
© Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

Created: February 6, 2008

Modified: April 6, 2011

AdcFrame

Marc Defossez

Sr. Staff Applications Engineer

AdcFrame, 1 Xilinx Confidential

Page 2, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

© Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

This file contains confidential and proprietary information of Xilinx, Inc. and is protected under U.S. and international copyright and other intellectual property laws.

Disclaimer:

This disclaimer is not a license and does not grant any rights to the materials distributed herewith. Except as otherwise provided in a valid license

issued to you by Xilinx, and to the maximum extent permitted by applicable law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH

ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT

NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx

shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature

related to, arising under or in connection with these materials, including for any direct, or any indirect, special, incidental, or consequential loss or

damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such

damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same.

CRITICAL APPLICATIONS

Xilinx products are not designed or intended to be fail-safe, or for use in any application requiring fail-safe performance, such as life-support or safety

devices or systems, Class III medical devices, nuclear facilities, applications related to the deployment of airbags, or any other applications that could

lead to death, personal injury, or severe property or environmental damage (individually and collectively, "Critical Applications"). Customer assumes the

sole risk and liability of any use of Xilinx products in Critical Applications, subject only to applicable laws and regulations governing limitations on

product liability.

THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART OF THIS FILE AT ALL TIMES.

Contact: e-mail hotline@xilinx.com phone + 1 800 255 7778

DISCLAIMER:

AdcFrame, 2 Xilinx Confidential

Page 3, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

This page is intentionally left blank.

AdcFrame, 3 Xilinx Confidential

Page 4, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

DA

DB

DC

DD

0 0 D13 D11D12 D10 D0D1D2D3D4D5D6D7D8D9

DCLK

FCLK

DCLK: 8 x Sample Frequency

DDR

90-degrees shifted to data and FCLK

DA, DB, DC, DD

14-bit data packed in 16-bit boundary.

Arranged as MSB or LSB first

16 x Sample clock

FCLK

1 x Sample clock

Aligned to the data

FCLK is used as data

with known pattern.

Calculations examples for 1-wire mode (assume Virtex-6 -2 speedgrade):

Sample clock 125 MHz (125 MSPS)

FCLK = 125 MHz, DCLK = 1000 MHz, Data = 2000 Mb/s

This is to fast for the regional clock inputs

Sample clock 105 MHz

FCLK = 105 MHz, DCLK = 840 MHz, Data = 1680 Mb/s

This is to fast for the regional clock inputs

Sample clock 100 MHz

FCLK = 100 MHz, DCLK = 800 MHz,Data = 1600 Mb/s

This is OK for the regional clock inputs

For a resolution of 16-bits (or 14-bits packed in 16-bit boundaries) and in 1-wire

mode the sample speed of the ADC is limited to 100 MHz.

Assume FCLK = 80 MHz or 12.5 ns

Then the DCLK is 640 MHz or 1.5625 ns

The DCLK is equal to the CLK internally used.

From that CLK a CLKDIV is generated. The CLKDIV is the

clock that latches the serial shifted data into a parallel register

for treatment.

The CLKDIV is 4 times CLK because 8-bits are used at a time.

CLKDIV is 160 MHz or 6.25 ns.

1-WIRE

AdcFrame, 4 Xilinx Confidential

Page 5, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

DA0

DB0

DC0

DD0

0

D13 D11

D12 D0

D1

D2

D3

D4

D5

D6

D7

D8

D9

DCLK

FCLK

2-WIRE

DCLK: 4 x Sample Frequency

DDR

90-degrees shifted to data and FCLK

DA0, DA1, DB0, DB1, DC0, DC1, DD0, DD1

14-bit data packed in 16-bit boundary and divided over two

LVDS lanes. Arranged as MSB or LSB first. The data rate is

8 x sample frequency per channel.

FCLK

1 x Sample clock

Aligned to the data

FCLK is used as data

with known pattern.

