General Description
The Virtex®-4QV family of space-grade, radiation-tolerant FPGAs meets the requirements of space applications that demand high-performance as well as control capabilities. For years, the only solution available to customers with high-performance space applications were ASICs with long development and fabrication times as well as high NREs. Now, space-grade Virtex-4QV FPGAs provide unprecedented integration with Advanced Silicon Modular Block (ASMBL™) architecture, including high-performance logic, PowerPC® embedded processors, XtremeDSP™ signal processing solution and tri-mode Ethernet MACs all in a single device. Space-grade Virtex-4QV FPGAs are a powerful alternative to ASIC and antifuse technologies, offering domain-optimized platforms:

- LX – optimized for high-performance logic
- SX – optimized for ultra-high-performance signal processing
- FX – optimized for signal processing

Space-grade, radiation-tolerant Virtex-4QV FPGAs are based on commercial Virtex-4QV technology, providing enhancements to the popular Virtex and Virtex-II families — making previous-generation designs upwards compatible. Space-grade Virtex-4QV FPGAs offer over 350 MHz performance with TID of 300 krad and are manufactured on an UMC 90 nm copper CMOS process technology.

Summary of Space-Grade Virtex-4QV Family Features
- Full V-Grade manufacturing and process flow
- Guaranteed operation over full military temperature range (–55°C to +125°C)
- Guaranteed 300 krad (Si) total ionizing dose per method 1019
- Guaranteed SEE latch-up Immunity to LET > 100 MeV/µg-cm² per method 1020
- Fully characterized for space radiation effects in heavy ion and proton environments
- SEU mitigation support with TMRTool software
- Fully tested configuration management IP cores available.
- High reliability ceramic flip-chip packaging technology
- Three device architectures: LX/SX/FX
 - XQR4VLX200:
 - High-density logic applications solution
 - Over 200,000 logic cells
 - XQR4VSX55:
 - High-performance solution for digital signal processing (DSP) applications
 - XQR4VFX60/140:
 - High-performance, full-featured solution for embedded processing platform applications
- Xesium clock technology
 - Digital clock manager (DCM) blocks
 - Additional phase-matched clock dividers (PMCD)
 - Differential global clocks
- XtremeDSP slice
 - 18 x 18, twos complement, signed multiplier
 - Optional pipeline stages
 - Built-in accumulator (48-bit) and adder/subtractor
- Smart RAM memory hierarchy
 - Distributed RAM
 - Dual-port 18-Kb RAM blocks
 - Optional pipeline stages
 - Optional programmable FIFO logic automatically remaps RAM signals as FIFO signals
 - High-speed memory interface supports DDR and DDR2, SDRAM, QDR-II, and RLDRAM II.
- SelectIO™ technology
 - 1.5V to 3.3V I/O operation
 - Built-in ChipSync™ source-synchronous technology
 - Digitally controlled impedance (DCI) active termination
 - Fine-grained I/O banking (configuration in one bank)
 - Secure chip AES bitstream encryption
 - 90-nm copper CMOS process
 - 1.2V core voltage
 - IBM PowerPC RISC processor core (FX only)
 - PowerPC 405 (PPC405) core
 - Auxiliary processor unit interface (user coprocessor)
 - Multiple Ethernet MACs (FX only)
Radiation-Hardness Assurance

The space-grade Virtex-4QV FPGAs are guaranteed for total ionizing dose (TID) life and single-event latch-up (SEL) immunity. Extensive single-event upset (SEU) characterization is performed and reported by the SEE Consortium.

Total Ionizing Dose

Each wafer lot is sampled and tested per Method 1019 to assure that device performance meets or exceeds the guaranteed DC electrical specification requirements, as well as AC and timing parameters at maximum guaranteed total dose levels.

Single-Event Latch-Up

The space-grade Virtex-4QV FPGA technology incorporates a thin epitaxial layer in the wafer manufacturing process for latch-up immunity assurance.

The qualified mask set is verified in a heavy ion environment under vacuum, and tested at maximum \(V_{CC} \) and maximum operating temperature, to a fluence exceeding 1E7 particles/cm².

Single-Event Upset

Additional experiments are conducted in heavy ion, proton, and neutron environments in order to measure and document the susceptibility and consequence of SEU(s). An industry consortium oversees and validates the test methods, empirical data collected, and resulting analysis.

