
Vivado Design Suite
User Guide

 High-Level Synthesis

UG902 (v2012.2) July 25, 2012

High-Level Synthesis www.xilinx.com 2
UG902 (v2012.2) July 25, 2012

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum
extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES
AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with,
the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such
damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct
any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce,
modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions
of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application
requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications:
http://www.xilinx.com/warranty.htm#critapps.
[© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, and other designated brands included herein
are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

Date Version Revision

7/25/12 1.0 Initial Xilinx release of the Vivado Design Suite User Guide: High-Level Synthesis.

http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com

Chapter 4: High-Level Synthesis Coding Style Guide
Preface . 200
Introduction . 200
C for Synthesis . 202
C Libraries . 240
Coding Styles for Modeling Hardware . 253
C++ for Synthesis . 286
SystemC Synthesis . 300
C Arbitrary Precision Types . 316
C++ Arbitrary Precision Types . 328
C++ Arbitrary Precision Fixed Point Types . 344

Chapter 5: High-Level Synthesis
Command Reference Guide
Using High-Level Synthesis Commands . 363
High-Level Synthesis Commands . 369
add_file . 369
autoimpl . 370
cosim_design . 372
autosyn . 374
close_project . 374
close_solution . 375
config_array_partition. 375
config_bind. 377
config_dataflow . 378
config_interface . 379
config_rtl . 382
config_schedule . 383
create_clock . 384
delete_project . 385
delete_solution . 386
elaborate . 386
help . 387
list_core . 388
list_part. 390
open_project . 391
open_solution . 392
set_clock_uncertainty . 393
High-Level Synthesis www.xilinx.com 4
UG902 (2012.2) July 25, 2012

http://www.xilinx.com

set_directive_allocation . 394
set_directive_array_map . 395
set_directive_array_partition . 397
set_directive_array_reshape . 399
set_directive_array_stream . 400
set_directive_clock . 402
set_directive_dataflow . 403
set_directive_data_pack . 405
set_directive_dependence . 406
set_directive_expression_balance . 408
set_directive_function_instantiate . 409
set_directive_inline . 410
set_directive_interface . 412
set_directive_latency. 415
set_directive_loop_flatten . 417
set_directive_loop_merge . 418
set_directive_loop_tripcount . 419
set_directive_loop_unroll . 420
set_directive_occurrence . 422
set_directive_pipeline . 424
set_directive_protocol. 425
set_directive_resource . 426
set_directive_top . 428
set_directive_unroll. 429
set_part. 431
set_top . 432

Appendix A: Additional Resources
Xilinx Resources . 433
Solution Centers. 433
References . 433
High-Level Synthesis www.xilinx.com 5
UG902 (2012.2) July 25, 2012

http://www.xilinx.com

High-Level Synthesis www.xilinx.com 7
UG902 (v2012.2) July 25, 2012

Chapter 1

High-Level Synthesis Introduction

High-Level Synthesis Introduction
This guide explains different concepts associated with High-Level Synthesis (HLS) and gives
a basic overview of High-Level Synthesis and the Xilinx® High-Level Synthesis tool.

• High-Level Synthesis transforms a C, C++ or SystemC design specification into a
Register Transfer Level (RTL) implementation which in turn can be synthesized into a
Xilinx Field Programmable Gate Array (FPGA).

• Coding style that explains how you can write C code (including C++ and SystemC) for
implementation on a Xilinx® FPGA device.

• High-Level Synthesis Reference information.

http://www.xilinx.com

Chapter 2

High-Level Synthesis User Guide

Introduction
The introduction explains different concepts associated with High-Level Synthesis (HLS) and
gives a basic overview of High-Level Synthesis, the Xilinx® HLS tool.

Functional Abstraction Level

Definitions

The FPGA design community has moved through a few abstraction levels, to manage the
complexity of the designs. Each new abstraction level hides some of the complexity of a
design implementation step, offering productivity at the cost of less visibility in the
challenges associated with the lower abstraction level:

• A transistor layout database hides the challenges in mask making and wafer processing.
The focus of the layout abstraction layer is to respect Design Rule Checks (DRC) which
models the basic layout.

