
© Copyright 2009 - 2009, Xilinx, Inc. All rights reserved.

Created: September 28, 2009

Modified: December 8, 2009

AdcBulkMem

Marc Defossez

Sr. Staff Applications Engineer

AdcBulkMem, 1 Xilinx Confidential

Page 2, © Copyright 2009 - 2009, Xilinx, Inc. All rights reserved.

© Copyright 2009 - 2009, Xilinx, Inc. All rights reserved.

This file contains confidential and proprietary information of Xilinx, Inc. and is protected under U.S. and international copyright and other intellectual property laws.

Disclaimer:

This disclaimer is not a license and does not grant any rights to the materials distributed herewith. Except as otherwise provided in a valid license

issued to you by Xilinx, and to the maximum extent permitted by applicable law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH

ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT

NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx

shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature

related to, arising under or in connection with these materials, including for any direct, or any indirect, special, incidental, or consequential loss or

damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such

damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same.

CRITICAL APPLICATIONS

Xilinx products are not designed or intended to be fail-safe, or for use in any application requiring fail-safe performance, such as life-support or safety

devices or systems, Class III medical devices, nuclear facilities, applications related to the deployment of airbags, or any other applications that could

lead to death, personal injury, or severe property or environmental damage (individually and collectively, "Critical Applications"). Customer assumes the

sole risk and liability of any use of Xilinx products in Critical Applications, subject only to applicable laws and regulations governing limitations on

product liability.

THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART OF THIS FILE AT ALL TIMES.

Contact: e-mail hotline@xilinx.com phone + 1 800 255 7778

DISCLAIMER:

AdcBulkMem, 2 Xilinx Confidential

Page 3, © Copyright 2009 - 2009, Xilinx, Inc. All rights reserved.

This page is intentionally left blank.

AdcBulkMem, 3 Xilinx Confidential

Page 4, © Copyright 2009 - 2009, Xilinx, Inc. All rights reserved.

AdcBulkMem

AdcBulkMem_18b

Full

Mem_ClkIn

Mem_EnaIn

Mem_RstIn

Mem_DataIn

Mem_ClkOut

Mem_EnaOut

Mem_RstOut

Mem_DataOut

Empty

Middle

[17:0] [7:0]

AdcBulkMem_36b

Full

Mem_ClkIn

Mem_EnaIn

Mem_RstIn

Mem_DataIn

Mem_ClkOut

Mem_EnaOut

Mem_RstOut

Mem_DataOut

Empty

Middle

[35:0] [7:0]

AdcBulkMem, 4 Xilinx Confidential

Page 5, © Copyright 2009 - 2009, Xilinx, Inc. All rights reserved.

RAMB36_B

AddrA[15:0]

DiA[31:0]

DipA[3:0] DopA[3:0]

EnA

ClkA

WeA[3:0]

DoA[31:0]

RAMB36_A

AddrB[15:0]

DiB[31:0]

DipB[3:0]DopB[3:0]

EnB

ClkB

WeB[3:0]

DoB[31:0]

AdcBulkMem

The ADC writes into the Block-RAM and the processor reads from it.

Read

address counter

E

(A15)

A[2:0]

A[14:5]

[9:0]

[31:0]

Write

address counter

E

1111

(A15)

A[4:0]

[7:0]

[9:7] [11:9]
[11:0]

Flags

Empty

Middle

Full

Empty

Middle

Full

Read

Write

A[14:3]

RAMB36E1

36-bit wide x 1024 deep

Addr[9:0]

DI[31:0]

DIP[3:0]

RAMB36E1

9-bit wide x 4096 deep

Addr[11:0]

DO[7:0]

DOP[0:0]

AdcBulkMem, 5 Xilinx Confidential

Page 6, © Copyright 2009 - 2009, Xilinx, Inc. All rights reserved.

Flags – Gray code

ReadWrite

100

101

111

110

010

011

001

000

100

101

111

110

010

011

001

000

Fill

When the read pointer is right behind the write pointer, the FIFO is as good as empty.

When the write pointer is right behind the read pointer, the FIFO is nearly full.

FULL

100

101

111

110

010

011

001

000 100

101

111

110

010

011

001

000

=

EMPTY

100

101

111

110

010

011

001

000

=

ReadWrite ReadWrite

100

101

111

110

010

011

001

000

Assume that the write pointer runs faster than the read pointer, then:

The write pointer will reach “100” while the read pointer is still “000” the FULL flag goes high.

Writing must now be stopped until the read pointer reaches “101”, now the EMPTY flag can be

set high and the FULL flag can be released.

Writing can continue from where it was stopped (Somewhere in the “100” region) and reading

can be stopped. Writing goes over turn around in address space. When the write pointer

reaches now “111 the FULL flag must be set again (Read pointer is at “101”). The read

operation can start from where it last. When the read pointer reaches “110” the EMPTY flag

can be set (reset the FULL flag).

And so on……..

Optional MIDDLE

ReadWrite

100

101

111

110

010

011

001

000

=
000

010

011

001

100

101

111

110

AdcBulkMem, 6 Xilinx Confidential

Page 7, © Copyright 2009 - 2009, Xilinx, Inc. All rights reserved.

Flags – Binary

ReadWrite

111

110

101

100

011

010

001

000

Fill

When the read pointer is right behind the write pointer, the FIFO is as good as empty.

When the write pointer is right behind the read pointer, the FIFO is nearly full.

FULL

100

101

111

110

010

011

001

000

100

101

111

110

010

011

001

000

=

EMPTY

=

ReadWrite ReadWrite

100

101

111

110

010

011

001

000

Assume that the write pointer runs faster than the read pointer, then:

The write pointer will reach “111” while the read pointer is still “000” the FULL flag goes high.

Writing must now be stopped until the read pointer reaches “110”, now the EMPTY flag can be

set high and the FULL flag can be released.

Writing can continue from where it was stopped (Somewhere in the “111” region) and reading

can be stopped. Writing goes over turn around in address space. When the write pointer

reaches now “101 the FULL flag must be set again (Read pointer is at “110”). The read

operation can start from where it last. When the read pointer reaches “100” the EMPTY flag

can be set (reset the FULL flag).

And so on……..

Optional MIDDLE

ReadWrite

=
000

010

011

001

100

101

111

110

When the counters are binary coded the flag logic should look like this;

111

110

101

100

011

010

001

000

100

101

111

110

010

011

001

000

100

101

111

110

010

011

001

000

AdcBulkMem, 7 Xilinx Confidential

