

Embedded Processor Hardware Design www.xilinx.com 40
UG898 (v2013.1) March 20, 2013

Chapter 2

Using a MicroBlaze Processor in an
Embedded Design

Introduction to MicroBlaze Processor Design
The Vivado IDE IP integrator is a powerful tool that lets you stitch together a processor-based
system.

The MicroBlaze™ embedded processor is a Reduced Instruction Set Computer (RISC) core,
optimized for implementation in Xilinx® Field Programmable Gate Arrays (FPGAs).

The following figure shows a functional block diagram of the MicroBlaze core.

Figure 40 Block Diagram of MicroBlaze Core

 Creating an IP Integrator Design with the MicroBlaze Processor

Embedded Processor Hardware Design www.xilinx.com 41
UG898 (v2013.1) March 20, 2013

The MicroBlaze processor is highly configurable: you can select a specific set of features
required by your design.

The fixed feature set of the processor includes:

• Thirty-two 32-bit general purpose registers

• 32-bit instruction word with three operands and two addressing modes

• 32-bit address bus

• Single issue pipeline

In addition to these fixed features, the MicroBlaze processor has parameterized values that allow
selective enabling of additional functionality.

RECOMMENDED: Older (deprecated) versions of MicroBlaze support a subset of the optional
features described in this manual. Only the latest (preferred) version of MicroBlaze (v9.0) supports
all options. Xilinx recommends that new designs use the latest preferred version of the MicroBlaze
processor.

See the MicroBlaze Processor Reference Guide (UG081) for more information about the
MicroBlaze processor design.

Creating an IP Integrator Design with the MicroBlaze
Processor
Designing with a MicroBlaze processor is different using the Vivado IDE than it was using the
ISE® Design Suite and Embedded Development Kit (EDK).

The Vivado IDE uses the IP integrator tool for embedded development. The IP integrator is a
GUI-based interface that lets you stitch together complex IP subsystems.

A variety of IP are available in the Vivado IDE IP Catalog to meet the needs of complex designs.

You can also add custom IP to the IP Catalog.

Creating an IP Integrator Design with the MicroBlaze processor

When you select the IP integrator Create Block Design button, a dialog box
opens for you to enter the Design Name, as shown in the following figure.

http://www.xilinx.com/
http://www.xilinx.com/support/%20documentation/sw_manuals/mb_ref_guide.pdf

 Creating an IP Integrator Design with the MicroBlaze Processor

Embedded Processor Hardware Design www.xilinx.com 42
UG898 (v2013.1) March 20, 2013

Figure 41: Design Name Dialog Box

The Block Design window opens, as shown in the following figure.

Figure 42: Block Design Window

Within the empty design, there is an option to Add IP from the IP Catalog. You can also right-
click in the canvas to open an option to add IP.

http://www.xilinx.com/

 Creating an IP Integrator Design with the MicroBlaze Processor

Embedded Processor Hardware Design www.xilinx.com 43
UG898 (v2013.1) March 20, 2013

Select the Add IP option, and a Search box opens where you can search for, and select the
MicroBlaze processor, as shown in the following figure.

Figure 43: Search IP with MicroBlaze Processing System

When you select the MicroBlaze IP, the Vivado IP integrator adds the IP to the design, and a
graphical representation of the processing system displays, as shown in the following figure.

Figure 44: Graphical Display of Default MicroBlaze Processing System

The Tcl command is specified as follows:

create_bd_cell -type ip -vlnv xilinx.com:ip:microblaze:9.0
microblaze_1

Double-click the MicroBlaze IP in the canvas to invoke the Recustomize IP process, which
displays the Re-customize IP for the MicroBlaze processor, dialog box.

http://www.xilinx.com/

 MicroBlaze Configuration Window

Embedded Processor Hardware Design www.xilinx.com 44
UG898 (v2013.1) March 20, 2013

MicroBlaze Configuration Window
The MicroBlaze Configuration wizard provides:

• A template-based configuration dialog box for one-click configuration

• Estimates of MicroBlaze relative area, frequency, and performance, based on options set
in the dialog boxes, giving immediate feedback

• Guidance through the configuration process

• Tool tips for all configuration options to understand the effect of each option

• Direct access to all options in the tabbed interface using the Advanced button

The MicroBlaze Configuration wizard has the following wizard pages, which enable based on the
selected General Settings options:

• Configuration Wizard: First page that showing template selection and general settings.

