

 Viewing the Schematic

Design Analysis and Closure Techniques www.xilinx.com 65
UG906 (v 2012.3) November 16, 2012

Figure 43: Two Designs Popup

Non-project mode has a similar state. An easy way to get into this state is to open multiple
checkpoints without closing either. Run close_design to close a checkpoint before opening a
second one. It is easiest to run the start_gui command and manage the multiple designs
using the Vivado IDE graphical user interface.

Multiple Windows

Users with multiple monitors can float windows or designs. To open an entire Design in a
different window (for example, when you have multiple Synthesized Designs open and you want
to view them simultaneously), right click the blue Design bar. Select Open in New Window
from the popup menu.

Figure 44: Float a Design

 Viewing the Schematic

Design Analysis and Closure Techniques www.xilinx.com 66
UG906 (v 2012.3) November 16, 2012

For information on floating an individual window from a design, see Using Windows in the
Vivado Design Suite User Guide: Using the Vivado IDE (UG893) at the location cited under
References in Additional Resources at the end of this document.

http://www.xilinx.com/

 Design Runs Window

Design Analysis and Closure Techniques www.xilinx.com 67
UG906 (v 2012.3) November 16, 2012

Chapter 3

Analyzing Implementation Results
This chapter discusses techniques for reviewing a design after implementation to understand
behavior inside the device, including:

• Reviewing placement for hierarchical blocks

• IOs

• Looking at connectivity

• Cross probing between views

• Reviewing detailed routing

Design Runs Window
The Design Runs window displays the state of the current runs.

For more information, see Using the Design Runs Window in the Vivado Design Suite User Guide:
Implementation (UG904) at the location cited under References in Additional Resources at the
end of this document.

If the run is running, finished cleanly, or finished with errors, the Design Runs window appears
when a run is done.

TIP: If the run is not up to date, select Force up to date from the popup menu.

Figure 45: Design Runs Window

http://www.xilinx.com/

 Design Runs Window

Design Analysis and Closure Techniques www.xilinx.com 68
UG906 (v 2012.3) November 16, 2012

The Design Runs Window does the following:

• Displays the message route_design Complete!

• Gives a brief summary.

• Reports any design error.

• Does not report whether the design met timing.

• Does not report Critical Warnings or other design issues.

If you are using the Vivado™ IDE project flow, review the Messages tab for your active
implementation. Messages are grouped by each step in the run flow. The critical information
from the implementation steps appears in this view. See the message in the log file to view the
context.

Figure 46: Messages Grouped by Step

If there are warnings or errors, review one of the reports listed above for more information.
Some messages crossprobe back to the design elements related to the message.

To analyze the design in the context of the message, you might need to open either:

• Implemented Design (using the netlist at the end of implementation), or

• Netlist Design (using the netlist before implementation)

http://www.xilinx.com/

 More Analysis

Design Analysis and Closure Techniques www.xilinx.com 69
UG906 (v 2012.3) November 16, 2012

Figure 47: Post Implementation Messages

The router gives a message if a design met timing or not.

IMPORTANT: The router is not sign off timing. Only report_timing_summary is sign
off timing.

Review the Timing Summary Report to determine if the design meets timing. If it did not meet
timing, review the timing closure techniques discussed in Chapter Five: Closure Techniques.

In the non-project flow (provided that the Vivado IDE graphical user interface is open),
messages generated during that executable session still show in the Messages Window.
Otherwise, review the following:

• Vivado IDE log

• Notes, Warnings and Errors

If you are running without the Vivado IDE graphical user interface, run the TCL
report_timing_summary command to determine if the design met timing.

More Analysis
After implementation finishes, you may want to analyze the design to see how it interacts with
the device. The Vivado IDE has a number of metrics to help you determine logic and routing
usage inside the device. The Metrics color code the device window based on a specified rule.

http://www.xilinx.com/

 More Analysis

Design Analysis and Closure Techniques www.xilinx.com 70
UG906 (v 2012.3) November 16, 2012

Figure 48: Metrics

http://www.xilinx.com/

 More Analysis

Design Analysis and Closure Techniques www.xilinx.com 71
UG906 (v 2012.3) November 16, 2012

Metrics Requiring a Placed Design

Four metrics require a placed design in order to be accurate. They do not require a fully routed
design.