Calculation examples for 2-wire mode (assume Virtex-6 -2):

Sample clock 125 MHz (125 MSPS)

FCLK = 125 MHz, DCLK = 500 MHz, Data = 2000 Mb/s

Data throughput over two LVDS lanes

Sample clock 200 MHz (200 MSPS)

FCLK = 200 MHz, DCLK = 800 MHz, Data = 3200 Mb/s

Data throughput over two LVDS lanes

For a resolution of 16-bits (or 14-bits packed in 16-bit boundaries) and 2-

wire mode the sample speed of the ADC is maximal to 200 MHz

0

D10 D0

D1

D2

D3

D4

D5

D6

D7

D8

DA1

DB1

DC1

DD1

AdcFrame, 5 Xilinx Confidential

Page 6, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

Frame Recognition

DA

DB

DC

DD

0 0 D13 D11D12 D10 D0D1D2D3D4D5D6D7D8D9

DCLK

FCLK

1-WIRE

0

D13 D11

D12 D0

D1

D2

D3

D4

D5

D6

D7

D8

D9

FCLK

0

D10 D0

D1

D2

D3

D4

D5

D6

D7

D8

DA1

DB1

DC1

DD1

2-WIRE
DA0

DB0

DC0

DD0

The Frame data is shifted into an 8-bit shift register.

The frame must thus be recognized by these bits.

MSByte LSByte

1-wire: 11111111 00000000

2-wire: 00000000 11110000 (the grey bits are stuff bits).

A comparator must check the incoming frame against a fixed pattern.

In order to detect the correct sequence and edge where the frame is

captured on some operations are needed on the comparator values.

Shift 1111111100000000 over one bit: 0111111110000000

This is needed to detect the correct pattern.

Swap the bits to: 101111110100000 this is needed to find the

edge the frame is captured on

Cut the pattern in two bytes.

The output of the comparator is:

Equal : pattern matches one of the four samples.

Switched : pattern found is bit switched.

MsbLsb : pattern found is the MSB or LSB byte.

AdcFrame, 6 Xilinx Confidential

Page 7, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

Recognition example of a byte wide frame

(2-wire mode operation of the ADC)

Capturing the Frame signal from a ADC is capturing over and over the same data, because a frame is a slow clock signal that is treaded as

normal data. This is done to easy align the real data to correct boundaries

It can be done because the Frame and Data are phase aligned and 90-degrees phase shifted to the clock.

As shown in previous sheets, it is possible that data gets captured starting at a rising or falling edge of the bit clock (CLK).

When one or the other happens it is possible that the captured bits are presented in a bit-swapped state at the output of the ISERDES.

When this happens a multiplexer must swap the bits back in correct position.

A C E G K M P S W Y AA

B D F H L N R T X Z BB

Clock

Frame

Data 0

Data 1

Figure A

Q6

Q0

Q7

Q5

Q1

Q2

Q3

Q4

1

1

0

0

1

1

0

0

Rising edge

CLK

Falling edge

CLK

Capture rising

edge first

Q6

Q0

Q7

Q5

Q1

Q2

Q3

Q4

1

1

0

0

1

1

0

0

Rising edge

CLK

Falling edge

CLK

Capture falling

edge first

How can a bit swapped captured word be recognized?

The only way to do this is again via the FRAME signal because a regular pattern

can be easily examined.

Example:

Assume that the FPGA interface captures data from a (14)16-bit ADC, the ADC

transmits the bits to the FPGA in 2-wire mode. The frame, data and clock will look

as figure A.

The FRAME seen as data result then in a data bit pattern as:

Frame //...111100001111////..

The frame capturing ISERDESses will thus capture a pattern as:

AdcFrame, 7 Xilinx Confidential

Page 8, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

When the straight pattern is captured it can thus not been told if the bits are swapped or not.

When capturing 11110000 and the captured bit pattern is swapped, the result is still: 11110000

But the frame signal is the only signal we can permanently use to find if bits are swapped or not.

The captured pattern must thus be adapted.

The ADC can not change the pattern of the Frame signal, thus the FPGA needs to do this.

How can we do this?

Detect the pattern somewhere in-between the 1 and 0 stream, a place where there are 1's and 0's to align for.

To not have to build to much logic let us capture the frame pattern one bit shifted.

When that pattern is detected an extra shift in the correct direction will align data and frame to the correct boundaries.

Thus to be able to detect a one bit shifted pattern this pattern must be constructed in the HDL code.

