address. The operands are a base 
register (with an optional denoting write-back of the base register) with a list of registers 
between braces. 
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Generally, loading and storing multiple instructions can yield better performance than the 
equivalent multiple load-and-store instructions, especially when cache is not enabled or a 
memory region is marked as non-cacheable in the translation table. To understand this, you 
must study the AMBA® specification carefully. Each memory access has overhead on the AXI 
bus. To improve bus efficiency, use an AXI support burst; that is, group N consecutive accesses 
together, and you will only need a one-time overhead. If you access N words in a single-beat 
manner, N overheads are needed. This not only degrades internal bus throughput, but also 
causes long latency. 

Normally, the compiler only uses load-and-store multiple instructions for stack operations. 
When the routine is memory-access intensive, such as memory copy, you might need to try 
LDM/STM manually.

An example of these instructions can be:

LDMIA R10!, { R0-R3, R12 }

This instruction reads five registers from the addresses at which register (R10) points and 
increases R10 by 20 (5 × 4 bytes) at the end because of the write-back specifier. 

The register list is comma separated, with hyphens indicating ranges. The order specified in 
this list is not important. ARM processors always proceed in a fixed fashion, with the lowest 
numbered register mapped to the lowest address.

The instruction must also specify how to proceed from the base register, using one of four 
modes: IA (increment after), IB (increment before), DA (decrement after), and DB (decrement 
before). These specifiers also have four aliases (FD, FA, ED and EA) that work from a stack 
perspective. They specify whether the stack pointer points to a full or empty top of the stack, 
and whether the stack ascends or descends in memory.

Correspondingly, NEON supports load/store multiple in a similar way. For example:

VLDMmode{cond} Rn{!}, Registers
VSTMmode{cond} Rn{!}, Registers

The Mode should be one of the following:

• IA - Increment address after each transfer. This is the default, and can be omitted.

• DB - Decrement address before each transfer.

• EA - Empty ascending stack operation. This is the same as DB for loads and IA for saves.

• FD - Full descending stack operation. This is the same as IA for loads, and DB for saves.

Note that NEON has some special instructions for interleaving and de-interleaving:

• VLDn (Vector load multiple n-element structures) loads multiple n-element structures from 
memory into one or more NEON registers, with de-interleaving (unless n == 1). Every 
element of each register is loaded.

• VSTn (Vector store multiple n-element structures) writes multiple n-element structures to 
memory from one or more NEON registers, with interleaving (unless n == 1). Every 
element of each register is stored.
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A graphical demonstration of VST3 is shown in Figure 5.

VLD2 loads two or four registers, de-interleaving even and odd elements. This could be used, 
for example, to split left and right channel stereo audio data. Similarly, VLD3 could be used to 
split RGB pixels or XYZ coordinates into separate channels. Correspondingly, VLD4 could be 
used with ARGB or CMYK images.

Note: These special NEON instructions cannot be expressed by pure C language. You must use NEON 
intrinsics or assembler code to have the compiler generate machine instructions.

Using the Preload Engine to Improve the Cache Hit Rate 

ARM Cortex-A9 processors support speculation and out-of-order execution, which can hide 
latencies associated with memory accesses. However, accesses to the external memory 
system are usually so slow that there is still some penalty. If you can pre-fetch instructions or 
data into the cache before you need them, you can minimize CPU stall time and maximize CPU 
performance.

From a hardware perspective, all preload instructions are handled by a dedicated unit in the 
Cortex-A9 processor with dedicated resources. This avoids using resources in the integer core 
or the load store unit.

From a software perspective, cache preloading means three instructions, PLD (data cache 
preload), PLI (instruction cache preload) and PLDW (preload data with intent to write). The PLD 
instruction might generate a cache line-fill on a data cache miss, while the processor continues 
to execute other instructions. If used correctly, PLD can significantly improve performance by 
hiding memory access latencies. There is also a PLI instruction that enables you to give the 
processor hints that an instruction load from a particular address is likely to happen soon. This 
can cause the processor to preload the instructions to its instruction cache.

Lab 2
1. Create a new project in Xilinx SDK.

2. Import the lab 2 source files.

3. Run the source files on hardware.

4. Observe the performance improvement you have obtained.

X-Ref Target - Figure 5

Figure 5: Demonstration of VST3 Operation
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The algorithm used is still the dot product calculation on two float vectors (length=1024), written 
in assembler codes. There are two versions: preload optimized, and non-preload optimized 
with all PLD instructions commented out.

