

Image Noise Reduction v6.0 www.xilinx.com 24
PG011 December 18, 2013

General Design Guidelines

X-Ref Target - Figure 3-5

Figure 3-5: Input Image
X-Ref Target - Figure 3-6

Figure 3-6: Output from Noise Reduction Core

Send Feedback

Discontinued IP

Image Noise Reduction v6.0 www.xilinx.com 25
PG011 December 18, 2013

General Design Guidelines

To better illustrate the effects, here is a zoomed in portion of the image. Figure 3-7 is the
input image, and Figure 3-8 is the output of the Image Noise Reduction core.

X-Ref Target - Figure 3-7

Figure 3-7: Zoomed in Section of Input Image
X-Ref Target - Figure 3-8

Figure 3-8: Output from Noise Reduction Core

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=25

Image Noise Reduction v6.0 www.xilinx.com 26
PG011 December 18, 2013

Clock, Enable, and Reset Considerations

The Image Noise Reduction core processes samples provided via an AXI4-Stream Video
Protocol slave interface, outputs pixels via an AXI4-Stream Video Protocol master interface,
and can be controlled via an optional AXI4-Lite interface. The Image Noise Reduction block
cannot change the input/output image sizes, the input and output pixel clock rates, or the
frame rate.

RECOMMENDED: The Image Noise Reduction core is designed to be used in conjunction with
the Video In to AXI4-Stream and Video Timing Controller cores.

The Video Timing Controller core measures the timing parameters, such as number of
active scan lines, number of active pixels per scan line of the input video stream. The Video
In to AXI4-Stream core converts the incoming video stream to AXI4-Stream Video Protocol.

Typically, the Image Noise Reduction core is part of an Image Sensor Pipeline (ISP) System,
as shown in Figure 3-9.

Clock, Enable, and Reset Considerations

ACLK
The master and slave AXI4-Stream video interfaces use the ACLK clock signal as their shared
clock reference, as shown in Figure 3-10.

X-Ref Target - Figure 3-9

Figure 3-9: Image Sensor Pipeline System with Image Noise Reduction Core

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=26

Image Noise Reduction v6.0 www.xilinx.com 27
PG011 December 18, 2013

Clock, Enable, and Reset Considerations

S_AXI_ACLK
The AXI4-Lite interface uses the A_AXI_ACLK pin as its clock source. The ACLK pin is not
shared between the AXI4-Lite and AXI4-Stream interfaces. The Image Noise Reduction core
contains clock-domain crossing logic between the ACLK (AXI4-Stream and Video
Processing) and S_AXI_ACLK (AXI4-Lite) clock domains. The core automatically ensures
that the AXI4-Lite transactions completes even if the video processing is stalled with
ARESETn, ACLKEN or with the video clock not running.

ACLKEN
The Image Noise Reduction core has two enable options: the ACLKEN pin (hardware clock
enable), and the software reset option provided through the AXI4-Lite control interface
(when present).

ACLKEN may not be synchronized internally to AXI4-Stream frame processing therefore
de-asserting ACLKEN for extended periods of time may lead to image tearing.

The ACLKEN pin facilitates:

• Multi-cycle path designs (high speed clock division without clock gating)

• Standby operation of subsystems to save on power

• Hardware controlled bring-up of system components

IMPORTANT: When ACLKEN (clock enable) pins are used (toggled) in conjunction with a common clock
source driving the master and slave sides of an AXI4-Stream interface, to prevent transaction errors the
ACLKEN pins associated with the master and slave component interfaces must also be driven by the
same signal (Figure 2-2).

X-Ref Target - Figure 3-10

Figure 3-10: Example of ACLK Routing in an ISP Processing Pipeline

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=27

Image Noise Reduction v6.0 www.xilinx.com 28
PG011 December 18, 2013

System Considerations

IMPORTANT: When two cores connected through AXI4-Stream interfaces, where only the master or the
slave interface has an ACLKEN port, which is not permanently tied high, the two interfaces should be
connected through the AXI4-Stream Interconnect or AXI-FIFO cores to avoid data corruption
(Figure 2-3).

S_AXI_ACLKEN
The S_AXI_ACLKEN is the clock enable signal for the AXI4-Lite interface only. Driving this
signal Low only affects the AXI4-Lite interface and does not halt the video processing in the
ACLK clock domain.

ARESETn
The Image Noise Reduction core has two reset source: the ARESETn pin (hardware reset),
and the software reset option provided through the AXI4-Lite control interface (when
present).

IMPORTANT: ARESETn is not synchronized internally to AXI4-Stream frame processing. Deasserting
ARESETn while a frame is being process leads to image tearing.

The external reset pulse needs to be held for 32 ACLK cycles to reset the core. The ARESETn
signal only resets the AXI4-Stream interfaces. The AXI4-Lite interface is unaffected by the
ARESETn signal to allow the video processing core to be reset without halting the AXI4-Lite
interface.

IMPORTANT: When a system with multiple-clocks and corresponding reset signals are being reset, the
reset generator has to ensure all signals are asserted/de-asserted long enough so that all interfaces
and clock-domains are correctly reinitialized.

S_AXI_ARESETn
The S_AXI_ARESETn signal is synchronous to the S_AXI_ACLK clock domain, but is
internally synchronized to the ACLK clock domain. The S_AXI_ARESETn signal resets the
entire core including the AXI4-Lite and AXI4-Stream interfaces.

System Considerations
When using the Image Noise Reduction, it needs to be configured for the actual image
frame size to operate properly. To gather the frame size information from the incoming
video stream, it can be connected to the Video In to AXI4-Stream input and the Video
Timing Controller. The timing detector logic in the Video Timing Controller will gather the

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=28

Image Noise Reduction v6.0 www.xilinx.com 29
PG011 December 18, 2013

System Considerations

image sensor timing signals. The AXI4-Lite control interface on the Video Timing Controller
allows the system processor to read out the measured frame dimensions, and program all
downstream cores, such as the Image Noise Reduction, with the appropriate image
dimensions.

If the target system uses only one configuration of the Image Noise Reduction (for example.
does not need to be reprogrammed ever), you may choose to create a constant
configuration by removing the AXI4-Lite interface. This reduces the core Slice footprint.

Clock Domain Interaction
The ARESETn and ACLKEN input signals will not reset or halt the AXI4-Lite interface. This
allows the video processing to be reset or halted separately from the AXI4-Lite interface
without disrupting AXI4-Lite transactions.

The AXI4-Lite interface will respond with an error if the core registers cannot be read or
written within 128 S_AXI_ACLK clock cycles. The core registers cannot be read or written
if the ARESETn signal is held low, if the ACLKEN signal is held low or if the ACLK signal is
not connected or not running. If core register read does not complete, the AXI4-Lite read
transaction will respond with 10 on the S_AXI_RRESP bus. Similarly, if a core register write
does not complete, the AXI4-Lite write transaction will respond with 10 on the
S_AXI_BRESP bus. The S_AXI_ARESETn input signal resets the entire core.

Programming Sequence
If processing parameters such as the image size needs to be changed on the fly, or the
system needs to be reinitialized, it is recommended that pipelined Xilinx IP video cores are
disabled/reset from system output towards the system input, and programmed/enabled
from system input to system output. STATUS register bits allow system processors to
identify the processing states of individual constituent cores, and successively disable a
pipeline as one core after another is f inished processing the last frame of data.