ThIs is the effective Frame pattern, in case of our example: 11110000

From that pattern, by means of VHDL functions the shifted pattern is constructed.

The HDL transforms the 11110000 pattern into a bit shifted pattern, being: 01111000

Knowing that the pattern can be captured rising or falling edge first resulting in a bit swapped output, a bit swapped check pattern must be

constructed. This is also done with a VHDL function and the result is then: 10110100

This bit shifting and swapping is only needed when the frame pattern is a symmetric clock signal.

Meaning that the number of 1 and/or 0 are equal and equally spread in the word, so that it can not be told if bit swapping occurred or not.

There is thus a check for the symmetry of the pattern build in the HDL.

The sheet "Pattern Repetition" of the XLS spreadsheet file shows that an 8-bit pattern only has 16 repetitive patterns.

Doing this allows that any pattern can be used a frame pattern.

REMARK:

A function in VHDL doesn't generate any logic.

By performing the shift and swap operations no logic is thus generated.

AdcFrame, 8 Xilinx Confidential

Page 9, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

AdcFrm

AdcFrm

C_Family

C_AdcBits

C_AdcWireInt

C_OnChipLvdsTerm

C_FrmPattern

FrmClk_n

FrmClk_p

FrmClkRst

FrmClkEna

FrmClk

FrmClkDiv

FrmClkDone

FrmClkReSync

FrmClkBitSlip_p

FrmClkBitSlip_n

FrmClkSwapMux

FrmClkDat

FrmClkMsbRegEna

FrmClkLsbRegEna

FrmClkOut

FrmClkSyncWarn

FrmClkReSyncOut

The goes to the data capturing

ISERDES part of the design.

These are outputs to the

application behind the interface

AdcFrame, 9 Xilinx Confidential

Page 10, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

CE1

CE2

BITSLIP

CLK

CLKDIV

RST

Q1

Q6

Q5

Q4

Q3

Q2

D

SHIFTIN

SHIFTOUT

CE1

CE2

BITSLIP

CLK

CLKDIV

RST

Q1

Q6

Q5

Q4

Q3

Q2

D

SHIFTIN

SHIFTOUT

FrmClk_p

IntFrmClk

IntFrmClkDone

O

IntFrmSrdsOut(6)

IntFrmSrdsOut(0)

IntFrmSrdsOut(2)

IntFrmSrdsOut(4)

IntFrmSrdsOut(7)

IntFrmSrdsOut(1)

IntFrmSrdsOut(3)

IntFrmSrdsOut(5)

G
o
 to

 P
a
g

e
1
1

FrmClk

FrmClkDiv

FrmClkRst
IntFrmBitSlip(1)

FrmClk_n

IntFrmBitSlip(0)

IntFrmClk_n

G
o
 to

 P
a
g
e

1
1

ISERDES

In
p
u

ts
 fro

m
 th

e
 IB

U
F

D
S

_
D

IF
F

_
O

U
T

The ISERDES are only reset with a

system reset. In case a re-sync is

necessary the bitslip poit stays where

it is and continues from there. The

logic in the circuit is reset with a re-

sync and starts from zero.

With this ISERDES setup it is

possible to capture up to 24-

bits in 2-wire mode.

For 24-bits both ISERDES

outputs are completely used.

AdcFrame, 10 Xilinx Confidential

Page 11, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

(FrmBits(C_AdcBits)/2) = 6

IntFrmSrdsOut(0)

IntFrmSrdsOut(4)

IntFrmSrdsOut(2)

IntFrmSrdsOut(1)

IntFrmSrdsOut(5)

IntFrmSrdsOut(3)

(FrmBits(C_AdcBits)/2) = 8

IntFrmSrdsOut(0)

IntFrmSrdsOut(6)

IntFrmSrdsOut(4)

IntFrmSrdsOut(2)

IntFrmSrdsOut(1)

IntFrmSrdsOut(7)

IntFrmSrdsOut(5)

IntFrmSrdsOut(3)

G
o
 T

o
 P

a
g
e

1
2

F
ro

m
 P

a
g
e

1
0

Bus Selection

One of the two busses will be created.