• For FPGA design, a netlist avoids a detailed layout effort: the netlist is constructed with
instances from a pre-built library. The focus of the netlist abstraction layer is to define
the Boolean functionality of the design with appropriate area, performance and power.

• A Register Transfer Level (RTL) description captures the desired functionality by
defining datapath and logic between boundaries of registers. RTL synthesis creates a
netlist of Boolean functions to implement the design. The focus of the RTL abstraction
layer is to define a model for the hardware which is functionally correct.

• A functional specification removes the need to the define register boundaries (and the
specific logic required between them) to implement the desired algorithm. The focus of
the designer is only on specifying the desired functionality.

As with previous moves up the abstraction level, using a functional specification with
high-level synthesis (HLS) to automatically create the RTL design provides productivity
benefits in both verif ication and design optimization.
High-Level Synthesis www.xilinx.com 8
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction
• The signif icant benefits of acceleration in simulation time by using a functional C
language based specif ication and the resultant earlier detection of design errors has
been embraced for quite a while.

• High Level Synthesis shortens the previous manual RTL creation process and avoids
translation errors by automating the creation of the RTL from the functional
specification.

• High Level Synthesis automates the optimization of the RTL architecture, allowing
multiple architectures to quickly and easily be evaluated before committing to an
optimum solution.

C-based Specification

C-based entry is the most popular mechanism to create functional specif ications. Currently,
ANSI-C (with C99), C++ and SystemC are standards deployed by many system architects to
define the functionality of systems intended to be implemented on an FPGA.

High-Level Synthesis provides comprehensive support for C, C++ and SystemC, the IEEE
standard (IEEE-1666) used for modeling and concurrent simulation of hardware. The
constructs which cannot be synthesized are those which unbounded at elaboration time
and for which a finite sized description cannot be determined.

Native C data types live within the classic boundaries of 8-bit, 16-bit, 32-bit and 64-bit
words (char, short, int, long, long long). Neither ANSI-C nor C++ has built-in data types to
deal with bit-accurate calculations, where the exact bit-width of the data type is used (and
which results in optimally sized hardware). High-Level Synthesis provides support for
arbitrary precision data types in both C and C++. High-Level Synthesis fully supports the
arbitrary precision data types provided by SystemC.

High-Level Synthesis (HLS)
The synthesis of C into RTL employs many advanced transformations working on all aspects
of the design area and performance. High-Level Synthesis provides synthesizable support
for a large subset of all three input C standards (C, C++ and SystemC) enabling it to
synthesize the C code with minimal modifications.

High-Level Synthesis performs two distinct types of synthesis upon the design:

• Algorithm Synthesis takes the content of the functions, and synthesizes the functional
statements into RTL statements over a number of clock cycles.

• Interface Synthesis transforms the function arguments (or parameters) into RTL ports
with specific timing protocols, allowing the design to communicate with other designs
in the system.

° Interface synthesis can be performed on global variables, top-level function
arguments and the return value of the top-level function.
High-Level Synthesis www.xilinx.com 9
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction
° The types of available interfaces are:

- Wire

- Register

- One-way & two-way handshakes

- Bus

- FIFO

- RAM

° In addition, a function level protocol can be synthesized to the top-level function.
The function level protocol includes signals which control when the function can
start operation and indicate when it has completed.

High-Level Synthesis synthesis is executed in multiple steps. The effect of interface
synthesis impacts what is achievable in algorithm synthesis and vice versa. Like the
numerous decisions made during any manual RTL design, the number of available
implementations and optimizations is large and the combinations of how they impact each
other is very large. High-Level Synthesis abstracts the user away from these details and
allows the user to productively get to the best design in the shortest time.

