

Using Floorplanning for Timing Closure: An Example

22 www.xilinx.com Floorplanning Methodology Guide
UG633 (v 12.1) May 3, 2010

Figure 9: Placement of Paths Failing Timing

The block RAMs with the critical paths are spread out over more of the chip then they need to be.
Floorplanning can be used to generate a tighter placement. The timing problem occurs in the paths
between block RAM. These paths are good candidates for floorplanning.

Looking at Timing Results
Analyzing the paths between block RAM will enable you to determine whether you need to floorplan,
change logic, or both to close timing. The path delay for the above critical path shows two nets with long
route delays. The details are shown in Figure 10. The path is failing timing by over 1 ns. The first net has
2.25 ns route delay. The third net has 1.5 ns route delay. Even though the fanouts are 40 and 256, the route
delay can be reduced with improved placement.

 Using Floorplanning for Timing Closure: An Example

Floorplanning Methodology Guide www.xilinx.com 23
UG633 (v 12.1) May 3, 2010

Figure 10: Detailed Data Path

A hierarchical floorplan can reduce the route delay in the critical logic. Logic delay limits the amount of
performance gain you can achieve. For designs with a large percentage of logic delay, you can change the
code or update synthesis to modify the gates.

Looking at the Gates and the Hierarchies
You can floorplan gates through individual LOC and placement constraints. Moving the gates around by
hand to improve timing is not recommended because identifying the gates is a slow process and placing
the gates is a slow and difficult process. Also, remember that when the logic in the gate floorplan
changes, the floorplan needs to be redone.

Instead ask the question, what hierarchy is timing critical? Implementation reports timing problems for
usbEngine1 in Figure 10. This level of hierarchy or one or more levels of sub-hierarchy are candidates for
hierarchical floorplanning. You must investigate the design to determine which hierarchy should be
floorplanned.

Start off by loading the critical paths into the schematic. As shown in Figure 11, the schematic will show
which gates are involved in the critical path and in which hierarchy the gates are located. You can trace
the logic around the critical gates in the schematic to see how the non-critical logic is structured.

Using Floorplanning for Timing Closure: An Example

24 www.xilinx.com Floorplanning Methodology Guide
UG633 (v 12.1) May 3, 2010

Figure 11: The Gates and Hierarchy in the Critical Path

The floorplan should constraint at least the timing critical paths between block RAMs inside usbEngine1.
So far, usbEngine1 appears to be a good candidate for floorplanning. If usbEngine1 is a large portion of
the chip, instead we would try to floorplan the four levels of sub hierarchy that contain the critical path.

To quickly determine which gates should be floorplanned, look at the placement in the Device view. In
Figure 12, the gates in the critical hierarchies are colored green. The gates in the non-critical hierarchies
are colored yellow. In the critical hierarchies there is high utilization of the block RAM. The non-critical
hierarchies contain a lot of LUT/FF logic that can be placed between the block RAM. The entire hierarchy
is approximately 20% of the design. Before floorplanning usbEngine1, examine the pinout and design
connectivity. The design may show that usbEngine1 is not a good candidate.

 Using Floorplanning for Timing Closure: An Example

Floorplanning Methodology Guide www.xilinx.com 25
UG633 (v 12.1) May 3, 2010

Figure 12: Critical and Non-Critical parts of usbEgine1

The next step is to confirm that usbEngine1 is a good candidate for floorplanning and to figure out where
it should be placed. It is helpful to create a top-level floorplan on the device. The top-level floorplan can
provide hints about what logic is influencing the placement of other logic. The blocks that are spread out
across the chip are bad candidates for floorplanning.

IO connectivity is displayed as green IO lines. An example is shown in Figure 13. Look for the lines going
from the middle IO bank on the left side of the chip to the yellow logic in the middle. Connectivity
between hierarchical blocks displays as bundles of nets between the placed hierarchies. An example of
this is shown in Figure 13. At quick glance, you can see that there are many inter-connected hierarchies.
You can see when a pinout draws a hierarchy across the chip.

Figure 13 shows the top-level floorplan for this design. It is easy to see that only one hierarchy is spread
around the chip. A second hierarchy spans the length of the right side. The pinout would support
floorplanning usbEngine1. Based on the pinout, usbEngine1 (in white) should be placed in the upper left
corner of the device.

Using Floorplanning for Timing Closure: An Example

26 www.xilinx.com Floorplanning Methodology Guide
UG633 (v 12.1) May 3, 2010

Figure 13: A Top-Level Floorplan for Analysis

Shaping the Floorplan for the Critical Hierarchy
The floorplan suggests the critical hierarchy should be in the upper left corner. Design analysis shows
that the critical hierarchy uses multiple block RAM sites. The pinout shows the critical hierarchy connects
to the two IO banks on the top left of the chip. It makes sense to try to floorplan the logic to use slices and
block RAM between these banks. A good target is to try to size the block to use 100% of the block RAM
(or DSP, if applicable) and about 80% of the slices.