Conclusions are published on the website as well as international conferences. The Single-Event Effects Consortium Reports can be found at: http://parts.jpl.nasa.gov/resources.htm

Table 1: Virtex-4QV FPGA Family Members

<table>
<thead>
<tr>
<th>Device</th>
<th>Configurable Logic Blocks (CLB)</th>
<th>Block RAM</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Array Row x Col</td>
<td>Logic Cells</td>
<td>Slices</td>
<td>Max Distributed RAM (Kb)</td>
<td>XtremeDSP Slices</td>
<td>18-Kb Blocks</td>
<td>Max Block RAM (Kb)</td>
<td>DCMs</td>
</tr>
<tr>
<td>XQR4VSX55</td>
<td>128 x 48</td>
<td>55,296</td>
<td>24,576</td>
<td>384</td>
<td>512</td>
<td>320</td>
<td>5,760</td>
<td>8</td>
</tr>
<tr>
<td>XQR4VFX60</td>
<td>128 x 52</td>
<td>56,880</td>
<td>25,280</td>
<td>395</td>
<td>128</td>
<td>232</td>
<td>4,176</td>
<td>12</td>
</tr>
<tr>
<td>XQR4VFX140</td>
<td>192 x 84</td>
<td>142,128</td>
<td>63,168</td>
<td>987</td>
<td>192</td>
<td>552</td>
<td>9,936</td>
<td>20</td>
</tr>
<tr>
<td>XQR4VLX200</td>
<td>192 x 116</td>
<td>200,448</td>
<td>89,088</td>
<td>1392</td>
<td>96</td>
<td>336</td>
<td>6,048</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 2: Radiation Tolerances

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TID</td>
<td>Total Ionizing dose</td>
<td>300</td>
<td>–</td>
<td>–</td>
<td>krad(Si)</td>
</tr>
<tr>
<td></td>
<td>Method 1019, dose rate ~50.0 rad(Si)/sec</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEL</td>
<td>Single-event latch-up immunity</td>
<td>100</td>
<td>–</td>
<td>–</td>
<td>LET (MeV-cm²/mg)</td>
</tr>
<tr>
<td></td>
<td>Heavy ion linear energy transfer (LET)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEFI</td>
<td>Single-event functional interrupt GEO 36,000 km typical day</td>
<td>–</td>
<td>1.5E–6</td>
<td>–</td>
<td>Upsets/device/day</td>
</tr>
</tbody>
</table>
System Blocks Common to all Virtex-4QV Devices

400-MHz Xesium Clock Technology

- Up to 20 digital clock manager (DCM) modules
- Precision clock deskew and phase shift
- Flexible frequency synthesis
- Dual operating modes to ease performance trade-off decisions
- Improved maximum input/output frequency
- Improved phase shifting resolution
- Reduced output jitter
- Low-power operation
- Enhanced phase detectors
- Wide phase shift range
- Companion phase-matched clock divider (PMCD) blocks
- Differential clocking structure for optimized low-jitter clocking and precise duty cycle
- 32 global clock networks
- Regional I/O and local clocks

Flexible Logic Resources

- Up to 40% speed improvement over previous generation devices
- Up to 200,000 logic cells including:
 - Up to 178,176 internal registers with clock enable (XC4VLX200)
 - Up to 178,176 look-up tables (LUTs)
 - Logic expanding multiplexers and I/O registers
- Cascadable variable shift registers or distributed memory capability
- Advanced LUT features (SRL and RAM) can be used in conjunction with configuration scrubbing

400-MHz XtremeDSP Slices

- Dedicated 18-bit x 18-bit multiplier, multiply-accumulator, or multiply-adder blocks
- Optional pipeline stages for enhanced performance
- Optional 48-bit accumulator for multiply accumulate (MACC) operation
- Integrated adder for complex-multiply or multiply-add operation
- Cascadable multiply or MACC
- Up to 100% speed improvement over previous generation devices.