IntFrmSrdsDatEvn

IntFrmSrdsDatOdd

IntFrmSrdsDatEvn

IntFrmSrdsDatOdd

AdcFrame, 11 Xilinx Confidential

Page 12, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

Double Nibble Detection

The “wire” modes are explained from page 4 to page 8.

Page 21 and 22 highlight the “Double Nibble” phenomena.

This block (hierarchical level) is added to the design when 1-wire mode is selected.

! Only needed when the ADC is used in 1-wire mode. !

DoubleNibbleDetect

DataIn DataOut

RstIn RstOut

Clock

DoubleNibbleDetect

DataIn DataOut

RstIn RstOut

ClockFrmClkDiv

FrmClkRst
IntFrmDbleNibRst

This block has a build in reset delay. When the reset is released the block starts functioning, while the block is still

in reset the output is zero.

The “RstOut” signal is generated when a fifth DoubleNibble is detected.

Then the internal logic is reset and also external the block measures can be taken.

Each block can detect four

double nibbles. This

makes that both blocks

can detect eight double

nibble in a byte wide word.

The functionality of this

block is described in its

own presentation.

G
o
 T

o
 P

a
g
e

1
3

F
ro

m
 P

a
g
e

1
1

IntFrmSrdsDatEvn

IntFrmSrdsDatOdd

IntFrmSrdsDatEvn_d

IntFrmSrdsDatOdd_d

In 2-wire mode this design is not present.

IntFrmSrdsDatEvn_d <= IntFrmSrdsDatEvn;

IntFrmSrdsDatOdd_d <= IntFrmSrdsDatOdd;

IntFrmDbleNibRst <= Low;

AdcFrame, 12 Xilinx Confidential

Page 13, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

IntFrmSrdsDat(7)

IntFrmSrdsDat(0)

IntFrmSrdsDat(1)

IntFrmSrdsDat(2)

IntFrmSrdsDat(3)
IntFrmSrdsDat(4)

IntFrmSrdsDat(5)

IntFrmSrdsDat(6)
IntFrmDatSwp(7)

IntFrmDatSwp(0)

IntFrmDatSwp(1)

IntFrmDatSwp(2)
IntFrmDatSwp(3)

IntFrmDatSwp(4)

IntFrmDatSwp(5)

IntFrmDatSwp(6)

F
ro

m
 P

a
g

e
1
2

G
o
 T

o
 P

a
g
e

1
4

For a 12-bit Frame detection circuit the blue signals are not available.

FrmClkDiv

IntFrmEna

Go To Page 15

FrmClkEna

IntFrmEna

Bit Swap Multiplexer

IntFrmSwapMux_d

IntFrmReSyncOut

IntFrmSrdsDat

IntFrmsDat

IntFrmSrdsDatEvn_d

IntFrmSrdsDatOdd_d

FrmClkDiv

FrmClkDone

FrmClkRst

AdcFrame, 13 Xilinx Confidential

Page 14, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

C_AdcBits = 12

0

0

0

0

C_AdcBits /= 12 (14 or 16)

FrmClkDiv

IntFrmLsbRegEna_d

Page-5

IntFrmDatSwp(7)

IntFrmDatSwp(0)

IntFrmDatSwp(1)

IntFrmDatSwp(2)

IntFrmDatSwp(3)

IntFrmDatSwp(4)

IntFrmDatSwp(5)

IntFrmDatSwp(6)

IntFrmDatSwp(7)

IntFrmDatSwp(0)

IntFrmDatSwp(1)

IntFrmDatSwp(2)

IntFrmDatSwp(3)

IntFrmDatSwp(4)

IntFrmDatSwp(5)

IntFrmDatSwp(6)

IntFrmDatSwp(0)

IntFrmDatSwp(1)

IntFrmDatSwp(2)

IntFrmDatSwp(3)

IntFrmDatSwp(4)

IntFrmDatSwp(5)

IntFrmDatSwp(0)

IntFrmDatSwp(1)

IntFrmDatSwp(2)

IntFrmDatSwp(3)

IntFrmDatSwp(4)

IntFrmDatSwp(5)

FrmClkDat(7)

FrmClkDat(6)

FrmClkDat(15)

FrmClkDat(8)

FrmClkDat(9)

FrmClkDat(10)

FrmClkDat(11)

FrmClkDat(12)