Error Propagation and Recovery
Parameterization and/or configuration registers define the dimensions of video frames
video IP should process. Starting from a known state, based on these configuration settings
the IP can predict when the beginning of the next frame is expected. Similarly, the IP can
predict when the last pixel of each scan line is expected. SOF detected before it was
expected (early), or SOF not present when it is expected (late), EOL detected before
expected (early), or EOL not present when expected (late), signals error conditions
indicative of either upstream communication errors or incorrect core configuration.

When SOF is detected early, the output SOF signal is generated early, terminating the
previous frame immediately. When SOF is detected late, the output SOF signal is generated

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=29

Image Noise Reduction v6.0 www.xilinx.com 30
PG011 December 18, 2013

System Considerations

according to the programmed values. Extra lines / pixels from the previous frame are
dropped until the input SOF is captured.

Similarly, when EOL is detected early, the output EOL signal is generated early, terminating
the previous line immediately. When EOL is detected late, the output EOL signal is
generated according to the programmed values. Extra pixels from the previous line are
dropped until the input EOL is captured.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=30

Image Noise Reduction v6.0 www.xilinx.com 31
PG011 December 18, 2013

Chapter 4

Customizing and Generating the Core
This chapter includes information about using Xilinx tools to customize and generate the
core in the Vivado Design Suite environment.

Vivado Integrated Design Environment (IDE)
You can customize the IP for use in your design by specifying values for the various
parameters associated with the IP core using the following steps:

1. Select the IP from the IP catalog.

2. Double-click on the selected IP or select the Customize IP command from the toolbar or
popup menu.

For details, see the sections, “Working with IP” and “Customizing IP for the Design” in the
Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 3] and the “Working with the
Vivado IDE” section in the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 5].

If you are customizing and generating the core in the Vivado IP Integrator, see the Vivado
Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994) [Ref 7] for
detailed information. IP Integrator might auto-compute certain configuration values when
validating or generating the design. To check whether the values do change, see the
description of the parameter in this chapter. To view the parameter value you can run the
validate_bd_design command in the Tcl console.

Note: Figures in this chapter are illustrations of the Vivado IDE. This layout might vary from the
current version.

Interface
The Image Noise Reduction core is easily configured to meet the user's specific needs
through the Vivado tools interface. This section provides a quick reference to the
parameters that can be configured at generation time. Figure 4-1 shows the main Image
Noise Reduction screen.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/support/documentation/sw_manuals_j/v=latest/ug910-vivado-getting-started.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=31

Image Noise Reduction v6.0 www.xilinx.com 32
PG011 December 18, 2013

Interface

The GUI displays a representation of the IP symbol on the left side, and the parameter
assignments on the right side, which are described as follows:

• Component Name: The component name is used as the base name of output f iles
generated for the module. Names must begin with a letter and must be composed
from characters: a to z, 0 to 9 and “_”. The name v_noise_v6_0 cannot be used as a
component name.

• Video Component Width: Specif ies the bit width of input samples. Permitted values
are 8, 10 and 12 bits. When using IP Integrator, this parameter is automatically
computed based on the Video Component Width of the video IP core connected to the
slave AXI-Stream video interface.

• Optional Features:

° AXI4-Lite Register Interface: When selected, the core will be generated with an
AXI4-Lite interface, which gives access to dynamically program and change
processing parameters. For more information, refer to Control Interface in
Chapter 2.

° Include Debugging Features: When selected, the core will be generated with
debugging features, which simplify system design, testing and debugging. For more

X-Ref Target - Figure 4-1

Figure 4-1: Vivado IP Catalog GUI

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=32

Image Noise Reduction v6.0 www.xilinx.com 33
PG011 December 18, 2013

Output Generation

information, refer to Debug Tools in Appendix C.

IMPORTANT: Debugging features are only available when the AXI4-Lite Register Interface is selected.

° INTC Interface: When selected, the core will generate the optional INTC_IF port,
which gives parallel access to signals indicating frame processing status and error
conditions. For more information, refer to Interrupt Subsystem in Chapter 2.

• Frame Dimensions:

° Number of Pixels per Scanline: When the AXI4-Lite control interface is enabled,
the generated core will use the value specif ied in the GUI as the default value for
the lower half-word of the ACTIVE_SIZE register. When an AXI4-Lite interface is
not present, the GUI selection permanently defines the horizontal size of the frames
the generated core instance is to process.

° Number of Scanlines per Frame: When the AXI4-Lite control interface is enabled,
the generated core will use the value specif ied in the GUI as the default value for
the upper half-word of the ACTIVE_SIZE register. When an AXI4-Lite interface is
not present, the GUI selection permanently defines the vertical size (number of
lines) of the frames the generated core instance is to process.

° Maximum Number of Pixels Per Scanline: Specif ies the maximum number of
pixels per Scanline that can be processed by the generated core instance. Permitted
values are from 32 to 7680. Specifying this value is necessary to establish the depth
of internal line buffers. The actual value selected for Number of Pixels per Scanline,
or the corresponding lower half-word of the ACTIVE_SIZE register must always be
less than the value provided by Maximum Number of Pixels Per Scanline. Using a
tight upper-bound results in optimal block RAM usage. This f ield is enabled only
when the AXI4-Lite interface is selected. Otherwise contents of the f ield are
reflecting the actual contents of the Number of Pixels per Scanline f ield as for
constant mode the maximum number of pixels equals the active number of pixels.

• Filter Strength: Specif ies which of the four smoothing f ilters to use. The allowed
values are 0, 1, 2, 3, and 4. Filter Strength of 1 provides the weakest smoothing, and
Filter Strength of 4 provides the strongest smoothing. Therefore, Filter Strength of 4
provides the most noise reduction. A Filter Strength of zero will bypass the smoothing
f ilter.

Output Generation
For details, see “Generating IP Output Products” in the Vivado Design Suite User Guide:
Designing with IP (UG896).

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=33

Image Noise Reduction v6.0 www.xilinx.com 34
PG011 December 18, 2013

Chapter 5

Constraining the Core

Required Constraints
The only constraints required are clock frequency constraints for the video clock, clk , and
the AXI4-Lite clock, s_axi_aclk . Paths between the two clock domains should be
constrained with a max_delay constraint and use the datapathonly flag, causing setup
and hold checks to be ignored for signals that cross clock domains. These constraints are
provided in the XDC constraints f ile included with the core.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=34

Image Noise Reduction v6.0 www.xilinx.com 35
PG011 December 18, 2013

Chapter 6

Simulation
This chapter contains information about simulating IP in the Vivado® Design Suite
environment. For comprehensive information about Vivado simulation components, as well
as information about using supported third party tools, see the Vivado Design Suite User
Guide: Logic Simulation (UG900) [Ref 6].

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=35

Image Noise Reduction v6.0 www.xilinx.com 36
PG011 December 18, 2013

Chapter 7

Synthesis and Implementation
For details about synthesis and implementation, see “Synthesizing IP” and “Implementing
IP” in the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 3].

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=36

Image Noise Reduction v6.0 www.xilinx.com 37
PG011 December 18, 2013

Chapter 8

C Model Reference
This document introduces the bit accurate C model for the Xilinx® LogiCORE™ IP Image
Noise Reduction core, which has been developed primarily for system modeling.