To better understand how High-Level Synthesis is able to abstract the designer away from
the implementation details, it is recommended to review the remainder of this section
which explains some of the fundamental concepts of HLS and type of optimizations
High-Level Synthesis provides:

• Control and Datapath Extraction

• Scheduling & Binding

• Arbitrary Precision Data Types

• Optimizations

• Design Constraints

Control and Datapath Extraction

The f irst thing which is performed during HLS is to extract the control and datapath inferred
by the code. Figure 2-1 shows a small example on how this is performed.

The control functionality is provided by the loops and conditional branches in the code.
Figure 2-1 shows how the control behavior can be extracted from the code. Each time the
function requires an entry or exit from a loop, it is equivalent to entering or exiting a state
in an RTL Finite State Machine (FSM)2.

In Figure 2-1 it is assumed that all operations take a single cycle (or state) to complete. In
reality, timing delays and the clock frequency may require more cycles to complete the
operations, for example state 1 may expand to states 11, 12 and 13, the control logic may
High-Level Synthesis www.xilinx.com 10
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction
be impacted by the IO protocols inferred by interface synthesis and High-Level Synthesis
may create a more complex and optimized state machine.

The datapath extraction is more straightforward and can be determined by unrolling all the
loops and evaluating the conditional statements in the design.

The final datapath implementation in the RTL is unlikely to be as simple as that shown in
Figure 2-1: High-Level Synthesis will easily determine that the first adder is not required
since the f inal shift operation is a power of 2 and requires no hardware. More complex
optimizations and decisions will be made when the design is scheduled.

Scheduling & Binding

Scheduling and binding are the processes at the heart of high-level synthesis. High-Level
Synthesis will determine during the scheduling process in which cycle operations will occur.
The decisions made during scheduling take into account, among other things, the clock
frequency and clock uncertainty, timing information from the device technology library, as
well as area, latency and throughput directives.

For the same example code shown in Figure 2-1, multiple RTL implementations are
possible. Figure 2-2 shows just 3 possible implementations.

1. Using 4 clock cycles means a single adder and multiplier can be used, as High-Level
Synthesis can share the adder and multiplier across clock cycles: 1 adder, 1 multiplier
and 4 clock cycles to complete.

X-Ref Target - Figure 2-1

Figure 2-1: Control and Data Extraction
High-Level Synthesis www.xilinx.com 11
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction
2. If analysis of the target technology timing indicates the adder chain can complete in 1
clock cycle, a design which uses 3 adders and 4 multipliers but which f inish in 1 clock
cycle can be realized (faster but larger than option 1).

3. Take 2 clock cycles to finish but use only 2 adders and 2 multipliers (smaller than option
2 but faster than option 1).

High-Level Synthesis quickly creates the most optimum implementation based on its own
default behavior and the constraints and directives specif ied by the user. Later chapters
explain how to set constraints and directives to quickly arrive at the most ideal solution for
the specif ic requirements.

Binding is the process that determines which hardware resource, or core, is used for each
schedule operation. For example, High-Level Synthesis will automatically determine if an
adder and subtractor will used or if a single adder-subtractor can be used for both
operations.

Since the decisions in the binding process can influence the scheduling of operations, for
example, using a pipelined multiplier instead of a standard combinational multiplier,
binding decisions are considered during scheduling.

Arbitrary Precision Data Types

Native C data types are on 8-bit boundaries (8, 16, 32, 64 bits). RTL operations
(corresponding to hardware) support arbitrary widths. HLS needs a mechanism to allow the

X-Ref Target - Figure 2-2

Figure 2-2: Scheduling
High-Level Synthesis www.xilinx.com 12
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction
specification of arbitrary precision bit-widths or the RTL design may use 32-bit multipliers
when only 17-bit multipliers are required (not an issue to a C program, but a major issue in
an RTL design).

High-Level Synthesis provides arbitrary precision integer and fixed-point data types
(Table 2-1).

These arbitrary types are supported by functions which provide hardware like operations,
such as bit-slicing, concatenation and range-selection. Refer to the section “Arbitrary
Precision Data Types" section in this User Guide.