• General: Selection of execution units, optimization that is always shown

• Exceptions: Exceptions to enable, which is shown if exceptions are selected on the first
page

• Debug: Number of breakpoints and watchpoints, which is shown if debug is enabled

• Cache: Cache settings, which is shown if caches are selected

• MMU: MMU settings, which is shown if memory management is selected

• Buses: Bus settings. Last page, always shown

http://www.xilinx.com/

 MicroBlaze Configuration Window

Embedded Processor Hardware Design www.xilinx.com 45
UG898 (v2013.1) March 20, 2013

The following figure shows the Welcome page of the MicroBlaze Configuration wizard.

Figure 45: MicroBlaze Configuration Wizard

The left of the dialog box shows the relative values of the frequency, area and performance for
the current settings.

• Frequency: This value is the estimated frequency percentage relative to the maximum
achievable frequency with this architecture and speed grade, which gives an indication of the
relative frequency that can be achieved with the current settings.

Note: This is an estimate based on a set of predefined benchmark systems, which can
deviate up to 30% from the actual value. Do not take this estimation as a guarantee that
the system can reach a corresponding frequency.

• Area: This value is the estimated area percentage in LUTs relative to the maximum area
using this architecture, which gives an indication of the relative MicroBlaze area achievable
with the current settings.

Note: This is an estimate, which can deviate up to 5% from the actual value. Do not take
this estimation as a guarantee that the implemented area matches this value.

http://www.xilinx.com/

 MicroBlaze Configuration Window

Embedded Processor Hardware Design www.xilinx.com 46
UG898 (v2013.1) March 20, 2013

• Performance: This value indicates the relative MicroBlaze performance achievable with the
current settings, relative to the maximum possible performance.

Note: This is an estimate based on a set of benchmarks, and actual performance can vary
significantly depending on the user application.

• BRAMs: This value is the total number of block RAMs used by MicroBlaze. The instruction
and data caches, and the branch target cache use block RAMS, and well as the Memory
Management Unit (MMU), which uses one block RAM in virtual or protected mode.

• DSP48 or MULT18: This value is the total number of DSP48 or MULT18 used by MicroBlaze.
The integer multiplier, and the Floating Point Unit (FPU) use this total value to implement
float multiplication.

MicroBlaze Configuration Wizard Welcome Page

The simplest way to use the MicroBlaze™ Configuration wizard is to select one of the six
predefined templates, each defining a complete MicroBlaze configuration. You can use a
predefined template as a starting point for a specific application, using the wizard to refine the
configuration, by adapting performance, frequency, or area.

Whenever you modify an option, you received direct feedback that shows the estimated relative
change in performance, frequency, and area in the information display. The options are:

• Minimum Area: The smallest possible MicroBlaze core. No caches or debug.

• Maximum Performance: Maximum possible performance. Large caches and debug, as well
as all execution units.

• Maximum Frequency: Maximum achievable frequency. Small caches and no debug, with
few execution units.

• Linux with MMU: Settings suitable to get high performance when running Linux with MMU.
Memory Management enabled, large caches and debug, as well as all execution units.

• Low-end Linux with MMU: Settings corresponding to the MicroBlaze Embedded Reference
System. Provides suitable settings for Linux development on low-end systems. Memory
Management enabled, small caches and debug.