Features
• Bit accurate with the Image Noise Reduction core

• Statically linked library (.lib, .o, .obj – Windows)

• Dynamically linked library (.so – Linux)

• Available for 32 and 64-bit for both Windows and Linux

• Supports all features of the Image Noise Reduction core that affect numerical results

• Designed for rapid integration into a larger system model

• Example C code is provided to show how to use the function

• Example application C code wrapper file supports 8-bit YUV and BIN

Overview
The Xilinx LogiCORE IP Image Noise Reduction core has a bit accurate C model for 32 and
64-bit Windows and Linux platforms. The model has an interface consisting of a set of C
functions, which reside in a statically link library (shared library). Full details of the interface
are provided in Using the C Model, page 39. An example piece of C code is provided to
show how to call the model.

The model is bit accurate, as it produces exactly the same output data as the core on a
frame-by-frame basis. However, the model is not cycle accurate, as it does not model the
core's latency or its interface signals.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=37

Image Noise Reduction v6.0 www.xilinx.com 38
PG011 December 18, 2013

User Instructions

User Instructions
This section contains information on using the C-model.

Unpacking and Model Contents
Unzip the v_noise_v6_0_bitacc_model_<OS>.zip f ile, containing the bit-accurate
models for the Image Noise Reduction core. This creates the directory structure and files in
Table 8-1.

Table 8-1: Directory Structure and Files of the Image Noise Reduction Bit-Accurate C Model

File Name Contents

v_noise_v6_0_bitacc_cmodel.h Model header f ile

rgb_utils.h Header f ile declaring the RGB image/video container type and
support functions

yuv_utils.h Header f ile declaring the YUV (.yuv) image f ile I/O functions

bmp_utils.h Header f ile declaring the bitmap (.bmp) image file I/O functions

video_utils.h Header f ile declaring the generalized image/video container type,
I/O and support functions

run_bitacc_cmodel.c Example code calling the C model

parsers.c Code for reading configuration file

/examples Example input files used by C model

noise.cfg Sample configuration f ile containing the core parameter settings

input_image.yuv Sample test image

input_image.hdr Sample test image header f ile

files included in the lin.zip f ile Precompiled bit accurate ANSI C reference model for simulation on
32-bit Linux platforms

libIp_v_noise_v6_0_bitacc_cmodel.so Model shared object library

files included in the lin64.zip f ile Precompiled bit accurate ANSI C reference model for simulation on
64-bit Linux platforms

libIp_v_noise_v6_0_bitacc_cmodel.so Model shared object library

files included in the nt.zip f ile Precompiled bit accurate ANSI C reference model for simulation on
32-bit Windows platforms.

libIp_v_noise_v6_0_bitacc_cmodel.dll
lib_Ip_v_noise_v6_0_bitacc_cmodel.lib

Precompiled library files for win32 compilation

files included in the nt.zip f ile Precompiled bit accurate ANSI C reference model for simulation on
64-bit Windows platforms.

libIp_v_noise_v6_0_bitacc_cmodel.dll
lib_Ip_v_noise_v6_0_bitacc_cmodel.lib

Precompiled library files for win64 compilation

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=38

Image Noise Reduction v6.0 www.xilinx.com 39
PG011 December 18, 2013

Using the C Model

Installation
For Linux, make sure the following file is in a directory that is in your $LD_LIBRARY_PATH
environment variable:

• libIp_v_noise_v6_0_bitacc_cmodel.so

Software Requirements
The Image Noise Reduction C models are compiled and tested with the software listed in
Table 8-2.

Using the C Model
The bit accurate C model is accessed through a set of functions and data structures that are
declared in the v_noise_v6_0_bitacc_cmodel.h f ile.

Before using the model, the structures holding the inputs, generics and output of the Image
Noise Reduction instance must be defined:

struct xilinx_ip_v_noise_v6_0_generics noise_generics;
struct xilinx_ip_v_noise_v6_0_inputs noise_inputs;
struct xilinx_ip_v_noise_v6_0_outputs noise_outputs;

The declaration of these structures is in the v_noise_v6_0_bitacc_cmodel.h f ile.

Table 8-3 lists the generic parameters taken by the Image Noise Reduction v6.0 IP core bit
accurate model, as well as the default values. For an actual instance of the core, these
parameters can only be set in generation time through the GUI.

Calling xilinx_ip_v_noise_v6_0_get_default_generics(&noise_generics)
initializes the generics structure with the defaults, listed in Table 8-3.

The smoothing filter selection can also be set dynamically through the AXI4-Lite interfaces.
This value is passed as an input to the core, along with the actual test image, or video

Table 8-2: Compilation Tools for the Bit Accurate C Models

Platform C Compiler

32-bit and 64-bit Linux GCC 4.1.1

32-bit and 64-bit Windows Microsoft Visual Studio 2008

Table 8-3: Model Generic Parameters and Default Values

Generic Variable Type Default Value Range Description

DATA_WIDTH int 8 8, 10, 12 Data width

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=39

Image Noise Reduction v6.0 www.xilinx.com 40
PG011 December 18, 2013

Using the C Model

sequence (see Table 8-4).

1. For the description of the input structure, see Initializing the Image Noise Reduction Input Video Structure.

The structure noise_inputs defines the values of run time parameters and the actual
input image.

Calling xilinx_ip_v_noise_v6_0_get_default_inputs(&noise_generics,
&noise_inputs) initializes the input structure with the default values (see Table 8-4).

IMPORTANT: The video_in variable is not initialized because the initialization depends on the actual
test image to be simulated. C Model Example Code, page 44 describes the initialization of the video_in
structure.

After the inputs are defined, the model can be simulated by calling this function:

int xilinx_ip_v_noise_v6_0_bitacc_simulate(
struct xilinx_ip_v_noise_v6_0_generics* generics,
struct xilinx_ip_v_noise_v6_0_inputs* inputs,
struct xilinx_ip_v_noise_v6_0_outputs* outputs).

Results are included in the outputs structure, which contains only one member, type
video_struct. After the outputs are evaluated and saved, dynamically allocated memory
for input and output video structures must be released by calling this function:

void xilinx_ip_v_noise_v6_0_destroy(
struct xilinx_ip_v_noise_v6_0_inputs *input,
struct xilinx_ip_v_noise_v6_0_outputs *output).

Successful execution of all provided functions, except for the destroy function, return value
0. A non-zero error code indicates that problems occurred during function calls.

Image Noise Reduction Input and Output Video Structure
Input images or video streams can be provided to the Image Noise Reduction v6.0
reference model using the video_struct structure, defined in video_utils.h:

struct video_struct{
 int frames, rows, cols, bits_per_component, mode;
 uint16*** data[5]; };

Table 8-4: Core Generic Parameters and Default Values

Input Variable Type Default
Value Range Description

video_in video_struct null N/A Container to hold input image or video
data1

filt_strength int 3 0, 1, 2, 3, 4 Smoothing filter selection

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=40

Image Noise Reduction v6.0 www.xilinx.com 41
PG011 December 18, 2013

Using the C Model

The Image Noise Reduction C model supports the following mode: FORMAT_C444.