        .align  4
        .global neon_dot_product_vec16_pld
        .arm

neon_dot_product_vec16_pld:
        pld [r0, #0]
        pld [r1, #0]
        pld [r0, #32]
        pld [r1, #32]

        vmov.i32          q10, #0
        vmov.i32          q11, #0
        vmov.i32          q12, #0
        vmov.i32          q13, #0

.L_mainloop_vec_16_pld:
        @ load current set of values
        vldm  r0!, {d0, d1, d2, d3, d4, d5, d6, d7}
        vldm  r1!, {d10, d11, d12, d13, d14, d15, d16, d17}

        pld [r0]
        pld [r1]
        pld [r0, #32]
        pld [r1, #32]

        @ calculate values for current set
        vmla.f32        q10, q0, q5
        vmla.f32        q11, q1, q6
        vmla.f32        q12, q2, q7
        vmla.f32        q13, q3, q8
        @ loop control
        subs            r2, r2, #16
        bgt             .L_mainloop_vec_16_pld @ loop if r2 > 0, if we have 
more elements to process

.L_return_vec_16_pld:
        @ calculate the final result
        vadd.f32        q15, q10, q11
        vadd.f32        q15, q15, q12
        vadd.f32        q15, q15, q13

        vpadd.f32       d30, d30, d31
        vpadd.f32       d30, d30, d30
        vmov.32        r0, d30[0]
        @ return
        bx                lr

On the console, you can see the execution time and observe the following:

• Non-preload optimized assembler functions take approximately 11.8 s to execute. This is 
a little slower than compiler optimization because the above example is for demonstration 
purposes and does not use other low-level optimization techniques.

• Preload optimized assembler functions take around 9.5 s to execute. This is better than 
the compiler optimization.

Now you can check the software performance on hot cache. Lab2 focuses on testing 
performance in a conservative way, that is, it makes the assumption of using cold cache. Cold 
cache means there is no data in cache when the algorithm starts. The coding associated with 
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this is at line 67 of the source file benchmarking.c. You can see that before each run, the L1 
and L2 cache is flushed by function call Xil_DCacheFlush(). 

Comment out this line to see the hot cache performance. The execution drops to around 2.67 
s, demonstrating that cache can improve performance significantly. In this example, because 
the latency for PLD instructions is much longer than the computation time, not all PLD 
instructions take effect.

Two additional methods for improving the cache hit rate and system performance are as 
follows:

• Create a preload routine for the algorithm to load some of the leading data into cache and 
run it some time before the actual algorithm computation routine.

• Increase the preload advancement steps in the actual algorithm computation to make the 
preload continuous.

If properly tuned, you can achieve performance very close to that of hot cache.

However, to efficiently use data preloading, you must consider what the lead time should be. If 
preload is done too early, the preloaded data might be ejected because of other code. If it is too 
late, the data might not be available in cache when needed and thus lower system 
performance. The key factor is the main memory access latency. Fortunately, you do not need 
to write code to test it. The open source project lmbench already has test code identify this 
parameter in an embedded system. For a typical Zynq device configuration (CPU runs at 667 
MHz, DDR3 runs at 533 MHz), the latency is about 60 to 80 CPU cycles. This provides 
adequate information about where to insert the preload routine before the actual computation 
routine.

You can also try to optimize memcpy(), written by C with data preloading. The performance 
boost is around 25%. This is not as significant as the above because there is no computation 
to compensate the data preload latency.

Using Tiles to Prevent Cache Thrashing 

For Zynq-7000 devices, each of the two Cortex-A9 processors has separate 32 KB level-1 
instruction and data caches, and both caches are 4-way set-associative. The L2 cache is 
designed as an 8-way set-associative 512 KB cache for dual Cortex-A9 cores. These 
parameters are critical to predicting when cache thrashing will occur.

Before trying to identify a solution, you need to know why the issue occurs. Start with the 
simplest cache implementation first, a direct mapped cache.

In a direct-mapped cache (shown in Figure 6 ), each location in main memory maps to a single 
location in the cache. The following figure shows a simplified small cache (64 bytes) example, 
with four words per line and four lines. In this example, address bits [3:2] act as the offset to 
select a word within a cache line, and address bits [5:4] act as the index to select one of the four 
available cache lines. Address bits [31:6] are used as a tag value for each cache line.
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In Figure 6, you can see the 16-byte arrays with starting addresses 0x0, 0x40 and 0x80 share 
the same cache line. This means that at any given time, only one of those lines can be in the 
cache.

Consider a loop similar to the following, with pointers result, data1, and data2 pointing to 
0x00, 0x40 and 0x80 respectively.

void add_array(int *data1, int *data2, int *result, int size)
{
int i;
for (i=0 ; i<size ; i++) {
result[i] = data1[i] + data2[i];
}

When the code starts running, something similar to the following occurs:

• Address 0x40 is read first. As it is not in cache, a line-fill takes place by putting the data 
from 0x40 to 0x4F into the cache.