• Typical: Settings giving a reasonable compromise between performance, area, and
frequency. Suitable for standalone programs, and low-overhead kernels. Caches and debug
enabled.

http://www.xilinx.com/

 MicroBlaze Configuration Window

Embedded Processor Hardware Design www.xilinx.com 47
UG898 (v2013.1) March 20, 2013

The following figure shows the Predefined Configurations in the Configuration wizard.

Figure 46: MicroBlaze Predefined Configuration Settings

General Settings
If a pre-defined template is not used, you can select the options from the pages, which are
available for fine-tuning the MicroBlaze processor, based on your design needs. As you position
the mouse over these different options, a tooltip informs you what the particular option means.
The following bullets detail these options.

• Select implementation to optimize area (with lower instruction throughput): Enables area
optimized MicroBlaze. When this parameter is set, the implementation optimizes area,
particularly by reducing the pipeline from five stages to three.

RECOMMENDED: It is recommended to enable are optimization on architectures with limited
resources such as Artix®-7. However, if performance is critical, this parameter should not be set,
because then some instructions require additional clock cycles to execute.

http://www.xilinx.com/

 MicroBlaze Configuration Window

Embedded Processor Hardware Design www.xilinx.com 48
UG898 (v2013.1) March 20, 2013

Note: You cannot use the Memory Management Unit (MMU), Branch Target Cache, Instruction
Cache Streams, Instruction Cache Victims, Data Cache Victims, and AXI Coherency Extension (ACE)
with area optimization.

• Enable Microblaze Debug Module Interface: Enable debug to be able to download and
debug programs using Xilinx Microprocessor Debugger. Unless area resources are very
critical, it is recommended that debugging be always enabled.

• Use Instruction and Data Caches: You can use MicroBlaze with an optional instruction
cache for improved performance when executing code that resides outside the LMB address
range. The instruction cache has the following features:

• Direct mapped (1-way associative)

• User selectable cacheable memory address range

• Configurable cache and tag size

• Caching over AXI4 interface (M_AXI_IC) or CacheLink (XCL) interface

• Option to use 4 or 8 word cacheline

• Cache on and off controlled using a bit in the MSR

• Optional WIC instruction to invalidate instruction cache lines

• Optional stream buffers to improve performance by speculatively prefetching
instructions

• Optional victim cache to improve performance by saving evicted cache lines

• Optional parity protection that invalidates cache lines if a Block RAM bit error is detected

• Optional data width selection to either use 32 bits, an entire cache line, or 512 bits

Activating caches significantly improves performance when using external memory, even if you
must select small cache sizes to reduce resource usage.

Enable Exceptions: Enables exceptions when using an operating system with exception support,
or when explicitly adding exception handlers in a standalone program.

Use Memory Management: Enables Memory Management if planning to use an operating
system – such as Linux –with support for virtual memory of memory protection.

Note: When you enable area optimized MicroBlaze or stack protection, the Memory
Management Unit is not available.

• Enable Discrete Ports: Enables discrete ports on the MicroBlaze instance, which is useful for:

• Generating software breaks (Ext_BRK, Ext_NM_BRK),

• Managing processor sleep and wakeup (Sleep, Wakeup, Dbg_Wakeup),

• Handling debug events (Debug_Stop, MB_Halted)

• Signaling error when using fault tolerance (MB_Error).

http://www.xilinx.com/

 MicroBlaze Configuration Window

Embedded Processor Hardware Design www.xilinx.com 49
UG898 (v2013.1) March 20, 2013

MicroBlaze Configuration Wizard General Page

The following figure shows the General Page of the MicroBlaze Configuration wizard.

Figure 47: General Page of the MicroBlaze Configuration Wizard

http://www.xilinx.com/

 MicroBlaze Configuration Window

Embedded Processor Hardware Design www.xilinx.com 50
UG898 (v2013.1) March 20, 2013

Instructions
• Enable Barrel Shifter: Enables a hardware barrel shifter in MicroBlaze. This parameter

enables the instructions bsrl, bsra, bsll, bsrli, bsrai, and bslli. Enabling the barrel
shifter can dramatically improve the performance of an application, but increases the size of
the processor. The compiler uses the barrel shift instructions automatically if this parameter
is enabled.