Table 8-5: Member Variables of the Video Structure

Member Variable Designation

frames Number of video/image frames in the data structure.

rows Number of rows per frame.
Pertaining to the image plane with the most rows and columns, such as
the luminance channel for YUV data. Frame dimensions are assumed
constant through all frames of the video stream. However different
planes, such as y, u and v can have different dimensions.

cols Number of columns per frame.
Pertaining to the image plane with the most rows and columns, such as
the luminance channel for YUV data. Frame dimensions are assumed
constant through all frames of the video stream. However different
planes, such as y, u and v can have different dimensions.

bits_per_component Number of bits per color channel/component.All image planes are
assumed to have the same color/component representation. Maximum
number of bits per component is 16.

mode Contains information about the designation of data planes.
Named constants to be assigned to mode are listed in Table 8-6.

data Set of f ive pointers to three dimensional arrays containing data for
image planes.
Data is in 16-bit unsigned integer format accessed as
data[plane][frame][row][col].

Table 8-6: Named Video Modes with Corresponding Planes and Representations

Mode Planes Video Representation

FORMAT_MONO 1 Monochrome – Luminance only

FORMAT_RGB 3 RGB image/video data

FORMAT_C444 3 444 YUV, or YCrCb image/video data

FORMAT_C422 3 422 format YUV video, (u, v chrominance channels horizontally
sub-sampled)

FORMAT_C420 3 420 format YUV video, (u, v sub-sampled both horizontally and
vertically)

FORMAT_MONO_M 3 Monochrome (Luminance) video with Motion

FORMAT_RGBA 4 RGB image/video data with alpha (transparency) channel

FORMAT_C420_M 5 420 YUV video with Motion

FORMAT_C422_M 5 422 YUV video with Motion

FORMAT_C444_M 5 444 YUV video with Motion

FORMAT_RGBM 5 RGB video with Motion

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=41

Image Noise Reduction v6.0 www.xilinx.com 42
PG011 December 18, 2013

Using the C Model

Initializing the Image Noise Reduction Input Video
Structure
The easiest way to assign stimuli values to the input video structure is to initialize it with an
image or video. The yuv_util.h and video_util.h header f iles packaged with the bit
accurate C models contain functions to facilitate file I/O.

YUV Image Files

The header yuv_utils.h f ile declares functions that help access f iles in standard YUV
format. It operates on images with three planes (Y, U and V). The following functions
operate on arguments of type yuv8_video_struct, which is defined in yuv_utils.h.

int write_yuv8(FILE *outfile, struct yuv8_video_struct *yuv8_video);
int read_yuv8(FILE *infile, struct yuv8_video_struct *yuv8_video);

Exchanging data between yuv8_video_struct and general video_struct type frames/
videos is facilitated by these functions:

int copy_yuv8_to_video(struct yuv8_video_struct* yuv8_in,
struct video_struct* video_out);

int copy_video_to_yuv8(struct video_struct* video_in,
struct yuv8_video_struct* yuv8_out);

Note: All image/video manipulation utility functions expect both input and output structures
initialized; for example, pointing to a structure that has been allocated in memory, either as static or
dynamic variables. Moreover, the input structure must have the dynamically allocated container
(data or r, g, b) structures already allocated and initialized with the input frame(s). If the output
container structure is pre-allocated at the time of the function call, the utility functions verify and
issue an error if the output container size does not match the size of the expected output. If the
output container structure is not pre-allocated, the utility functions create the appropriate container
to hold results.

Binary Image/Video Files

The video_utils.h header f ile declares functions that help load and save generalized
video f iles in raw, uncompressed format.

int read_video(FILE* infile, struct video_struct* in_video);
int write_video(FILE* outfile, struct video_struct* out_video);

These functions serialize the video_struct structure. The corresponding file contains a
small, plain text header defining, “Mode”, “Frames”, “Rows”, “Columns”, and “Bits per Pixel”.
The plain text header is followed by binary data, 16-bits per component in scan line
continuous format. Subsequent frames contain as many component planes as defined by
the video mode value selected. Also, the size (rows, columns) of component planes can
differ within each frame as defined by the actual video mode selected.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=42

Image Noise Reduction v6.0 www.xilinx.com 43
PG011 December 18, 2013

Using the C Model

Working with Video_struct Containers

The video_utils.h header f ile defines functions to simplify access to video data in
video_struct.

int video_planes_per_mode(int mode);
int video_rows_per_plane(struct video_struct* video, int plane);
int video_cols_per_plane(struct video_struct* video, int plane);

The video_planes_per_mode function returns the number of component planes defined
by the mode variable, as described in Table 8-6. The video_rows_per_plane and
video_cols_per_plane functions return the number of rows and columns in a given
plane of the selected video structure. The following example demonstrates using these
functions in conjunction to process all pixels within a video stream stored in the in_video
variable:

for (int frame = 0; frame < in_video->frames; frame++) {
 for (int plane = 0; plane < video_planes_per_mode(in_video->mode); plane++) {
 for (int row = 0; row < rows_per_plane(in_video,plane); row++) {
 for (int col = 0; col < cols_per_plane(in_video,plane); col++) {

// User defined pixel operations on
// in_video->data[plane][frame][row][col]
 }
 }
 }
}

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=43

Image Noise Reduction v6.0 www.xilinx.com 44
PG011 December 18, 2013

C Model Example Code

C Model Example Code
An example C f ile, run_bitacc_cmodel.c, is provided to demonstrate the steps required
to run the model. After following the compilation instructions, run the example executable.
The executable takes the path/name of the input f ile and the path/name of the output f ile
as parameters. If invoked with insufficient parameters, this help message is issued:

Usage: run_bitacc_cmodel file_dir config_file

file_dir : path to the location of the input/output files

config_file: path/name of the configuration file

To ease modifying and debugging the provided top-level demonstrator using the built-in
debugging environment of Visual Studio, the top-level command line parameters can be
specified through the Project Property Pages using these steps:

1. In the Solution Explorer pane, right-click the project name and select “Properties” in the
context menu.

2. Select “Debugging” on the left pane of the Property Pages dialog box.

3. Enter the paths and f ile names of the input and output images in the “Command
Arguments” f ield.

Compiling Image Noise Reduction C Model with Example
Wrapper
This section details the steps to compile the C model with the example wrapper.

Linux (32-bit and 64-bit)

To compile the example code, perform these steps:

1. Set your $LD_LIBRARY_PATH environment variable to include the root directory where
you unzipped the model zip file using a command such as:

setenv LD_LIBRARY_PATH <unzipped_c_model_dir>:${LD_LIBRARY_PATH}

2. Copy this f ile from the /lin or /lin64 directory to the root directory:

libIp_v_noise_v6_0_bitacc_cmodel.so

3. In the root directory, compile using the GNU C Compiler with this command:

gcc -m32 -x c++ ../run_bitacc_cmodel.c ../gen_stim.c ../parsers.c -o
run_bitacc_cmodel -L. -lIp_v_noise_v6_0_bitacc_cmodel -Wl,-rpath,.

gcc –m64 -x c++ ../run_bitacc_cmodel.c ../gen_stim.c ../parsers.c -o
run_bitacc_cmodel -L. -lIp_v_noise_v6_0_bitacc_cmodel -Wl,-rpath,.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=44

Image Noise Reduction v6.0 www.xilinx.com 45
PG011 December 18, 2013

C Model Example Code

Windows (32-bit and 64-bit)

The precompiled library v_noise_v6_0_bitacc_cmodel.lib, and top-level
demonstration code run_bitacc_cmodel.c should be compiled with an ANSI C
compliant compiler under Windows. An example procedure is provided here using
Microsoft Visual Studio.