Optimizations

High-Level Synthesis can perform a number of optimizations on the design to produce high
quality RTL satisfying the performance and area goals. This section introduces a few of the
optimization techniques to give an overview of the capabilities.

Pipelining is an optimization which allows one of the major performance advantages of
hardware over software, concurrent or parallel operation, to be automatically implemented
in the RTL design.

A C program operates in a sequential manner. Given the function "top" shown on the
left-hand side of Figure 2-3, every sub-function from “func_A” to “func_C” must complete its
operation before “func_A” can once again execute.

Table 2-1: Integer Data Types

Language Integer Data Type Required Header

C [u]int<precision> (1024 bits) #include "ap_cint.h"

C++ ap_[u]int<W> (1024 bits)
ap_[u]fixed<W,I,Q,O,N>

#include "ap_int.h"
#include "ap_fixed.h"

System C sc_[u]int<W> (64 bits)
sc_[u]bigint<W> (512 bits)
sc_[u]f ixed<W,I,Q,O,N>

#include "systemc.h"

#include "sc_f ixed.h"
High-Level Synthesis www.xilinx.com 13
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction
Even if “func_A” is ready to process the next set of operations as soon as it is f inished,
functions "func_B" and "func_C" must complete execution before “func_A” can once again
begin operation.

As function “sub_func” on the right-hand side of Figure 2-3 shows, it is the same at the
operator level: the f irst operation cannot re-execute until the last is complete.

The sequential nature of the C language, or in other words its lack of concurrency, puts
artif icial dependencies on operations which must wait their turn for execution. High-Level
Synthesis provides the ability to automatically pipeline both functions and loops to ensure
the RTL design does not suffer from such limitations.

By default, High-Level Synthesis will seek to execute these operations in parallel and reduce
the overall latency of the design. In addition to this, High-Level Synthesis can improve the
throughput by pipelining these operations, allowing different executions of the function or
different loop iterations to overlap in time.

Figure 2-4 shows the result when High-Level Synthesis is used to pipeline the sub-functions
and/or operations in a loop.

X-Ref Target - Figure 2-3

Figure 2-3: Functions & Loops Without Pipelining
High-Level Synthesis www.xilinx.com 14
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction
• At the function level, dataflow optimization allows the sub-functions (“func_A”, “func_B”
and “func_C”) to execute as soon as data is available.

° Function “func_A” starts it’s next operation “before func_C” has completed its f irst
execution.

° Compared with the previous implementation in Figure 2-3, the 8 clock cycles it took
to execute the function is now only 5 cycles and “func_A” starts a new operation
every 3 clock cycles instead of every 8.

• Pipelining the loop allows the operations in a loop to execute concurrently.

° Figure 2-4 shows how loop pipelining can also positively performance compared
with Figure 2-3: the loop completes in only 4 clock cycles and processes an new
input (RD operation) every clock cycle instead of waiting for 3 clock cycles.

Another example of a design optimization which can be automatically implemented by
High-Level Synthesis is array partitioning.

Within C language descriptions, arrays are used as a convenient way to group similar
elements together. When the elements of arrays are synthesized as storage elements (that
is, when the value must be maintained across clock cycles) these array elements can be
grouped at the RTL in RAMs or they can be broken into their constituent parts and
implemented as individual registers.

• If the elements of an array are accessed one at a time, an eff icient implementation in
hardware is to keep them grouped together and mapped into a RAM.

X-Ref Target - Figure 2-4

Figure 2-4: Functions & Loops With Pipelining
High-Level Synthesis www.xilinx.com 15
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction
• If multiple elements of an array are required simultaneously, it may be more
advantageous for performance to implement them as individual registers: allowing
parallel access to the data.

Implementing an array of storage elements as individual registers may help performance
but this loses the substantial benefits of RAMs: area eff icient in all technologies and they
are readily available in the device as BRAMs (separate from the LUTs and registers).