• LUT Utilization per CLB

Color codes slices based on placed LUT utilization.

• FF Utilization per CLB

Color codes slices based on placed FF utilization.

• Vertical Routing Congestion per CLB

Color codes the fabric based on a best case estimate of vertical routing usage.

• Horizontal Routing Congestion per CLB

Color codes the fabric based on a best case estimate of horizontal routing usage.

Metrics in a Netlist Design With No Placement

Two metrics are applicable if there are Pblocks. They do not depend on placement.

• LUT Utilization per Pblock

Color codes the Pblock based on an estimate of how the LUTs will be placed into the slices
contained in the Pblock.

• FF Utilization per Pblock

Color codes the Pblock based on an estimate of how the FFs will be packed into the slices
contained in the Pblock.

More than one rule can be used at a time as shown in the figure above (Metrics). Both LUT
Utilization per CLB and FF Utilization per CLB are on.

TIP: If there are sections of the design with high utilization or high estimates of routing
congestion, consider tweaking the RTL or placement constraints to reduce logic and
routing utilization in that area.

Highlight Placement

Another way to review design placement is to analyze cell placement. The Highlight Primitives
command helps in this analysis.

1. In the Netlist Window, select the levels of hierarchy to analyze.

2. From the popup menu, select Highlight Primitives > Select a color.

3. If you select multiple levels of hierarchy, select Cycle Colors.

The primitives that make up the cells are color coded in the Device window.

http://www.xilinx.com/

 More Analysis

Design Analysis and Closure Techniques www.xilinx.com 72
UG906 (v 2012.3) November 16, 2012

Figure 49: Highlight Hierarchy

The color coding readily shows that UsbEngine0 (in yellow):

• Uses a number of Block RAM and DSP48 cells.

• Is in the top clock region of the chip except where the DSPs bleed out.

• Is not highly intermingled with other logic (cells) in the design.

It is easy to see that the fftEngine (in red) and the cpuEngine (in brown) are intermingled.
The two blocks primarily use different resources (DSP48 as opposed to slices). Intermingling
makes best use of the device.

Show Connectivity

It can be useful to analyze a design based on connectivity. You might want to review the
placement of all the logic driven by an input, a Block RAM, or a bank of DSPs. Run the Show
Connectivity command for this purpose. Show Connectivity takes a set of cells or nets as a
seed, and selects objects of the other type. Use this technique to build up and see cones of logic
inside the design.

http://www.xilinx.com/

 More Analysis

Design Analysis and Closure Techniques www.xilinx.com 73
UG906 (v 2012.3) November 16, 2012

Figure 50: Show Connectivity

http://www.xilinx.com/

 More Analysis

Design Analysis and Closure Techniques www.xilinx.com 74
UG906 (v 2012.3) November 16, 2012

The figure above (Show Connectivity) shows a Block RAM driving logic inside the device
including OBUFs. A synthesis pragma stops synthesis from placing the output flop in the Block
RAM during memory inferencing.

Fixed and Unfixed Logic

The tool tracks two different types of placement:

• Elements placed by the user (shown in orange) are Fixed.

• Fixed logic is stored in the XDC.

• Fixed logic normally has a LOC constraint and might have a BEL constraint.

• Elements placed by the tool (shown in blue) are Unfixed.

http://www.xilinx.com/

 More Analysis

Design Analysis and Closure Techniques www.xilinx.com 75
UG906 (v 2012.3) November 16, 2012

Figure 51: Fixed Unfixed

The IO and Block RAM placement is Fixed. The slice logic is Unfixed.

http://www.xilinx.com/

 Manual Floorplanning

Design Analysis and Closure Techniques www.xilinx.com 97
UG906 (v 2012.3) November 16, 2012

Advantages of Detailed Gate-Level Floorplanning

• Detailed gate-level floorplanning works with hand routing nets.