• Enable Floating Point Unit: Enables a single-precision Floating Point Unit (FPU) based on
the IEEE-754 standard. Using the FPU significantly improves the single-precision, floating
point performance of the application and significantly increases the size of MicroBlaze.

Setting this parameter to BASIC enables the instructions fadd, frsub, fmul, fdiv, and
fcmp. Setting it to EXTENDED also enables the instruction flt, finit, and fsqrt. The
compiler will automatically use the FPU instructions corresponding to setting of this
parameter.

• Enable Integer Multiplier: Enables a hardware integer multiplier in MicroBlaze. This
parameter enables the instructions mul and muli when set to MUL32.

When set to MUL64, the additional instructions mulh, mulhu, and mulhsu for 64-bit
multiplication are also enabled. This parameter can be set to NONE to free up MUL or
DSP48 primitives in the device for other uses. Setting this parameter to NONE has a
minor effect on the area of MicroBlaze. When this parameter is enable the compiler uses
the mul instructions automatically.

• Enable Integer Divider: Enables a hardware integer divider in MicroBlaze. This parameter
enables the instructions, idiv and idivu. Enabling this parameter can improve the
performance of an application that performs integer division, but increases the size of the
processor. When this parameter is enabled, the compiler uses the idiv instructions
automatically.

• Enable Additional Machine Status Register Instructions: Enables additional machine
status register instructions for setting and clearing bits in the MSR. This parameter enables
the instructions msrset and msrclr. Enabling this parameter improves the performance of
changing bits in the MSR.

• Enable Pattern Comparator: Enables pattern compare instructions pcmpbf, pcmpeq, and
pcmpne. The pattern compare bytes find (pcmpbf) instructions return the position of the
first byte that matches between two words and improves the performance of string and
pattern matching operations. The SDK libraries use the pcmpbf instructions automatically
when this parameter is enabled.

The pcmpeq and pcmpne instructions return 1 or 0 based on the equality of the two
words. These instructions improve the performance of setting flags and the compiler
uses them automatically.

Selecting this option also enables count leading zeroes instruction, clz. The clz
instruction can improve performance of priority decoding, and normalization.

http://www.xilinx.com/

 MicroBlaze Configuration Window

Embedded Processor Hardware Design www.xilinx.com 51
UG898 (v2013.1) March 20, 2013

• Enable Reversed Load/Store and Swap Instructions: Enables reversed load/store and
swap instructions lbur, lhur, lwr, sbr, shr, swr, swapb, and swaph. The reversed
load/store instructions read or write data with opposite endianness, and the swap
instructions allow swapping bytes or half-words in registers. These instructions are mainly
useful to improve performance when dealing with big-endian network access with a little-
endian MicroBlaze.

• Enable Additional Stream Instructions: Provides additional functionality when using
AXI4-Stream links, including dynamic access instruction GETD and PUTD that use registers to
select the interface. The instructions are also extended with variants that provide:

• Atomic GET, GETD, PUT, and PUTD instructions

• Test-only GET and GETD instructions

• GET and GETD instructions that generate a stream exception if the control bit is not set.

IMPORTANT: The stream exception must be enabled to use these instructions, and at least
one stream link must be selected.

Optimization
Select implementation to optimize area (with lower instruction throughput):This option is the
same as in the General Settings options. Enable Branch Target Cache: When set, implements
the branch target, which improves branch performance by predicting conditional branches and
caching branch targets.

Note: To be able to use the Branch Target Cache, do not enable area optimization.