High-Level Synthesis provides a variety of techniques to ensure arrays are implemented in
the most optimal manner:

• Partitioning large arrays into multiple smaller arrays, which can be mapped to different
instances of RAM (allowing multiple reads or writes in the same cycle).

• Enabling multiple small arrays to be implemented onto the same RAM resource.

The application of a few simple directives provides for a large number of different
implementations, from pipelining to the manipulation of arrays, ensuring that the most
optimal implementation for the particular design can be quickly and easily found.

Design Constraints

Finally, in addition to the clock period and clock uncertainty, High-Level Synthesis offers a
number of constraints including the ability to:

• Specify a specific latency across functions, loops and regions.

• Specify a limit on the number of resources used.

• Override the inherent or implied dependencies in the code and permit operations (for
example, a memory read before write)

These constrains can be applied using High-Level Synthesis directives to create a design
with the desired attributes.

Designing with High-Level Synthesis is a HLS flow allows the designer to quickly implement
an initial architecture, which will be defined by the dependencies in the code and the
default High-Level Synthesis interpretation of C language constructs, and then easily direct
the design with directives towards the desired high performance implementation.
High-Level Synthesis www.xilinx.com 16
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
Introduction to High-Level Synthesis

High-Level Synthesis Overview
As shown in Figure 2-5, High-Level Synthesis accepts as input, a C-based design
description, and directives and constraints, specif ied using the Graphical User Interface
(GUI) or a Tcl batch script. A technology library specifying the timing and area details of all
supported Xilinx device is built-in and is not required to be supplied.

High-Level Synthesis outputs RTL design f iles in Verilog, VHDL and SystemC. In addition
verif ication and implementation scripts, used to automated the RTL verif ication and RTL
synthesis steps are also created.

This section provides an overview of these various inputs and outputs.

X-Ref Target - Figure 2-5

Figure 2-5: High-Level Synthesis Use Model
High-Level Synthesis www.xilinx.com 17
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
Design Files

When referring to C, or C-based design, High-Level Synthesis covers all 3 standards:

• ANSI-C enhanced with a data type for arbitrary integer precision.

• C++ enhanced with classes for arbitrary integer precision and f ixed point precision.

• SystemC (IEEE-1666)

The documentation will elaborate on how to simulate the input specification, including
explanations of the provided arbitrary precision enhancements.

The C-based input can include a test bench. If provided, a C test bench can be re-used to
verify the output RTL: improving designer productivity by removing the need to create RTL
test benches for RTL verif ication. High-Level Synthesis supports multiple input files and
while the recommended flow separates the test bench from the design to be synthesized in
separate f iles, this is not required.

Device Technology Library

A device technology library models the area and timing of each supported Xilinx device,
enabling the optimization engine to make the appropriate trade-offs. The device
technology library is built-in to High-Level Synthesis and does not need to be supplied.

Directives and Constraints

The directives and constraints are specified in the High-Level Synthesis GUI or with the
Tcl-based command language and drive the optimization engine towards the desired
performance goals and RTL architecture.

RTL Output

The RTL output is written automatically after the successful completion of synthesis.
High-Level Synthesis supports three hardware description language standards:

• VHDL(IEEE 1076-2000)

• Verilog(IEEE 1364-2001)

• SystemC(IEEE 1666-2006 -Version 2.2-)

Note: The SystemC output from High-Level Synthesis is the design implementation at the Register
Transfer Level (RTL).
High-Level Synthesis www.xilinx.com 18
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
Simulation Output (RTL co-simulation)

High-Level Synthesis creates the scripts required to verify the generated RTL through
co-simulation with the original test bench and a variety of RTL simulators. The following RTL
simulators are supported:

• ModelSim

• VCS

• OSCI SystemC

The SystemC output can be verif ied using the built-in SystemC kernel and requires not third
part simulator or license. The supported HDL simulators require a license from the
appropriate vendor.