• Detailed gate-level floorplanning can extract the most performance out of the device.

Disadvantages of Detailed Gate-Level Floorplanning

• Detailed gate-level floorplanning is time consuming.

• Detailed gate-level floorplanning requires extensive knowledge of the device and design.

• Detailed gate-level floorplanning may need to be redone if the netlist changes.

 RECOMMENDED: Use detailed gate-level floorplanning as a last resort.

Information Re-Use

Re-use information from a design that met timing. Use this flow if the design does not
consistently meet timing. To re-use information:

1. Open two implementation runs:

• One for a run that is meeting timing.

• One for a run that is not meeting timing.

TIP: On a computer with multiple monitors, select Open Implementation in New
Window to open a design in a new window. For more information, see Multiple
Windows.

2. Look for the differences between the two designs.

• Identify some failing timing paths from report_timing_summary.

• On the design that is meeting timing, run report_timing in min_max mode to time those
same paths on the design that meets timing.

3. Compare the timing results:

• –clock skew

• logic delay

• placement

• route_delays

4. If there are differences in the amount of logic delay between path end points, revisit the
synthesis runs.

 Manual Floorplanning

Design Analysis and Closure Techniques www.xilinx.com 98
UG906 (v 2012.3) November 16, 2012

Review Element Placement

Review the placement of the elements in the design. Compare two IO reports to review the IO
placement and IO standards. Make sure all the IOs are placed. A simple search finds all IOs
without fixed placement as shown in the following figure (IO Is Not Fixed).

Figure 66: IO Is Not Fixed

Consider placing all the clock primitives based on the run that met timing. The Clock Utilization
Report lists the placement of the clock tree drivers, as shown in the following figure (Clock
Locations).

http://www.xilinx.com/

 Manual Floorplanning

Design Analysis and Closure Techniques www.xilinx.com 99
UG906 (v 2012.3) November 16, 2012

Figure 67: Clock Locations

The LOC constraints can easily copied into your XDC constraints file.

Many designs have met timing by reusing the placement of the Block RAMs and DSPs. Select
Edit > Find to list the instances.

Figure 68: DSP or RAM

http://www.xilinx.com/

 Manual Floorplanning

Design Analysis and Closure Techniques www.xilinx.com 100
UG906 (v 2012.3) November 16, 2012

Adding Placement Constraints

Fix the logic to add the placement constraints to your XDC.

1. Select the macros from the find results.

2. Right click.

3. Select Fix Instances.

Figure 69: Selecting the Logic to Fix

RECOMMENDED: Analyze the placement based on hierarchy name and highlight before
fixing the placement.

Re-Using Placement

It is fairly easy to re-use the placement of:

• IOs

• Global Clock Resources

• BlockRam

• DSP macros

Re-using this placement helps to reduce the variability in results from one netlist revision to the
next. These primitives generally have stable names. The placement is usually easy to maintain.

http://www.xilinx.com/

 Manual Floorplanning

Design Analysis and Closure Techniques www.xilinx.com 101
UG906 (v 2012.3) November 16, 2012

TIP: Do not reuse the placement of general slice logic. Do not re-use the placement for
sections of the design that are likely to change.

Hand Floorplanning

Consider gate floorplanning for a design that has never met timing, and in which changing the
netlist or the constraints are not good options.

RECOMMENDED: Try hierarchical floorplanning before considering gate level
floorplanning.

Hierarchical Floorplanning

Hierarchical floorplanning allows you to place one or more levels of hierarchy in a region on the
chip. This region provides guidance to the placer. The placer does the detailed placement.

Hierarchical floorplan creation is fast compared to gate floorplanning. A good floorplan can
improve timing. The floorplan is resistant to design change.

The level of hierarchy acts as a container for all the gates. It will generally work if the netlist
changes.

Hand Gate Placement

Hand gate placement can obtain the best performance from a device. When using this
technique, designers generally use it only on a small block of the design. They may hand place a
small amount of logic around a high speed IO interface, or hand place Block RAMs and DSPs.
Hand placement can be slow.