Fault Tolerance
• Enable Fault Tolerance Support : When enabled, MicroBlaze protects internal Block RAM

with parity, and supports Error Correcting Codes (ECC) in LMB block RAM, including
exception handling of ECC errors. This prevents a bit flip in block RAM from affecting the
processor function.

• If this value is auto-computed (by not overriding it), fault tolerance is automatically
enabled in MicroBlaze when ECC is enabled in connected LMB BRAM controllers.

• If fault tolerance is explicitly disabled, the IP integrator tool enables ECC automatically in
connected LMB BRAM Controllers.

• If fault tolerance is explicitly disabled, ECC in connected LMB BRAM controllers is not
affected.

http://www.xilinx.com/

 MicroBlaze Configuration Window

Embedded Processor Hardware Design www.xilinx.com 52
UG898 (v2013.1) March 20, 2013

MicroBlaze Configuration Wizard Exception Page

The following figure shows the MicroBlaze exception options page.

Figure 48: Exception Options in the MicroBlaze Configuration Wizard

IMPORTANT: You must provide your own exception handler.

Math Exceptions
Enable Floating Point Unit Exceptions: Enables exceptions generated by the Floating Point
Unit (FPU). The FPU throws exceptions for all of the IEEE standard conditions: underflow,
overflow, divide-by-zero, and illegal operations. In addition, the MicroBlaze FPU throws a de-
normalized operand exception.

http://www.xilinx.com/

 MicroBlaze Configuration Window

Embedded Processor Hardware Design www.xilinx.com 53
UG898 (v2013.1) March 20, 2013

• Enable Integer Divide Exception: Causes an exception if the divisor (rA) provided to the
idiv or idivu instruction is zero, or if an overflow occurs for idiv.

Bus Exceptions
• Enable Instruction-side AXI Exception: Causes an exception if there is an error on the

instruction-side AXI bus.

• Enable Data-side AXI Exception: Causes an exception if there is an error on the data-side
AXI bus.

Other Exceptions
• Enable Illegal Instruction Exception: Causes an exception if the major opcode is invalid.

• Enable Unaligned Data Exception: When enabled, the tools automatically insert software
to handle unaligned accesses.

• Generated Illegal Instruction Exception for NULL Instructions: MicroBlaze compiler does
not generate, nor do SDK libraries use the NULL instruction code (0x00000000). This code
can only exist legally if it is hand-assembled. Executing a NULL instruction normally means
that the processor has jumped outside the initialized instruction memory.

If C_OPCODE_0x_ILLEGAL is set, MicroBlaze traps this condition; otherwise, it treats the
command as a NOP. This setting is only available if you have enabled Illegal Instruction
Exception.

• Enable Stream Exception: Enables stream exception handling for Advanced eXtensible
Interface (AXI) read accesses. You must enable additional stream instructions to use stream
exception handling.

• Enable Stack Protection: Ensures that memory accesses using the stack pointer (R1) to
ensure they are within the limits set by the Stack Low Register (SLR) and Stack High Register
(SHR). If the check fails with exceptions enabled, a Stack Protection Violation exception
occurs. The Xilinx Microprocessor Debugger (XMD) also reports if the check fails.

http://www.xilinx.com/

 MicroBlaze Configuration Window

Embedded Processor Hardware Design www.xilinx.com 54
UG898 (v2013.1) March 20, 2013

MicroBlaze Configuration Wizard Cache Page

The following figure shows the Cache options page for the MicroBlaze Configuration.

Figure 49: Cache Options Page of the MicroBlaze Configuration Wizard

• Enable Instruction Cache: Uses this cache only when it is also enabled in software by
setting the instruction cache enable (ICE) bit in the machine status register (MSR).

Instruction Cache Features:

• Size in Bytes: Specifies the size of the instruction cache if C_USE_ICACHE is enabled.
Not all architectures permit all sizes.

• Line Length: Select between 4 or 8 word cache line length for cache miss-transfers from
external instruction memory.