400-MHz Integrated Block Memory

- Up to 10 Mb of integrated block memory
- Optional pipeline stages for higher performance
- Multi-rate FIFO support logic
 - Full and empty flag support
 - Fully programmable almost-full and almost-empty flags
 - Synchronous/asynchronous operation
- Dual-port architecture
- Independent read and write port width selection (RAM only)
- 18-Kb blocks (memory and parity/ sidew band memory support)
- Configurations from 16K x 1 to 512 x 36 (4K x 4 to 512 x 36 for FIFO operation)
- Byte-write capability (connection to PPC405, etc.)
- Dedicated cascade routing to form 32K x 1 memory without using FPGA routing
- Up to 100% speed improvement over previous generation devices.
System Blocks Specific to the Virtex-4QV FX Family

Dual PowerPC 405 RISC Cores
- Embedded PowerPC 405 (PPC405) core
 - Up to 350 MHz operation
 - Five-stage datapath pipeline
 - 16 KB instruction cache
 - 16 KB data cache
 - Enhanced instruction and data on-chip memory (OCM) controllers
 - Additional frequency ratio options between PPC405 and processor local bus
- Auxiliary processor unit (APU) Interface for direct connection from PPC405 to coprocessors in fabric
 - APU can run at different clock rates
 - Supports autonomous instructions: no pipeline stalls
 - 32-bit instruction and 64-bit data
 - 4-cycle cache line transfer

Ethernet Media Access Controller
- IEEE 802.3 compliant
- Operates at 10, 100 and 1,000 Mb/s
- Supports mode auto-detect
- Receive address filter
- Supports multiple PHY (MII, etc.) interfaces through an I/O resource
- Receive and transmit statistics available through separate interfaces
- Separate host and client interfaces
- Support for jumbo frames
- Flexible, user-configurable host interface

Note: RocketIO™ Multi-GigaBit Transceivers (MGTs) are not supported for the Virtex-4QV FX family.

Architectural Description: Virtex-4QV FPGA Array Overview

Virtex-4QV devices are user-programmable gate arrays with various configurable elements and embedded cores optimized for high-density and high-performance system designs. Virtex-4QV devices implement the following functionality:

- I/O blocks provide the interface between package pins and the internal configurable logic. Most popular and leading-edge I/O standards are supported by programmable I/O blocks (IOBs). The IOBs are enhanced for source-synchronous applications. Source-synchronous optimizations include per-bit deskew, data serializer/deserializer, clock dividers, and dedicated local clocking resources.
- Configurable logic blocks (CLBs), the basic logic elements for Xilinx FPGAs, provide combinatorial and synchronous logic as well as distributed memory and SRL16 shift register capability.
- Block RAM modules provide flexible 18 Kb true dual-port RAM, that are cascadable to form larger memory blocks. In addition, Virtex-4QV block RAMs contain optional programmable FIFO logic for increased device utilization.
- Cascadable embedded XtremeDSP slices with 18-bit x 18-bit dedicated multipliers, integrated adder, and 48-bit accumulator.
- Digital clock manager (DCM) blocks provide self-calibrating, fully digital solutions for clock distribution delay compensation, clock multiplication/division, and coarse-/fine-grained clock phase shifting.

Additionally, FX devices support the following embedded system functionality:
- Embedded IBM PowerPC 405 RISC CPU (up to 350 MHz) with the auxiliary processor unit interface
- 10/100/1000 Mb/s Ethernet media-access control (EMAC) cores.

The general routing matrix (GRM) provides an array of routing switches between each component. Each programmable element is tied to a switch matrix, allowing multiple connections to the general routing matrix. The overall programmable interconnection is hierarchical and designed to support high-speed designs.

All programmable elements, including the routing resources, are controlled by values stored in static memory cells. These values are loaded in the memory cells during configuration and can be reloaded to change the functions of the programmable elements.
Virtex-4QV FPGA Features

This section briefly describes the features of the Virtex-4QV family of space-grade FPGAs.

Input/Output (SelectIO) Blocks

IOBs are programmable and can be categorized as follows:

- Programmable single-ended or differential (LVDS) operation.
- Input block with an optional single data rate (SDR) or double data rate (DDR) register.
- Output block with an optional SDR or DDR register.
- Bidirectional block
- Per-bit deskew circuitry
- Dedicated I/O and regional clocking resources.
- Built in data serializer/deserializer

The IOB registers are either edge-triggered D-type flip-flops or level-sensitive latches.

IOBs support the following single-ended standards:
- LVTTL
- LVCMOS (3.3V, 2.5V, 1.8V, and 1.5V)
- PCI™ (33 and 66 MHz)
- PCI-X™
- GTL and GTLP
- HSTL 1.5V and 1.8V (Class I, II, III, and IV)
- SSTL 1.8V and 2.5V (Class I and II)

The DCI I/O feature can be configured to provide on-chip termination for each single-ended I/O standard and some differential I/O standards.