Implementation Output

The scripts and constraint f iles required for processing the design through RTL synthesis
and P&R on the FPGA are provided. These scripts ensure the RTL synthesis process can be
completed in a push-button manner from the High-Level Synthesis GUI.

Using High-Level Synthesis
This section provides an introduction to High-Level Synthesis, explaining how to invoke
High-Level Synthesis, create a project, use solutions to manage the RTL implementation and
apply directives for optimization. After this introduction, details on a tutorial example are
provided.

High-Level Synthesis can be invoked as a Graphical User Interface (GUI) or as a Command
Line Interface (CLI) which accepts Tcl commands in interactive or batch mode.

High-Level Synthesis Graphical User Interface

Windows

To invoke High-Level Synthesis on a PC Windows platform double-click on the desktop icon
as shown in Figure 2-6.

X-Ref Target - Figure 2-6

Figure 2-6: Vivado HLS GUI Icon
High-Level Synthesis www.xilinx.com 19
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
Linux

To invoke High-Level Synthesis on a Linux platform execute the following command at the
Linux command prompt.

$ vivado_hls

The High-Level Synthesis GUI invokes as shown in Figure 2-7.

The Getting Started options in Figure 2-7 allow the following tasks to be performed:

• Create New Project

° This will launch the project setup wizard.

X-Ref Target - Figure 2-7

Figure 2-7: GUI Mode
High-Level Synthesis www.xilinx.com 20
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
• Open project

° Navigate to an existing project.

• Open Recent Project

° Select from a list of recent projects.

The Documentation tasks available directly from the Welcome Screen (Figure 2-7) are:

• Browse Examples

° Open High-Level Synthesis examples. These can also be found in the examples
directory in the High-Level Synthesis installation area.

• Release Note Guide

° Open the Release Notes for this version of software.

• User Guide

° Open the High-Level Synthesis User Guide.

• High-Level Synthesis Tutorial

° Select a tutorial to open.

High-Level Synthesis Command Line Interface

On Windows the High-Level Synthesis Command Line Interface (CLI) can be invoked from
the start menu: Xilinx Design Tools > vivado 2012.2 > Vivado HLS Command
Prompt.

On Windows and Linux, using the -i option with the vivado_hls command will open
High-Level Synthesis in interactive mode. High-Level Synthesis will wait for Tcl commands
to be entered.

$ vivado_hls -i [-l <log_file>]

vivado_hls>

By default, High-Level Synthesis creates an vivado_hls.log f ile in the current directory.
To specify a different f ile, the -1 <log_file> option can be used.

X-Ref Target - Figure 2-8

Figure 2-8: Vivado HLS CLI Icon
High-Level Synthesis www.xilinx.com 21
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
High-Level Synthesis supports auto-completion: press the <TAB> key after the initial few
letters of a command and High-Level Synthesis will offer a list of candidates that match the
command.

vivado_hls> open<TAB>
open
open_project
open_solution

The High-Level Synthesis commands have built-in help, which can be accessed with the
help command in High-Level Synthesis. The command name can still be provided through
auto-complete:

vivado_hls> help <command>

Type the exit command to quit interactive mode, and return to the shell prompt:

vivado_hls> exit
$

Commands also can be embedded in a Tcl script and executed in batch mode with the -f
<script_file> option.

$ vivado_hls -f script.tcl

To further help with script automation High-Level Synthesis provides options which will
return details on the environment in which it is running, namely the -version option
which returns the version number of High-Level Synthesis, -system which returns
operating system High-Level Synthesis is running on, the -machine option which returns
the current machine architecture and -root_dir which returns the name of the directory
where High-Level Synthesis is installed.

Using the CLI Shell on Windows

On the Windows OS, the CLI shell is implemented using the Minimalist GNU for Windows
(minGW) environment which allows both standard Windows DOS commands to be used
and/or a subset of Linux commands to be used.

Figure 2-9 shows that both (or either) the Linux ls command and the DOS dir command
can be used to list the contents of a directory.
High-Level Synthesis www.xilinx.com 22
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