• Then, address 0x80 is read. It is not in cache and so a line-fill takes place by putting the 
data from 0x80 to 0x8F into the cache and evicting the data from addresses 0x40 to 
0x4F out of the cache.

• The result is written to 0x00. Depending on the cache allocation policy, this might cause 
another line fill. The data from 0x80 to 0x8F might be evicted out of the cache.

• The same thing can happen again and again on each iteration of the loop. You can see 
that the cache content re-use is almost nothing and the software performance could be 
very poor. 

This issue is called cache thrashing. It is very easy for cache thrashing to occur on 
direct-mapped cache, so it is seldom used in real designs. 

X-Ref Target - Figure 6

Figure 6: Direct Mapped Cache
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Fully associative cache can solve this issue. With this solution, any specific location in main 
memory can be stored in any cache line. However, building such a cache is impractical unless 
it is very small. The control hardware can be complex and the power consumption high. 

In practice, N-way set associative cache is more widely used to balance complexity and 
performance. In this solution, cache is divided into N pages and each location in main memory 
can be stored in N possible locations in the cache. 

In fact, fully associative cache can be regarded as N-way set associative, where N is the 
quotient of cache size divided by cache line size. Studies on the choice of N show performance 
improvements are minimal for level 1 caches above 4-way associativity, and 8-way or 16-way 
associativity are appropriate for larger level 2 caches. Figure 7 is a simple diagram showing the 
structure of a 4-way set associative cache.

But even for the fully associative cache, the cache thrashing issue, though alleviated, still exists 
in extreme conditions. For example, with the above code example running on a 4-way set 
associative cache, when the number of source vectors exceeds four (even three, depending on 
the cache allocation policy), cache thrashing occurs. 

A typical scenario for this issue is accessing elements in the same column sequentially within 
a two-dimensional array. The document Cortex-A Series Programmer's Guide [Ref 7] provides 
an example of matrix multiplication. Below is a straightforward code example for matrix 
multiplication: 

for(i=0;i<N;i++)
for(j=0;j<N;j++)
for(k=0;k<N;k++)

        result[i][j] += a[i][k]*b[k][j];

In this case, the contents of matrix a are accessed sequentially, but accessing matrix b 
advances by row. Therefore, cache misses are likely while accessing each element in matrix b 
because matrix sizes are so large that the cache cannot contain them.

To solve this issue, divide the large matrix into smaller partitions and confine the computations 
within these smaller partitions. The partitions are also known as tiles. Here you assume the 
data type for matrix is int. For Cortex-A9 processors, the L1 cache line is 32 bytes, so one L1 
cache line can hold eight elements. In this case you can rewrite the code using 8*8 tiles to 
improve cache hit rates. Below is an example of optimized code:

for (io = 0; io < N; io += 8)
    for (jo = 0; jo < N; jo += 8)
        for (ko = 0; ko < N; ko += 8)
            for (ii = 0, rresult = &result[io][jo], ra = &a[io][ko];

X-Ref Target - Figure 7

Figure 7: Structure of a 4-way Set Associative Cache
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ii < 8; ii++, rresult += N, ra += N)
                for (ki = 0, rb = &b[ko][jo];ki < 8; ki++, rb += N)
                    for (ji = 0; ji < 8; ji++)
                        rresult[ji] += ra[ki] * rb[ji];

Lab 3
1. Create a new project, import lab 3 source files.

2. Run the standalone application on board. 

3. In the code provided, set the matrix size to 512*512, so that the execution does not take too 
long.

Note: Because the focus is on how tiling can improve performance, you do not enable compiler 
automatic vectorization for NEON in this lab. 

The optimization level is set to -O2, and the optimization flags are set to -std=c99. 

4. After executing lab3, you can see that:

- The non-tiling implementation takes approximately 7.9 seconds.

- The tiling implementation only takes about 2.1 seconds.

- The performance improvement is significant. 

Because NEON is often used to process large data sets, properly changing an algorithm with 
the tiling technique can produce higher cache hit rates, thus much better performance. You can 
also try using compiler automatic vectorization in your projects to achieve additional (more 
modest) improvements. As demonstrated in lab1, compilers are not good at automatic 
vectorization on complex loops. If more performance gain is needed, you must perform manual 
optimization on computations within tiles.

Summary This application note introduces four methods for improving software performance using NEON 
on a Cortex-A9 processor core. Because NEON is typically used on large data sets, cache 
performance is critical to system performance. Also discussed are three ways to improve data 
exchanges between the CPU, cache, and main memory. Software optimization is a complex 
topic. To realize optimal performance from hardware, you must apply all these techniques 
together and properly balance them.
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