IOBs also support the following differential signaling I/O standards:
- LVDS and Extended LVDS (2.5V only)
- BLVDS (Bus LVDS)
- ULVDS
- HyperTransport™ technology
- Differential HSTL 1.5V and 1.8V (Class II)
- Differential SSTL 1.8V and 2.5V (Class II)

Two adjacent pads are used for each differential pair.

Two or four IOB blocks connect to one switch matrix to access the routing resources.

Per-bit deskew circuitry allows for programmable signal delay internal to the FPGA. Per-bit deskew flexibly provides fine-grained increments of delay to carefully produce a range of signal delays. This capability is especially useful for synchronizing signal edges in source synchronous interfaces.

General-purpose I/O in selected locations (four per bank) are designed to be regional clock capable I/O by adding special hardware connections for I/O in the same locality. These regional clock inputs are distributed within a limited region to minimize clock skew between IOBs. Regional I/O clocking supplements the global clocking resources.

Data serializer/deserializer capability is added to every I/O to support source synchronous interfaces. A serial-to-parallel converter with associated clock divider is included in the input path, and a parallel-to-serial converter in the output path.

An in-depth guide to the Virtex-4QV FPGA IOB is discussed in UG070, Virtex-4 FPGA User Guide.

Configurable Logic Blocks (CLBs)

A CLB resource is made up of four slices. Each slice is equivalent and contains:

- Two function generators (F and G)
- Two storage elements
- Arithmetic logic gates
- Large multiplexers
- Fast carry look-ahead chain

The function generators, F and G, are configurable as 4-input look-up tables (LUTs). Two slices in a CLB can have their LUTs configured as 16-bit shift registers, or as 16-bit distributed RAM. In addition, the two storage elements are either edge-triggered D-type flip-flops or level-sensitive latches.

Each CLB has internal fast interconnect and connects to a switch matrix to access general routing resources.

The Virtex-4QV FPGA CLBs are further discussed in the Virtex-4 FPGA User Guide.

Block RAM

The block RAM resources are 18-Kb true dual-port RAM blocks, programmable from 16K x 1 to 512 x 36, in various depth and width configurations. Each port is totally synchronous and independent, offering three read-during-write modes. Block RAM is cascadable to implement large embedded storage blocks.

Additionally, back-end pipeline registers, clock control circuitry, built-in FIFO support, and byte write enable are new features supported in the Virtex-4QV FPGA.

The block RAM feature in Virtex-4QV devices is further discussed in the Virtex-4 FPGA User Guide.
XtremeDSP Slices

The XtremeDSP slices contain a dedicated 18 x 18-bit 2’s complement signed multiplier, adder logic, and a 48-bit accumulator. Each multiplier or accumulator can be used independently. These blocks are designed to implement extremely efficient and high-speed DSP applications.

The block DSP feature in Virtex-4QV devices are further discussed in UG073, *XtremeDSP for Virtex-4 FPGAs User Guide*.

Global Clocking

The DCM and global-clock multiplexer buffers provide a complete solution for designing high-speed clock networks.

Up to 20 DCM blocks are available. To generate deskewed internal or external clocks, each DCM can be used to eliminate clock distribution delay. The DCM also provides 90°, 180°, and 270° phase-shifted versions of the output clocks. Fine-grained phase shifting offers higher resolution phase adjustment with fraction of the clock period increments. Flexible frequency synthesis provides a clock output frequency equal to a fractional or integer multiple of the input clock frequency. Virtex-4QV devices have 32 global-clock MUX buffers. The clock tree is designed to be differential. Differential clocking helps reduce jitter and duty cycle distortion.

Routing Resources

All components in Virtex-4QV devices use the same interconnect scheme and the same access to the global routing matrix. Timing models are shared, greatly improving the predictability of the performance for high-speed designs.

Boundary-Scan

Boundary-Scan instructions and associated data registers support a standard methodology for accessing and configuring Virtex-4QV devices, complying with IEEE standards 1149.1 and 1532.

Configuration

Virtex-4QV devices are configured by loading the bitstream into internal configuration memory using one of the following modes:

- Slave-serial mode
- Master-serial mode
- Slave SelectMAP mode
- Master SelectMAP mode
- Boundary-Scan mode (IEEE-1532)

Optional 256-bit AES decryption is supported on-chip (with software bitstream encryption) providing Intellectual Property security.