1. In Visual Studio, create a new, empty Console Application project.

2. As existing items, add:

a. libIp_v_noise_v6_0_bitacc_cmodel.lib to the Resource Files folder of the
project

b. run_bitacc_cmodel.c, gen_stim.c, and parsers.c to the Source Files folder
of the project

c. v_noise_v6_0_bitacc_cmodel.h to the Header Files folder of the project

3. After the project is created and populated, it must be compiled and linked (built) to
create an executable. To perform the build step, select “Build Solution” from the Build
menu. An executable matching the project name has been created either in the Debug
or Release subdirectories under the project location based on whether “Debug” or
“Release” has been selected in the “Configuration Manager” under the Build menu.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=45

Image Noise Reduction v6.0 www.xilinx.com 46
PG011 December 18, 2013

Chapter 9

Detailed Example Design
No example design is available at this time. For a comprehensive listing of Video and
Imaging application notes, white papers, related IP cores including the most recent
reference designs available, see the Video and Imaging Resources page at www.xilinx.com/
esp/video/refdes_listing.htm.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/esp/video/refdes_listing.htm
http://www.xilinx.com/esp/video/refdes_listing.htm
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=46

Image Noise Reduction v6.0 www.xilinx.com 47
PG011 December 18, 2013

Chapter 10

Test Bench
This chapter contains information about the provided test bench in the Vivado® Design
Suite environment.

Demonstration Test Bench
A demonstration test bench is provided with the core which enables you to observe core
behavior in a typical scenario. This test bench is generated together with the core in
Vivado Design Suite. You are encouraged to make simple modif ications to the
configurations and observe the changes in the waveform.

Directory and File Contents
The following files are expected to be generated in the in the demonstration test bench
output directory:

• axi4lite_mst.v

• axi4s_video_mst.v

• axi4s_video_slv.v

• ce_generator.v

• tb_<IP_instance_name>.v

Test Bench Structure
The top-level entity is tb_<IP_instance_name>.

It instantiates the following modules:

• DUT

The <IP> core instance under test.

• axi4lite_mst

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=47

Image Noise Reduction v6.0 www.xilinx.com 48
PG011 December 18, 2013

Chapter 10: Test Bench

The AXI4-Lite master module, which initiates AXI4-Lite transactions to program core
registers.

• axi4s_video_mst

The AXI4-Stream master module, which generates ramp data and initiates AXI4-Stream
transactions to provide video stimuli for the core and can also be used to open stimuli
f iles generated from the reference C models and convert them into corresponding
AXI4-Stream transactions.

To do this, edit tb_<IP_instance_name>.v:

a. Add define macro for the stimuli f ile name and directory path
define STIMULI_FILE_NAME<path><filename>.

b. Comment-out/remove the following line:
MST.is_ramp_gen(`C_ACTIVE_ROWS, `C_ACTIVE_COLS, 2);
and replace with the following line:
MST.use_file(`STIMULI_FILE_NAME);

For information on how to generate stimuli f iles, see Chapter 4, C Model Reference.

• axi4s_video_slv

The AXI4-Stream slave module, which acts as a passive slave to provide handshake
signals for the AXI4-Stream transactions from the core output, can be used to open the
data files generated from the reference C model and verify the output from the core.

To do this, edit tb_<IP_instance_name>.v:

a. Add define macro for the golden f ile name and directory path
define GOLDEN_FILE_NAME “<path><filename>”.

b. Comment out the following line:
SLV.is_passive;
and replace with the following line:
SLV.use_file(`GOLDEN_FILE_NAME);

For information on how to generate golden f iles, see Chapter 4, C Model Reference.

• ce_gen

Programmable Clock Enable (ACLKEN) generator.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=48

Image Noise Reduction v6.0 www.xilinx.com 49
PG011 December 18, 2013

Appendix A

Verification, Compliance, and
Interoperability

This chapter contains details about verif ication for the Image Noise Reduction core.

Simulation
A highly parameterizable test bench was used to test the Image Noise Reduction core.
Testing included the following:

• Register accesses

• Processing multiple frames of data

• AXI4-Stream bidirectional data-throttling tests

• Testing detection, and recovery from various AXI4-Stream framing error scenarios

• Testing different ACLKEN and ARESETn assertion scenarios

• Testing of various frame sizes

• Varying parameter settings

Hardware Testing
The Image Noise Reduction core has been validated in hardware at Xilinx to represent a
variety of parameterizations, including the following:

• A test design was developed for the core that incorporated a MicroBlaze™ processor,
AXI4-Lite interconnect and various other peripherals. The software for the test system
included pre-generated input and output data along with live video stream. The
MicroBlaze processor was responsible for:

° Initializing the appropriate input and output buffers

° Initializing the Image Noise Reduction core

° Launching the test

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=49

Image Noise Reduction v6.0 www.xilinx.com 50
PG011 December 18, 2013

Interoperability

° Comparing the output of the core against the expected results

° Reporting the Pass/Fail status of the test and any errors that were found

Interoperability
The core slave (input) AXI4-Stream interface can work directly with the Video In to
AXI4-Stream core. The core master (output) YCbCR 4:4:4 interface can work directly with any
Video core that consumes YCbCr 4:4:4 data. The AXI4-Stream interfaces must be compliant
with the AXI4-Stream Video Protocol as described in Video IP: AXI Feature Adoption section
of the AXI Reference Guide (UG761) [Ref 1]

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=50

Image Noise Reduction v6.0 www.xilinx.com 51
PG011 December 18, 2013

Appendix B

Migrating and Upgrading
This appendix contains information about migrating from an ISE design to the Vivado
Design Suite, and for upgrading to a more recent version of the IP core. For customers
upgrading their IP core, important details (where applicable) about any port changes and
other impact to user logic are included.

Migrating to the Vivado Design Suite
For information about migration to Vivado Design Suite, see ISE to Vivado Design Suite
Migration Guide (UG911) [Ref 2].

Upgrading in Vivado Design Suite
This section provides information about any changes to the user logic or port designations
that take place when you upgrade to a more current version of this IP core in the Vivado
Design Suite.

Parameter Changes
There are no parameter changes.

Port Changes
There are no port changes.

Other Changes
From version v5.01.a to v6.0 of the Image Noise Reduction core, no significant changes took
place.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=51

Image Noise Reduction v6.0 www.xilinx.com 52
PG011 December 18, 2013

Appendix C

Debugging
This appendix includes details about resources available on the Xilinx Support website and
debugging tools.

Finding Help on Xilinx.com
To help in the design and debug process when using the Image Noise Reduction, the Xilinx
Support web page (www.xilinx.com/support) contains key resources such as product
documentation, release notes, answer records, information about known issues, and links
for opening a Technical Support Web Case.

Documentation
This product guide is the main document associated with the Image Noise Reduction. This
guide, along with documentation related to all products that aid in the design process, can
be found on the Xilinx Support web page (www.xilinx.com/support) or by using the Xilinx
Documentation Navigator.

Download the Xilinx Documentation Navigator from the Design Tools tab on the Downloads
page (www.xilinx.com/download). For more information about this tool and the features
available, open the online help after installation.