Deciding What Else Should Be Floorplanned
This design has two copies of the same gates: usbEngine1 and usbEngine0. Implementation has shown
that there is a timing problem with usbEngine1, which will likely appear in usbEngine0 as well. You will
need to solve the timing problems of each block separately. Consider both USB blocks as two separate
timing critical hierarchies, and floorplan each hierarchy separately. A final floorplan that meets timing is
shown below in Figure 14.

 Using Floorplanning for Timing Closure: An Example

Floorplanning Methodology Guide www.xilinx.com 27
UG633 (v 12.1) May 3, 2010

Figure 14: A First Pass Floorplan

PlanAhead creates a construct that enables you to constrain any subset of netlist hierarchy to a region on
the chip. They are created using the New Pblock and Assign to Pblock commands. The Pblocks are
turned into AREA_GROUP constraints in the UCF to guide implementation and they keep the level(s) of
hierarchy to various regions on the chip.

INST "usbEngine1" AREA_GROUP = "pblock_usbEngine1";

AREA_GROUP "pblock_usbEngine1" RANGE=SLICE_X0Y60:SLICE_X43Y119;

AREA_GROUP "pblock_usbEngine1" RANGE=DSP48_X0Y24:DSP48_X2Y47;

AREA_GROUP "pblock_usbEngine1" RANGE=RAMB18_X0Y24:RAMB18_X2Y47;

AREA_GROUP "pblock_usbEngine1" RANGE=RAMB36_X0Y12:RAMB36_X2Y23;

These lines define the shape on the chip, and what to place into it. It is possible to set up a region that
does not constrain all these ranges. It is possible to constrain only the block RAM to sites on the chip by
using:

INST "usbEngine1" AREA_GROUP = "pblock_usbEngine1";

AREA_GROUP "pblock_usbEngine1" RANGE=RAMB18_X0Y24:RAMB18_X2Y47;

AREA_GROUP "pblock_usbEngine1" RANGE=RAMB36_X0Y12:RAMB36_X2Y23;

The slices and DSP are now unconstrained.

Floorplanning Iteratively

28 www.xilinx.com Floorplanning Methodology Guide
UG633 (v 12.1) May 3, 2010

Floorplanning Iteratively
Floorplanning is an iterative process. When it is not obvious what hierarchy should be floorplanned, use
trial and error until some timing improvement is seen. If timing degrades in the blocks that are
floorplanned, analyze why. The design may have connections that are not obvious on the first analysis.
After the first floorplan, you may need to revise the floorplan. It is helpful to save each floorplan in case
you want to revisit your work later. A simple approach generally works better and takes less time, so
keep things simple.

Some helpful hints when working iteratively:

• If critical paths are located within logic that is not floorplanned, create a new Pblock. Identify the
levels of hierarchy that contain the critical paths, assign them to a new Pblock, and place the
Pblock on the chip. If the placement is reasonable, keep this Pblock for place and route.

• If critical paths are within a single Pblock, revise the Pblock. Consider creating a Pblock within
the Pblock that contained the failing timing path to constrain the critical hierarchy more tightly.
Alternately, work with lower levels of hierarchy, remove some logic and use a smaller Pblock.

• If critical paths are between a Pblock and unconstrained hierarchy, add the unconstrained logic to
a Pblock. The first option is to create a new Pblock to hold the critical path and place it nearby.
The second option, which works if the unconstrained logic is small, is to create a Pblock to hold
both the critical path as well as the unconstrained logic.

• If critical paths are between two Pblocks, revise the Pblocks. Consider moving or reshaping the
Pblocks so they are closer. Consider embedding one Pblock inside the other. Consider moving
logic from one Pblock to the other.

• In all cases, if the logic in a critical hierarchy is large, heavily interconnected, or being pulled
around the chip by scattered loads, do not place it at first. Start working with the timing critical
hierarchy that has a good placement. Revisit the hierarchy on a later pass if it is still a problem. If
paths are a persistent timing problem consider revising the RTL and re-synthesizing.

• If sections of the design are floorplanned and consistently failing timing it may be time to take a
step back. Consider removing the floorplanning constraints to see what happens. If timing
improves, try something different. Sometimes a new approach suggests itself.

• When upgrading from one ISE® Design Suite release to the next, run the design through
implementation unconstrained. A new release may obviate the need for floorplanning.

Summary
Floorplanning can help improve timing performance and consistency. The re-use flow can bring
consistency to a design that has met timing. The hierarchical floorplanning flow can help a design that
has not met timing or can improve consistency. As the design changes it may be necessary to revisit
either approach.