Application Notes and Reference Designs

General application notes and reference designs written specifically for the Virtex-4QV family are available on the Xilinx website at:

http://www.xilinx.com/support/documentation/virtex-4qv.htm

Aerospace-specific application notes such as configuration scrubbing and SEU mitigation techniques and reference designs for the Virtex-4QV family of space-grade FPGAs can be found at:

http://www.xilinx.com/support/documentation/aerospace_qpro-r.htm

Virtex-4QV Family Device/Package Combinations and Maximum I/Os

The Virtex-4QV family of space-grade FPGAs are available in advanced ceramic flip-chip column grid technology. This packaging technology provides high thermal cycle reliability, passes NASA out-gassing requirements and meets JEDEC Moisture Sensitivity Level 1. The available device and package combinations are shown in Table 3.

<table>
<thead>
<tr>
<th>Package</th>
<th>CF1140 / CN1140</th>
<th>CF1144 / CN1144</th>
<th>CF1509 / CN1509</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (mm)</td>
<td>35 x 35</td>
<td>35 x 35</td>
<td>40 x 40</td>
</tr>
<tr>
<td>Device</td>
<td>I/O</td>
<td>I/O</td>
<td>I/O</td>
</tr>
<tr>
<td>XQR4VSX55</td>
<td>640</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>XQR4VFX60</td>
<td>–</td>
<td>576</td>
<td>–</td>
</tr>
<tr>
<td>XQR4VFX140</td>
<td>–</td>
<td>–</td>
<td>768</td>
</tr>
<tr>
<td>XQR4VLX200</td>
<td>–</td>
<td>–</td>
<td>960</td>
</tr>
</tbody>
</table>
Virtex-4QV Family Ordering Information

Virtex-4QV family valid ordering combinations are shown in Figure 1. The Virtex-4QV family is only available in ceramic flip-chip packages and the -10 speed grade.

![Figure 1: Virtex-4QV Family Ordering Information](image)

Valid Ordering Combinations

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Speed Grade</th>
<th>Manufacturing Grade:</th>
</tr>
</thead>
<tbody>
<tr>
<td>XQR4VSX55</td>
<td>-10 CN 1140 V</td>
<td>Class-V (T_J = –55°C to +125°C)</td>
</tr>
<tr>
<td>XQR4VFX60</td>
<td>-10 CN 1144 V</td>
<td>Number of Pins</td>
</tr>
<tr>
<td>XQR4VLX200</td>
<td>-10 CN 1509 V</td>
<td>Package Type</td>
</tr>
</tbody>
</table>

Note: XQR4VSX55-10CF1140V, XQR4VFX60-10CF1144V, XQR4VFX140-10CF1509V, and XQR4VLX200-10CF1509V are obsolete. Refer to XCN13005, Virtex-4 and Virtex-5 QV FPGA CF Package Assembly Location Change (v2.0, dated 09/22/14) for more information.

Revision History

The following table shows the revision history for this document:

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Description of Revisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/04/08</td>
<td>1.0</td>
<td>Initial Xilinx release.</td>
</tr>
<tr>
<td>3/31/08</td>
<td>1.1</td>
<td>• Updated "General Description," page 1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated general performance metrics.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated links.</td>
</tr>
<tr>
<td>12/16/08</td>
<td>1.2</td>
<td>Changed “hardened” to “tolerant” throughout document.</td>
</tr>
<tr>
<td>02/03/10</td>
<td>1.3</td>
<td>• Made the following replacements throughout the document:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• "Radiation-tolerant" replaced with “space-grade.”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• “Virtex-4” replaced with “Virtex-4QV.”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• "QPro-V" replaced with “QPro.”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Changed total ionizing dose from 250 krad to 300 krad in "General Description," page 1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Summary of Space-Grade Virtex-4QV Family Features," page 1, and Table 2, page 2.</td>
</tr>
<tr>
<td>04/12/10</td>
<td>2.0</td>
<td>Changed the document classification from Preliminary to Product Specification. Removed QPro from the product name. Added “radiation-tolerant” to the description of the Virtex-4QV FPGA in "General Description." In Table 1, changed the Max User I/O value for the XQR4VFX140 device from 896 to 768. Added Critical Applications disclaimer.</td>
</tr>
<tr>
<td>11/25/14</td>
<td>2.1</td>
<td>Updated Table 3, Figure 1, and "Valid Ordering Combinations."</td>
</tr>
</tbody>
</table>
Notice of Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.

Automotive Applications Disclaimer

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.