Answer Records
Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that users have access to the
most accurate information available.

Answer Records for this core are listed below, and can also be located by using the Search
Support box on the main Xilinx support web page. To maximize your search results, use
proper keywords such as

• Product name

• Tool message(s)

Send Feedback

Discontinued IP

http://www.xilinx.com
www.xilinx.com/support
www.xilinx.com/support
www.xilinx.com/download
www.xilinx.com/support
www.xilinx.com/support
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=52

Image Noise Reduction v6.0 www.xilinx.com 53
PG011 December 18, 2013

Appendix C: Debugging

• Summary of the issue encountered

A f ilter search is available after results are returned to further target the results.

Answer Records for the Image Noise Reduction Core

AR 54526
http://www.xilinx.com/support/answers/54526.htm

Contacting Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support of product if implemented in devices that are not defined in the
documentation, if customized beyond that allowed in the product documentation, or if
changes are made to any section of the design labeled DO NOT MODIFY.

Xilinx provides premier technical support for customers encountering issues that require
additional assistance.

To contact Xilinx Technical Support:

1. Navigate to www.xilinx.com/support.

2. Open a WebCase by selecting the WebCase link located under Support Quick Links.

When opening a WebCase, include:

• Target FPGA including package and speed grade.

• All applicable Xilinx Design Tools and simulator software versions.

• A block diagram of the video system that explains the video source, destination and IP
(custom and Xilinx) used.

• Additional f iles based on the specif ic issue might also be required. See the relevant
sections in this debug guide for guidelines about which f ile(s) to include with the
WebCase.

Note: Access to WebCase is not available in all cases. Please login to the WebCase tool to see your
specif ic support options.

Debug Tools
There are many tools available to address Image Noise Reduction core design issues. It is
important to know which tools are useful for debugging various situations.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/support/clearexpress/websupport.htm
www.xilinx.com/support
http://www.xilinx.com/support/answers/54526.htm
http://www.xilinx.com/support
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=53

Image Noise Reduction v6.0 www.xilinx.com 54
PG011 December 18, 2013

Appendix C: Debugging

Vivado Lab Tools
Vivado® lab tools insert logic analyzer and virtual I/O cores directly into your design.
Vivado lab tools allows you to set trigger conditions to capture application and integrated
block port signals in hardware. Captured signals can then be analyzed. This feature
represents the functionality in the Vivado IDE that is used for logic debugging and
validation of a design running in Xilinx devices in hardware.

The Vivado lab tools logic analyzer is used to interact with the logic debug LogiCORE IP
cores, including:

• ILA 2.0 (and later versions)

• VIO 2.0 (and later versions)

See Vivado Design Suite User Guide: Programming and Debugging (UG908).

Reference Boards
Various Xilinx development boards support Image Noise Reduction. These boards can be
used to prototype designs and establish that the core can communicate with the system.

• 7 series evaluation boards

° KC705

° KC724

C Model Reference
See C Model Reference in this guide for tips and instructions for using the provided C model
f iles to debug your design.

Hardware Debug
Hardware issues can range from link bring-up to problems seen after hours of testing. This
section provides debug steps for common issues. The Vivado lab tools are a valuable
resource to use in hardware debug. The signal names mentioned in the following individual
sections can be probed using the Vivado lab tools for debugging the specific problems.

General Checks
Ensure that all the timing constraints for the core were properly incorporated from the
example design and that all constraints were met during implementation.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/v=latest/ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=54

Image Noise Reduction v6.0 www.xilinx.com 55
PG011 December 18, 2013

Appendix C: Debugging

• Does it work in post-place and route timing simulation? If problems are seen in
hardware but not in timing simulation, this could indicate a PCB issue. Ensure that all
clock sources are active and clean.

• If using MMCMs in the design, ensure that all MMCMs have obtained lock by
monitoring the LOCKED port.

• If your outputs go to 0, check your licensing.

Core Bypass Option
The bypass option facilitates establishing a straight through connection between input
(AXI4-Stream slave) and output (AXI4-Stream master) interfaces bypassing any processing
functionality.

Flag BYPASS (bit 4 of the CONTROL register) can turn bypass on (1) or off, when the core
instance Debugging Features were enabled at generation. Within the IP this switch controls
multiplexers in the AXI4-Stream path.

In bypass mode the core processing function is bypassed, and the core repeats AXI4-Stream
input samples on its output.

Starting a system with all processing cores set to bypass, then by turning bypass off from
the system input towards the system output allows verif ication of subsequent cores with
known good stimuli.

Built-in Test-Pattern Generator
The optional built-in test-pattern generator facilitates to temporarily feed the output
AXI4-Stream master interface with a predefined pattern.

Flag TEST_PATTERN (bit 5 of the CONTROL register) can turn test-pattern generation on (1)
or off, when the core instance Debugging Features were enabled at generation. Within the
IP this switch controls multiplexers in the AXI4-Stream path, switching between the regular
core processing output and the test-pattern generator. When enabled, a set of counters
generate 256 scan-lines of color-bars, each color bar 64 pixels wide, repetitively cycling
through Black, Green, Blue, Cyan, Red, Yellow, Magenta, and White colors till the end of
each scan-line. After the Color-Bars segment, the rest of the frame is f illed with a
monochrome horizontal and vertical ramp.

Starting a system with all processing cores set to test-pattern mode, then by turning
test-pattern generation off from the system output towards the system input allows
successive bring-up and parameterization of subsequent cores.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=55

Image Noise Reduction v6.0 www.xilinx.com 56
PG011 December 18, 2013

Appendix C: Debugging

Throughput Monitors
Throughput monitors enable monitoring processing performance within the core. This
information can be used to help debug frame-buffer bandwidth limitation issues, and if
possible, allow video application software to balance memory pathways.

Often times video systems, with multiport access to a shared external memory, have
different processing islands. For example, a pre-processing sub-system working in the input
video clock domain may clean up, transform, and write a video stream, or multiple video
streams to memory. The processing sub-system may read the frames out, process, scale,
encode, then write frames back to the frame buffer, in a separate processing clock domain.

Finally, the output sub-system may format the data and read out frames locked to an
external clock.

Typically, access to external memory using a multiport memory controller involves
arbitration between competing streams. However, to maximize the throughput of the
system, different memory ports may need different specific priorities. To fine tune the
arbitration and dynamically balance frame rates, it is beneficial to have access to
throughput information measured in different video datapaths.

The SYSDEBUG0 (0x0014) (or Frame Throughput Monitor) indicates the number of frames
processed since power-up or the last time the core was reset. The SYSDEBUG1 (0x0018), or
Line Throughput Monitor, register indicates the number of lines processed since power-up
or the last time the core was reset. The SYSDEBUG2 (0x001C), or Pixel Throughput Monitor,
register indicates the number of pixels processed since power-up or the last time the core
was reset.

Priorities of memory access points can be modified by the application software dynamically
to equalize frame, or partial frame rates.

Evaluation Core Timeout
The Image Noise Reduction hardware evaluation core times out after approximately eight
hours of operation. The output is driven to zero. This results in a black screen for RGB color
systems and in a dark-green screen for YUV color systems.