FrmClkDat(13)

FrmClkDat(14)

FrmClkDat(0)

FrmClkDat(1)

FrmClkDat(2)

FrmClkDat(3)

FrmClkDat(4)

FrmClkDat(5)

FrmClkDat(7)

FrmClkDat(6)

FrmClkDat(15)

FrmClkDat(8)

FrmClkDat(9)

FrmClkDat(10)

FrmClkDat(11)

FrmClkDat(12)

FrmClkDat(13)

FrmClkDat(14)

FrmClkDat(0)

FrmClkDat(1)

FrmClkDat(2)

FrmClkDat(3)

FrmClkDat(4)

FrmClkDat(5)

IntFrmMsbRegEna_d

IntFrmReSyncOut

IntFrmMsbRegEna_d

FrmClkDiv

IntFrmReSyncOut

IntFrmLsbRegEna_d

O
U

T
P

U
T

S
O

U
T

P
U

T
S

O
U

T
P

U
T

S
O

U
T

P
U

T
S

F
ro

m
 P

a
g
e

 1
4

F
ro

m
 P

a
g
e

 1
4

Output Registers

AdcFrame, 14 Xilinx Confidential

Page 15, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

P
a

tte
rn

C
o

m
p
a

re

IntPatternA

IntPatternB
IntPatternC

IntPatternD

In
tF

rm
C

m
p

[3
:0

]

IntFrmCmp[3]

IntFrmCmp[1:0]

IntFrmEna

Page 19

IntFrmEna = IntFrmClkDone AND FrmClkEna

IntFrmMsbAllZero_d

IntFrmEqu_d

IntFrmSwapMux_d

IntFrmLsbMsb_d

(3)

(0)

(1)

E
"0101"; -- MsbZero, Equ, NotSwpd, MsbFrst

"0100"; -- MsbZero, Equ, NotSwpd, LsbFrst

"0111"; -- MsbZero, Equ, Swpd,MsbFrst

"0110"; -- MsbZero, Equ, Swpd,LsbFrst

"1101"; -- MsbOne, Equ, NotSwpd, MsbFrst

"1100"; -- MsbOne, Equ, NotSwpd, LsbFrst

"1111"; -- MsbOne, Equ, Swpd, MsbFrst

"1110"; -- MsbOne, Equ, Swpd, LsbFrst

From Page 13

Pattern Check

FrmClkSwapMux

FrmClkDiv

IntFrmCmp[2]

(2)

IntFrmSrdsDat

Page 21 +

Explication of this circuit on page 20.

All FFs here are reset by: IntFrmReSyncOut

D

AdcFrame, 15 Xilinx Confidential

Page 16, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

IntFrmEqu_d

IntFrmLsbMsb_d

IntFrmRegEna_d

IntFrmMsbRegEna_d

0

1

2 Q0

Q1

Q2

IntFrmLsbRegEna_d

Microsoft Excel

Worksheet

set

FrmClkMsbRegEna

FrmClkLsbRegEnaIntFrmMsbAllZero_d

FrmClkDiv

Select Output Register

AdcFrame, 16 Xilinx Confidential

Page 17, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

IntFrmEvntCntTc_d
IntFrmEquSet_d

Count 0, 1, 2, 3 ... 15

Terminal count at 15

Check the Frame status every 16

clock cycles and as long as the

pattern is not found.

This counter sets of the bitslip pulse

generator on one of the next pages.

IntFrmEna

FrmClkDiv

Counter programmable for 1-wire or 2-wire mode and 12-bit or 14/16-bit.

The counter counts the number of bitslips occurred.

For 2-wire mode it signals one over-run for 1-wire mode it signals two over-runs.

Sizable counter in the source code for

the Frame signal.

Sample Counters

IntFrmSlipCnt

IntFrmSlipCntTc

E

E

E

RST

IntFrmEvntCnt

IntFrmEvntCntTc

E

E=”10"

E

RST

IntFrmReSyncOut

Count the number of bitslips occurred.

When a pattern is not recognized in the

required number of bitslips do something

(see next page).

(1 downto 0)

IntFrmSlipCntTc_d

AdcFrame, 17 Xilinx Confidential

Page 18, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

FrmClkSyncWarn

This counter counts the number of time a complete turn

around of bitslip is not ended in a synchronisation.