All floorplanning techniques can require significant engineering time. They may require
floorplan iterations. If any of the gate names change, the floorplan constraints must be updated.

In hierarchical floorplanning:

• Identify the lower levels of hierarchy that contain the critical path.

• Use the top level floorplan to identify where to place them.

• Implementation places individual gates.

• Has comprehensive knowledge of the gates and timing paths.

• Generally does a good job of fine grain placement.

When floorplanning, you should have an idea of final pinout. It is useful to have the IOs fixed.
The IOs can provide anchor points for starting the floorplan. Logic that communicates to IOs
migrates towards the fixed pins.

http://www.xilinx.com/

 Manual Floorplanning

Design Analysis and Closure Techniques www.xilinx.com 102
UG906 (v 2012.3) November 16, 2012

TIP: Place blocks that communicate with IOs near their IOs. If the pinout is pulling a block
apart, consider pinout or RTL modification.

http://www.xilinx.com/

 Manual Floorplanning

Design Analysis and Closure Techniques www.xilinx.com 103
UG906 (v 2012.3) November 16, 2012

Figure 70: IO Components Pulling Design Apart

http://www.xilinx.com/

 Manual Floorplanning

Design Analysis and Closure Techniques www.xilinx.com 104
UG906 (v 2012.3) November 16, 2012

The floorplan shown in the figure above (IO Components Pulling Design Apart) may not help
timing. Consider splitting the block apart, changing the source code, or constraining only the
Block RAMs and DSPs.

The Pblock above is represented by the XDC constraints:
create_Pblock Pblock_fftEngine
add_cells_to_Pblock [get_Pblocks Pblock_fftEngine] [get_cells -quiet [list
usbEngine1]]
resize_Pblock [get_Pblocks Pblock_fftEngine] -add
{SLICE_X8Y105:SLICE_X23Y149}
resize_Pblock [get_Pblocks Pblock_fftEngine] -add {DSP48_X0Y42:DSP48_X1Y59}
resize_Pblock [get_Pblocks Pblock_fftEngine] -add {RAMB18_X0Y42:RAMB18_X1Y59}
resize_Pblock [get_Pblocks Pblock_fftEngine] -add {RAMB36_X0Y21:RAMB36_X1Y29}

There is one line assigning the level of hierarchy to the Pblock. There are four resource types
each with its own grid. Logic that is not constrained by a grid can go anywhere in the device. To
constrain just the Block RAMs in the level of hierarchy, disable the other Pblock grids.

http://www.xilinx.com/

 Manual Floorplanning

Design Analysis and Closure Techniques www.xilinx.com 105
UG906 (v 2012.3) November 16, 2012

Figure 71: Pblock Grids

The resulting XDC constraints the simplified Pblock:
create_Pblock Pblock_fftEngine
add_cells_to_Pblock [get_Pblocks Pblock_fftEngine] [get_cells -quiet [list
usbEngine1]]
resize_Pblock [get_Pblocks Pblock_fftEngine] -add {RAMB18_X0Y42:RAMB18_X1Y59}
resize_Pblock [get_Pblocks Pblock_fftEngine] -add {RAMB36_X0Y21:RAMB36_X1Y29}

The Block RAMs are constrained in the device, but the slice logic is free to migrate to the IOs.

TIP: When floorplanning logic, be careful not to floorplan hierarchy in such a manner that
it crosses the central config block.

http://www.xilinx.com/

Design Analysis and Closure Techniques www.xilinx.com 111
UG906 (v 2012.3) November 16, 2012

Appendix A

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the Xilinx®
Support website at:

www.xilinx.com/support

For a glossary of technical terms used in Xilinx documentation, see:

www.xilinx.com/company/terms.htm

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual property
at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References
These documents provide supplemental material useful with this guide:

Vivado Design Suite 2012.3 Documentation,
www.xilinx.com/support/documentation/dt_vivado_vivado2012-3.htm