Interface Debug

AXI4-Lite Interfaces
Table C-1 describes how to troubleshoot the AXI4-Lite interface.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=56

Image Noise Reduction v6.0 www.xilinx.com 57
PG011 December 18, 2013

Appendix C: Debugging

Assuming the AXI4-Lite interface works, the second step is to bring up the AXI4-Stream
interfaces.

AXI4-Stream Interfaces
Table C-2 describes how to troubleshoot the AXI4-Stream interface.

Table C-1: Troubleshooting the AXI4-Lite Interface

Symptom Solution

Readback from the Version
Register through the AXI4-Lite
interface times out, or a core
instance without an AXI4-Lite
interface seems non-responsive.

Are the S_AXI_ACLK and ACLK pins connected?
The VERSION_REGISTER readout issue may be indicative of the
core not receiving the AXI4-Lite interface.

Readback from the Version
Register through the AXI4-Lite
interface times out, or a core
instance without an AXI4-Lite
interface seems non-responsive.

Is the core enabled? Is s_axi_aclken connected to vcc?
Verify that signal ACLKEN is connected to either net_vcc or to a
designated clock enable signal.

Readback from the Version
Register through the AXI4-Lite
interface times out, or a core
instance without an AXI4-Lite
interface seems non-responsive.

Is the core in reset?
S_AXI_ARESETn and ARESETn should be connected to vcc for
the core not to be in reset. Verify that the S_AXI_ARESETn and
ARESETn signals are connected to either net_vcc or to a
designated reset signal.

Readback value for the
VERSION_REGISTER is different
from expected default values

The core and/or the driver in a legacy project has not been
updated. Ensure that old core versions, implementation f iles, and
implementation caches have been cleared.

Table C-2: Troubleshooting AXI4-Stream Interface

Symptom Solution

Bit 0 of the ERROR
register reads back
set.

Bit 0 of the ERROR register, EOL_EARLY, indicates the number of pixels received
between the latest and the preceding End-Of-Line (EOL) signal was less than
the value programmed into the ACTIVE_SIZE register. If the value was
provided by the Video Timing Controller core, read out ACTIVE_SIZE register
value from the VTC core again, and make sure that the TIMING_LOCKED flag is
set in the VTC core. Otherwise, using Vivado Lab Tools, measure the number of
active AXI4-Stream transactions between EOL pulses.

Bit 1 of the ERROR
register reads back
set.

Bit 1 of the ERROR register, EOL_LATE, indicates the number of pixels received
between the last End-Of-Line (EOL) signal surpassed the value programmed
into the ACTIVE_SIZE register. If the value was provided by the Video Timing
Controller core, read out ACTIVE_SIZE register value from the VTC core
again, and make sure that the TIMING_LOCKED flag is set in the VTC core.
Otherwise, using Vivado Lab Tools, measure the number of active AXI4-Stream
transactions between EOL pulses.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=57

Image Noise Reduction v6.0 www.xilinx.com 58
PG011 December 18, 2013

Appendix C: Debugging

If the AXI4-Stream communication is healthy, but the data seems corrupted, the next step is
to find the correct configuration for this core.

Other Interfaces
Table C-3 describes how to troubleshoot third-party interfaces.

Bit 2 or Bit 3 of the
ERROR register reads
back set.

Bit 2 of the ERROR register, SOF_EARLY, and bit 3 of the ERROR register
SOF_LATE indicate the number of pixels received between the latest and the
preceding Start-Of-Frame (SOF) differ from the value programmed into the
ACTIVE_SIZE register. If the value was provided by the Video Timing
Controller core, read out ACTIVE_SIZE register value from the VTC core
again, and make sure that the TIMING_LOCKED flag is set in the VTC core.
Otherwise, using Vivado Lab Tools, measure the number EOL pulses between
subsequent SOF pulses.

s_axis_video_tready
stuck low, the
upstream core cannot
send data.

During initialization, line-, and frame-flushing, the core keeps its
s_axis_video_tready input low. Afterwards, the core should assert
s_axis_video_tready automatically.
Is m_axis_video_tready low? If so, the core cannot send data downstream,
and the internal FIFOs are full.

m_axis_video_tvalid
stuck low, the
downstream core is
not receiving data

• No data is generated during the f irst two lines of processing.
• If the programmed active number of pixels per line is radically smaller than

the actual line length, the core drops most of the pixels waiting for the
(s_axis_video_tlast) End-of-line signal. Check the ERROR register.

Generated SOF signal
(m_axis_video_tuser0)
signal misplaced.

Check the ERROR register.

Generated EOL signal
(m_axis_video_tl
ast) signal
misplaced.

Check the ERROR register.

Data samples lost
between Upstream
core and this core.
Inconsistent EOL and/
or SOF periods
received.

• Are the Master and Slave AXI4-Stream interfaces in the same clock domain?
• Is proper clock-domain crossing logic instantiated between the upstream

core and this core (Asynchronous FIFO)?
• Did the design meet timing?
• Is the frequency of the clock source driving the ACLK pin lower than the

reported Fmax reached?

Data samples lost
between Downstream
core and this core.
Inconsistent EOL and/
or SOF periods
received.

• Are the Master and Slave AXI4-Stream interfaces in the same clock domain?
• Is proper clock-domain crossing logic instantiated between the upstream

core and this core (Asynchronous FIFO)?
• Did the design meet timing?
• Is the frequency of the clock source driving the ACLK pin lower than the

reported Fmax reached?

Table C-2: Troubleshooting AXI4-Stream Interface (Cont’d)

Symptom Solution

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=58

Image Noise Reduction v6.0 www.xilinx.com 59
PG011 December 18, 2013

Appendix C: Debugging

Table C-3: Troubleshooting Third-Party Interfaces

Symptom Solution

Severe color
distortion or
color-swap when
interfacing to
third-party video IP.

Verify that the color component logical addressing on the AXI4-Stream TDATA
signal is in according to Data Interface in Chapter 2. If misaligned:
In HDL, break up the TDATA vector to constituent components and manually
connect the slave and master interface sides.

Severe color
distortion or
color-swap when
processing video
written to external
memory using the
AXI-VDMA core.

Unless the particular software driver was developed with the AXI4-Stream TDATA
signal color component assignments described in Data Interface in Chapter 2 in
mind, there are no guarantees that the software correctly identif ies bits
corresponding to color components.
Verify that the color component logical addressing TDATA is in alignment with
the data format expected by the software drivers reading/writing external
memory. If misaligned:
In HDL, break up the TDATA vector to constituent components, and manually
connect the slave and master interface sides.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=59

Image Noise Reduction v6.0 www.xilinx.com 60
PG011 December 18, 2013

Appendix D

Application Software Development
This appendix contains details about the software API provided with the core.

Programmer’s Guide
The software API is provided to allow easy access to the Image Noise Reduction AXI4-Lite
registers defined in Table 2-7. To utilize the API functions, the following two header f iles
must be included in the user C code:

#include "noise.h"
#include "xparameters.h"

The hardware settings of your system, including the base address of your Image Noise
Reduction core, are defined in the xparameters.h f ile. The noise.h f ile contains the
macro function definitions for controlling the Image Noise Reduction core.

For examples on API function calls and integration into a user application, the drivers
subdirectory of the core contains a f ile, example.c, in the v_noise_v6_0/examples
subfolder. This f ile is a sample C program that demonstrates how to use the Image Noise
Reduction core API.