Meaning: When arriving here the circuit tried to lock for

several times but all failed. Now it is at the application to

decide what to do.

IntFrmSlipCntTc_d

Reset and Re-Sync

FrmClkDiv

FrmClkRst

FrmClkReSync

When one of these signals occurs a re-sync

operation is started.

1: The maximum number of bitslips is passed

without detection of a matching pattern.

2: One of the two ISERDES gave at its output

twice the same value, more about this on

page 21.

3: the application asked for a re-sync.

This counter runs independent from all logic,

meaning that it is only reset at a system reset.

Re-sync operations don’t reset the counter.

FrmClkRst

IntFrmReSyncOut

FrmClkReSyncOut

IntFrmWarnCnt

IntFrmWarnCntTc

E

E=”10"

E

RST
(7 downto 0)

PulseGen

IntFrmDbleNibRst

This net is pulled low when in 2-wire mode.

AdcFrame, 18 Xilinx Confidential

Page 19, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

IntFrmBitSlip(3)

IntFrmBitSlip(1)

IntFrmEqu_d

IntFrmEvntCntTc_d

IntFrmBitSlip(0)

C
A

S
E

s
tru

c
tu

re

E

FrmClkDiv

IntFrmEna

IntFrmBitSlip(2)

Microsoft Excel

Worksheet

IntFrmEquSet_d

IntFrmBitSlip(5)

IntFrmBitSlip(4)

IntFrmEquSet_d

IntFrmRstOut

FrmClkBitSlip_n

FrmClkBitSlip_p

Bitslip State Machine

AdcFrame, 19 Xilinx Confidential

Page 20, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

IntFrmSrdsDat

IntPatternAMSB

LSB

MSB

LSB IntPatternD

IntPatternC

IntPatternB

IntFrmEqu

IntFrmSwpd

IntFrmLsbMsb

IntFrmMsbAllZero

C
o

m
p
a
re

HDL Case

Structure

Entered Frame patterns in HDL:

MSB LSB

8-bit : 00000000 11110000

or

16-bit : 11111111 00000000

This results in the table below.

The table is constructed with HDL functions and

requires no logic to be made.

LSB = 0

MSB = 1

A B

C D

When pattern “A” is found it means that the MSByte is found.

Register the received data in MSB register and the next received byte in the LSB register.

When pattern “B” is found it means LSByte is found.

Register the next received data in the MSB regsiter and the next data in the LSB register.

Do the same for “C” and “D” but then also invoke the bit swap multiplexer.

When synthesizing the design

the synthesis report shows

the settings of the pattern to

search for. This is also shown

in the on screen report under

the AdcFrm synthesis section.
(3)

(0)

(1)

(2)

Compare Frame Patterns (1)

Patterns are entered in the HDL code as 16-bit values.

In case of a 8-bit frame pattern must have the MSB

byte of the given pattern set to all zero.

16-bit8-bit

IntPatternA

IntPatternD

IntPatternC

IntPatternB

11111101

00101101

0000000100011110

11111110

00000010

00000000

00000000

A and B is the given pattern shifted by one.

Read the start of this document for more on this

C and D is the shifted pattern with swapped bit

positions. Read the start of this document for

more about this.

The given example is for 8-bit and 16-bit patterns

but the same is done for 6-bit and 12-bit patterns!

Pattern shifted for one bit.

Shifted pattern bitswapped

AdcFrame, 20 Xilinx Confidential

Page 21, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

Compare Frame Patterns (2)

“IntFrmEna” needs to high before the circuit can start working.

Pattern detection:

As long as “intFrmDbleNibble” is not active, low in this case, the pattern comparator can pass data to the “IntFrmEqu_d” FF.

The “IntFrmEqu” status and three other signals are registered whenever a matching frame pattern is found.

The combinatorial “IntFrmEqu” signal immediately disables (blocks) the “Double Nibble” circuit.

That disable signal is then overtaken by the registered version of the “IntFrmEqu” signal (IntFrmEqu_d”

When the “IntFrmEqu_d” signal goes high, indicating that a pattern has been found, it disables the registers of the other three

other status bits. This action prevents that these signals change status after detection of the required pattern.