• Base Address: Specifies the base address of the instruction cache. This parameter is used
only if C_USE_ICACHE is enabled.

• High Address: Specifies the high address of the instruction cache. This parameter is
used only if C_USE_ICACHE is enabled.

• Enable Writes: When enabled, one can invalidate instruction cache lines with the wic
instruction. This parameter is used only if C_USE_ICACHE is enabled.

http://www.xilinx.com/

 MicroBlaze Configuration Window

Embedded Processor Hardware Design www.xilinx.com 55
UG898 (v2013.1) March 20, 2013

• Use Cache for All Memory Accesses: When enabled, uses the dedicated cache interface
on MicroBlaze is for all accesses within the cacheable range to external instruction
memory, even when the instruction cache is disabled.

Otherwise, the instruction cache uses the peripheral AXI for these accesses when the
instruction cache is disabled. When enabled, an external memory controller must provide
only a cache interface MicroBlaze instruction memory. Enable this parameter when using
AXI Coherency Extension (ACE).

• Use Distributed RAM for Tags: Uses the instruction cache tags to hold the address and
a valid bit for each cacheline. When enabled, the instruction cache tags are stored in
Distributed RAM instead of Block RAM. This saves Block RAM, and can increase the
maximum frequency.

• Data Width: Specifies the instruction cache bus width when using AXI Interconnect. The
width can be set to:

• 32-bit : Bursts are used to transfer cache lines for 32-bit words depending on the
cache line length,

• Full Cacheline: A single transfer is performed for each cache line, with data width
128 or 256 bits depending on cache line length

• 512-bit: Performs a single transfer, but only 128 or 256 bits are used depending on
cacheline length.

The two wide settings require that the cache size is at least 8 KB or 16KB depending
upon cache line length. To reduce the AXI interconnect size, this setting must match the
interconnect data width. In most cases, you can obtain the best performance with the
wide settings.

Note: This setting is not available with area optimization, AXI Coherency Extension (ACE),
or when you enable fault tolerance.

• Number of Streams: Specifies the number of stream buffers used by the instruction
cache. A stream buffer is used to speculatively pre-fetch instructions, before the
processor requests them. This often improves performance, because the processor
spends less time waiting for instruction to be fetched from memory.

Note: To be able to use instruction cache streams, do not enable area optimization or AXI
Coherency Extension (ACE).

• Number of Victims: Specifies the number of instruction cache victims to save. A victim is
a cacheline that is evicted from the cache. If no victims are saved, all evicted lines must
be read from memory again, when they are needed. By saving the most recent lines, they
can be fetched much faster, thus improving performance.

It is possible to save 2, 4, or 8 cachelines. The more cachelines that are saved, the better
performance becomes. The recommended value is 8 lines.

Note: To be able to use instruction cache victims, do not enable area optimization or AXI
Coherency Extension (ACE).

http://www.xilinx.com/

 MicroBlaze Configuration Window

Embedded Processor Hardware Design www.xilinx.com 56
UG898 (v2013.1) March 20, 2013

MicroBlaze Configuration Wizard MMU Page

The following figure shows the MMU page of the MicroBlaze Configuration.

Figure 50: MicroBlaze Configuration Wizard MMU Page

Memory Management: Specifies the Memory Management Unit (MMU) implementation.

• To disable the MMU, set this parameter to None (0), the default.

• To enable only the User Mode and Privileged Mode instructions, set this parameter to
Usermode (1). To enable Memory Protection, set the parameter to Protection (2).

• To enable full MMU functionality, including virtual memory address translation, set this
parameter to Virtual (3).