Table D-1: Image Noise Reduction Driver Function Definitions

Function name and
parameterization Description

NOISE_Enable
(uint32 BaseAddress)

Enables a Image Noise Reduction instance.

NOISE_Disable
(uint32 BaseAddress)

Disables a Image Noise Reduction instance.

NOISE_Reset
(uint32 BaseAddress)

Immediately resets a Image Noise Reduction instance. The core stays in
reset until the RESET flag is cleared.

NOISE_ClearReset
(uint32 BaseAddress)

Clears the reset flag of the core, which allows it to re-sync with the input
video stream and return to normal operation.

NOISE_FSync_Reset
(uint32 BaseAddress)

Resets a Image Noise Reduction instance at the end of the current frame
being processed, or immediately if the core is not currently processing a
frame.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=60

Image Noise Reduction v6.0 www.xilinx.com 61
PG011 December 18, 2013

Programmer’s Guide

Software Reset
Software reset reinitializes registers of the AXI4-Lite control interface to their initial value,
resets FIFOs, forces m_axis_video_tvalid and s_axis_video_tready to 0.
NOISE_Reset() and NOISE_FSync_Reset() reset the core immediately if the core is
not currently processing a frame. If the core is currently processing a frame calling
NOISE_Reset(), or setting bit 30 of the CONTROL register to 1 will cause image tearing.
After calling NOISE_Reset(), the core remains in reset until NOISE_ClearReset() is
called.

Calling NOISE_FSync_Reset() automates this reset process by waiting until the core
f inishes processing the current frame, then asserting the reset signal internally, keeping the
core in reset only for 32 ACLK cycles, then deasserting the signal automatically. After calling
NOISE_FSync_Reset(), it is not necessary to call NOISE_ClearReset() for the core to
return to normal operating mode.

IMPORTANT: Calling NOISE_FSync_Reset() does not guarantee prompt, or real-time reseting of the
core. If the AXI4-Stream communication is halted mid frame, the core will not reset until the upstream
core finishes sending the current frame or starts a new frame.

Double Buffering
Registers FILT_STRENGTH and ACTIVE_SIZE are double-buffered to ensure no image
tearing happens if values are modif ied during frame processing. Values from the AXI4-Lite
interface are latched into processor registers immediately after writing, and processor
register values are copied into the active register set at the Start Of Frame (SOF) signal.
Double-buffering decouples AXI4-Lite register updates from the AXI4-Stream processing,
allowing software a large window of opportunity to update processing parameter values
without image tearing.

NOISE_ReadReg
(uint32 BaseAddress, uint32
RegOffset)

Returns the 32-bit unsigned integer value of the register. Read the
register selected by RegOffset (defined in Table 2-7).

NOISE_WriteReg
(uint32 BaseAddress, uint32
RegOffset, uint32 Data)

Write the register selected by RegOffset (defined in Table 2-7). Data is
the 32-bit value to write to the register.

NOISE_RegUpdateEnable
(uint32 BaseAddress)

Enables copying double buffered registers at the beginning of the next
frame. Refer to Double Buffering for more information.

NOISE_RegUpdateDisable
(uint32 BaseAddress)

Disables copying double buffered registers at the beginning of the next
frame. Refer to Double Buffering for more information.

Table D-1: Image Noise Reduction Driver Function Definitions

Function name and
parameterization Description

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=61

Image Noise Reduction v6.0 www.xilinx.com 62
PG011 December 18, 2013

Programmer’s Guide

If multiple register values are changed during frame processing, simple double buffering
would not guarantee that all register updates would take effect at the beginning of the
same frame. Using a semaphore mechanism, the RegUpdateEnable() and
RegUpdateDisable() functions allows synchronous commitment of register changes.
The Image Noise Reduction core will start using the updated ACTIVE_SIZE and
FILT_STRENGTH values only if the REGUPDATE flag of the CONTROL register is set (1), after
the next Start-Of-Frame signal (s_axis_video_tuser) is received. Therefore, it is
recommended to disable the register update before writing multiple double-buffered
registers, then enable register update when register writes are completed.

Reading and Writing Registers
Each software register that is defined in Table 2-7 has a constant that is defined in noise.h
which is set to the offset for that register listed in Table D-2.

RECOMMENDED: It is recommended that the application software uses the predefined register names
instead of register values when accessing core registers, so future updates to the Image Noise Reduction
drivers which may change register locations will not affect the application dependent on the Image
Noise Reduction driver.

Table D-2: Predefined Constants Defined in noise.h

Constant Name Definition Value Target Register

NOISE_CONTROL 0x0000 CONTROL

NOISE_STATUS 0x0004 STATUS

NOISE_ERROR 0x0008 ERROR

NOISE_IRQ_ENABLE 0x000C IRQ_ENABLE

NOISE_VERSION 0x0010 VERSION

NOISE_SYSDEBUG0 0x0014 SYSDEBUG0

NOISE_SYSDEBUG1 0x0018 SYSDEBUG1

NOISE_SYSDEBUG2 0x001C SYSDEBUG2

NOISE_ACTIVE_SIZE 0x0020 ACTIVE_SIZE

NOISE_FILT_STRENGTH 0x0100 FILT_STRENGTH

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=62

Image Noise Reduction v6.0 www.xilinx.com 63
PG011 December 18, 2013

Appendix E

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

http://www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf.

For a comprehensive listing of Video and Imaging application notes, white papers,
reference designs and related IP cores, see the Video and Imaging Resources page at:

http://www.xilinx.com/esp/video/refdes_listing.htm#ref_des.

References
These documents provide supplemental material useful with this user guide:

1. AXI Reference Guide (UG761)

2. ISE to Vivado Design Suite Migration Guide (UG911)

3. Vivado Design Suite User Guide: Designing with IP (UG896)

4. Vivado Design Suite User Guide: Programming and Debugging (UG908)

5. Vivado Design Suite User Guide: Getting Started (UG910)

6. Vivado Design Suite User Guide: Logic Simulation (UG900)

7. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)

Send Feedback

Discontinued IP

http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com/esp/video/refdes_listing.htm#ref_des
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug761_axi_reference_guide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=63

Image Noise Reduction v6.0 www.xilinx.com 64
PG011 December 18, 2013

Revision History

Revision History
The following table shows the revision history for this document.

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties
which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in
a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring
fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/
warranty.htm#critapps.
© Copyright 2011-2013 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their
respective owners.

Date Version Revision

10/19/2011 1.0 Initial Xilinx release.

04/24/2012 2.0 Updated core to v4.00.a and ISE tools to v14.1. Replaced XSVI interfaces
with AXI4-Stream interfaces. Added native support for EDK.

07/25/2012 3.0 Updated for core version. Added Vivado information.

10/16/2012 3.1 Updated for core version. Updated for ISE v14.3 and Vivado v2012.3 tools.
Added Vivado test bench.

03/20/2013 4.0 Updated for core version v6.0. Updated Debugging appendix. Removed
ISE chapters.

10/02/2013 6.0 Synch document version with core version. Update Constraints and Test
Bench chapters and Migration appendix.

12/18/2013 6.0 Added UltraScale Architecture support.

Send Feedback

Discontinued IP

http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=pg011&Title=LogiCORE%20IP%20Image%20Noise%20Reduction%20v6.0&releaseVersion=6.0&docPage=64