Double Nibble detection

This circuit is described later in this document.

Only one thing here:

Whenever a “frame pattern” is found this circiuit is disabled, blocked, immediately.

IntFrmEna

IntFrmMsbAllZero_d

IntFrmEqu_d

IntFrmSwapMux_d

IntFrmLsbMsb_d

(3)

(0)

(1)

E

IntFrmEquGte

FrmClkSwapMux

FrmClkDiv

IntFrmEqu

(2)

IntFrmCmp[3]

IntFrmCmp[1:0]

(2) IntFrmEqu

IntFrmSwpd

IntFrmLsbMsb

IntFrmMsbAllZero(3)

(0)

(1)

In
tF

rm
C

m
p

IntFrmDbleNib_n

AdcFrame, 21 Xilinx Confidential

Page 22, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

Compare Equal Nibbles (1)

When an ADC is used in 1-wire mode the frame pattern must be detected aver a range of 16-bits.

An ISERDES outputS then sometimes twice the same data. This is shown in figure 1.

This has no effect at all on regular source synchronous interface that synchronize through data training pattern.

It only delays the time the synchronisation occurs.

In case of the ADC interface this behaviour has a big impact!

The interface is synchronised on one signal, the frame clock and all data inputs are shifted (bitslipped) along with the frame pattern while

it is synchronizing. Thus when something happens with the frame signal it has impact on the data capturing.

Figure 1

This is what happens:

- Due to the fact that the ISERDES bitslip operation

doesn’t occur for both ISERDES at the same time, one

ISERDES will output twice the same data before the

other.

- This effect will complete destroy any possibility for

synchronisation.

- The results from figure 1 taken apart:

After a couple of bitslip operations the output of the

ISERDES is “3” and “E” this results in the byte “AD”.

The next output of the ISERDES is “C” and “1” resulting in

a byte “52”.

The “V_p” ISERDES gets a bitslip request and executes it.

The result should be “1” and “E” resulting in “A9”.

Instead the ISERDES outputs a second time “C” and the

resulting byte is now “F8” (“C” and “E”).

The next CLKDIV clock edge the earlier operated bitslip

occurs at the output of the ISERDES, resulting in: “1” and

“1” or “03”.

And so on.

Start of

explicationA nible got a bitslip and is suddenly

delayed with one CLKDIV period.

Next page show this graphically.

! Only needed when the ADC is used in 1-wire mode. !

AdcFrame, 22 Xilinx Confidential

Page 23, © Copyright 2009 - 2011, Xilinx, Inc. All rights reserved.

Compare Equal Nibbles (2)

...SrdsOut_Isrds_p ...SrdsOut_Isrds_n

C 1

3 E

C

C

1

E

1

E

1

E

1

E

1

E

1

1

F

0

This is the pattern seen in the Figure 1

on previous page.

The “V_p” ISERDES gets

a bitslip request here.

This should result in a

bitslipped patten here:

0011 after bitslip = 0001

The bitslip doesn’t occur, in

stead the ISERDES outputs

again the previous value “C”.

It is only at the next CLKDIV clock

edge that the output of the ISERDES

shows the bitslipped value “1”.

The same happen at this side. In

stead of outputting immedately the

bitslipped value “F”, the ISERDES

outputs the previous value “1” one

more time before it shows the

bitslipped value.

If everything would workout well the ISERDES pattern output

should look as:

“C” “1” “52”

“3” “E” “AD”

“C” “1” “52”

“1” “E” “A9”

“E” “1” “56”

“1” “E” “A9”

“E” “1” “56”

“1” “F” “5B”

“E” “0” “54”

7 6 5 4 3 2 1 0

Even or _p values

Odd or _n values

“3” 0011

“E” 1110

Results in:

1 0 1 0 1 1 0 1 = “AD”

When everything went OK, one or two

extra bitslips would have produced the

searched pattern “BD6E”. To prevent this from happening, at the same

time the frame pattern is searched a circuit

should check the output of each ISERDES for

a repeating pattern and then take action.

This is described on next page.

! Only needed when the ADC is used in 1-wire mode. !

AdcFrame, 23 Xilinx Confidential