When Usermode is set, it enables the Privileged Instruction exception. When
Protection or Virtual is set, it enables the Privileged Instruction exception and the
four MMU exceptions (Data Storage, Instruction Storage, Data TLB Miss, and Instruction
TLB Miss).

http://www.xilinx.com/

 MicroBlaze Configuration Window

Embedded Processor Hardware Design www.xilinx.com 57
UG898 (v2013.1) March 20, 2013

Memory Management Features:

• Data Shadow Translation Look-Aside Buffer Size: Defines the size of the instruction
shadow Translation Look-Aside Buffer (TLB). This TLB caches data address translation
information, to improve performance of the translation. The selection is a trade-off
between smaller size and better performance: the default value is 4.

• Instruction Shadow Translation Look-Aside Buffer Size: Defines the size of the
instruction shadow Translation Look-Aside Buffer (TLB). This TLB caches instruction
address translation information to improve performance of the translation. The selection
is a trade-off between smaller size and better performance: the default value is 2.

• Enable Access to Memory Management Special Registers: Enables access to the
Memory Management Special Register using the MFS and MTS instructions:

• Minimal (0) only allows writing TLBLO, TLBHI, and TLBX.

• Read (1) adds reading to TLBLO, TLBHI, TLBX, PID, and ZPR.

• Write (2) allows writing all registers, and reading TLBX.

• Full (3) adds reading of TLBLO, TLBHI, TLBX, PID, and ZPR.

In many cases, it is not necessary for the software to have full read access. For example,
this is the case for Linux Memory Management code. It is then safe to set access to
Write, to save area. When using static memory protection, access can be set to
Minimal, because the software then has no need to use TLBSX, PID, and ZPR.

• Number of Memory Protection Zones: Specifies the number of memory protection
zones to implement. In many cases memory management software does not use all
available zones. For example, the Linux Memory Management code only uses two zones.
In this case, it is safe to reduce the number of implemented zones, to save area.

• Privileged Instructions: Specifies which instructions to allow in User Mode.

• The Full Protection (0) setting ensures full protection between processes.

• The Allow Stream Instructions (1) setting makes it possible to use AXI4-
Stream instructions in User Mode.

CAUTION! It is strongly discouraged to change this setting from Full Protection, unless it
is necessary for performance reasons.

http://www.xilinx.com/

 MicroBlaze Configuration Window

Embedded Processor Hardware Design www.xilinx.com 58
UG898 (v2013.1) March 20, 2013

MicroBlaze Configuration Wizard Debug Page

The following figure shows the MicroBlaze Configuration Wizard Debug page.

Figure 51: MicroBlaze Configuration Wizard Debug Page

Debug Options
Enable Microblaze Debug Module Interface: Enables the MicroBlaze Debug Module (MDM)
interface to MicroBlaze for debugging. With this option, you can use Xilinx Microprocessor
Debugger (XMD) to debug the processor over the Joint Test Action Group (JTAG) boundary-
scan interface. You can disable this option after you finish debugging to reduce the size of
MicroBlaze.

Hardware Breakpoints:

• Number of PC Breakpoints: Specifies the number of program counter (PC) hardware
breakpoints for debugging. This parameter controls the number of hardware breakpoints
Xilinx Microprocessor Debugger (XMD) can set. This option only has meaning if
C_DEBUG_ENABLED is on. The MicroBlaze processor takes a noticeable frequency hit the
larger this parameter is set.

http://www.xilinx.com/

 MicroBlaze Configuration Window

Embedded Processor Hardware Design www.xilinx.com 59
UG898 (v2013.1) March 20, 2013

• Number of Write Address Watchpoints: Specifies the number of write address
breakpoints for debugging. This parameter controls the number of write watchpoints
Xilinx Microprocessor Debugger (XMD) can set. This option only has meaning if
C_DEBUG_ENABLED is on. MicroBlaze take a noticeable frequency hit, the larger this
parameter is set.

• Number of Read Address Watchpoints: Specifies the number of read address
breakpoints for debugging. This parameter controls the number of read watch points
Xilinx Microprocessor Debugger (XMD) can set. This option only has meaning if
C_DEBUG_ENBLED is on. The MicroBlaze processor takes a noticeable frequency hit the
larger this parameter is set.

RECOMMENDED: It is recommended that these two options be set to 0 if you are not using
watch points for debugging

MicroBlaze Configuration Wizard Buses Page

The following figure shows the Buses options page of the MicroBlaze configuration wizard.

Figure 52: MicroBlaze Configuration Wizard Buses Page

http://www.xilinx.com/

 MicroBlaze Configuration Window

Embedded Processor Hardware Design www.xilinx.com 60
UG898 (v2013.1) March 20, 2013

Local Memory Bus Interfaces:

• Enable Local Memory Bus Instruction Interface: Enables LMB instruction interface.
When this instruction is set, the Local Memory Bus (LMB) instruction interface is
available. A typical MicroBlaze system uses this interface to provide fast local memory for
instructions. Normally, it connects to an LMB bus using an LMB Bus Interface Controller
to access a common Block RAM.

• Enable Local Memory Bus Data Interface: Enables LMB data interface. When this
parameter is set, the Local Memory Bus (LMB) data interface is available. A typical
MicroBlaze system uses this interface to provide fast local memory for data and vectors.
Normally, it connects to an LMB bus using an LMB Bus Interface Controller to access a
common Block RAM.

AXI and ACE Interfaces:

• Select Bus Interface: When this parameter is set to AXI, then AXI is selected for both
peripheral and cache access. When this parameter is set to ACE, then AXI is selected for
peripheral access and AXI Coherency Extension (ACE) is selected for cache access,
providing cache coherency support.

Note: To be able to use ACE, area optimization, write-back data cache, instruction cache
streams or victims, and cache data widths other than 32-bit must not be set. You must set
Use Cache for All Memory Accesses for both caches.

• Enable Peripheral AXI Interface Instruction Interface: When this parameter is set, the
peripheral AXI4-Lite instruction interface is available. In many cases, this interface is not
needed, in particular if the Instruction Cache is enabled and C_ICACHE_ALWAYS_USED
is set.

• Enable Peripheral AXI Data Interface: When this parameter is set, the peripheral AXI
data interface is available. This interface usually connects to peripheral I/O using AXI4-
Lite, but it can be connected to memory also. If you enable exclusive access, the AXI4
protocol is used.

Stream Interfaces:

• Number of Stream Links: Specifies the number of pairs of AXI4-Stream link interfaces.
Each pair contains a master and a slave interface. The interface provides a unidirectional,
point-to-point communication channel between MicroBlaze and a hardware accelerator
or coprocessor. This is a low-latency interface, which provides access between the
MicroBlaze register file and the FPGA fabric.

Other Interfaces:

• Enable Trace Bus Interface: When this parameter is set, the Trace bus interface is
available. This interface is useful for debugging, execution statistics and performance
analysis. In particular, connecting interface to a ChipScope™ Logic Analyzer (ILA) allows
tracing program execution with clock cycle accuracy.

http://www.xilinx.com/

 Completing Connections

Embedded Processor Hardware Design www.xilinx.com 70
UG898 (v2013.1) March 20, 2013

Exporting Hardware to the Software Development Kit (SDK)

See Using the Software Development Kit (SDK) for more information.

In general, after you generate the bitstream for your design, you are ready to export your
hardware definition to SDK.

Select File > Export > Export Hardware for SDK, as shown in the following figure

Figure 61: Exporting Hardware for SDK

This launches the Export Hardware for SDK dialog box, where you can choose the available
export options.

You can export the hardware definition and the bitstream, and launch SDK through the Export
Hardware for SDK dialog box.

Figure 62: Export Hardware for SDK dialog box

After you export the hardware definition to SDK, and launch SDK, you can start writing your
software application. Also, you can perform more debug and software from SDK.

Alternatively, you can import the software ELF file back into a Vivado IDE project, and integrate
that file with an FPGA bitstream for further download and testing.

