
SDSoC Environment

User Guide

UG1027 (2015.4) December 14, 2015

Revision History
The following table shows the revision history for this document.

Date Version Revision

12/14/2015 2015.4 Updates to reflect changes to software.

09/30/2015 2015.2.1 • Added Chapter for Performance Measurement Using the AXI Performance
Monitor.

• Updates to reflect changes to software.

07/20/2015 2015.2 First version of the document.

SDSoC Environment User Guide www.xilinx.com 2
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=2

Table of Contents
Revision History ..2

Table of Contents...3

Chapter 1: The SDSoC Environment 6
Getting Started ..6

Feature Overview ..7

Chapter 2: User Design Flows 8
Creating a Project for a Target Platform ..9

Compiling and Running Applications on an ARM Processor..........11

Profiling and Instrumenting Code to Measure Performance.........12

Moving Functions into Programmable Logic.................................13

SDSCC/SDS++ Performance Estimation Flow Options15

Chapter 3: SDSoC Environment Troubleshooting.......16
Troubleshooting Compile and Link Time Errors............................16

Troubleshooting Runtime Errors ..17

Troubleshooting Performance Issues ..18

Debugging an Application..19

Chapter 4: Improving System Performance20
Memory Allocation...21

Copy and Shared Memory Semantics ...22

Data Cache Coherency ...23

Increasing System Parallelism and Concurrency23

Chapter 5: Data Motion Network Generation in
SDSoC ...27
Data Motion Network...27

Using SDS Pragmas to Guide Data Motion Network
Generation..29

SDS Pragmas ...31

Chapter 6: Coding Guidelines....................................32
Guidelines for Invoking SDSCC/SDS++32

Makefile Guidelines..33

General C/C++ Guidelines...33

Hardware Function Argument Types..34

Hardware Function Call Guidelines ..35

SDSoC Environment User Guide www.xilinx.com 3
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=3

Chapter 7: A Programmer’s Guide to Vivado
High-Level Synthesis...36
Top-Level Hardware Function Guidelines.....................................36

Optimization Guidelines...37

Chapter 8: Using C-Callable IP Libraries46
Chapter 9: Using Vivado Design Suite HLS
Libraries..47
Chapter 10: Exporting an Application as a
Library ..48
Linking to an Application Library ...50

Chapter 11: Debugging an Application......................52
Debugging Linux Applications in the SDSoC IDE..........................52

Debugging Standalone Applications in the SDSoC IDE.................52

Debugging FreeRTOS Applications...53

Peeking and Poking IP Registers ...53

Debugging Performance Tips...53

Chapter 12: Performance Measurement Using
the AXI Performance Monitor....................................54
Creating a Project and Implementing APM54

Monitoring the Instrumented System ..55

Analyzing the Performance..60

Chapter 13: Target Operating System Support..........61
Linux Applications ...61

Standalone Target Applications ...62

FreeRTOS Target Applications ...63

Chapter 14: Representative Example Designs...........66
File I/O Video Example..66

Synthesizeable FIR Filter...67

Matrix Multiplication..67

Using a C-Callable RTL Library ...67

Chapter 15: SDSoC Pragma Specification68
Data Transfer Size ...68

Memory Attributes...69

Data Access Pattern...70

Data Mover Type..71

SDSoC Platform Interfaces to External Memory...........................72

Hardware Buffer Depth..73

Asynchronous Function Execution ...73

SDSoC Environment User Guide www.xilinx.com 4
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=4

Partition Specification ...74

Chapter 16: SDSoC Environment API75
Chapter 17: SDSCC/SDS++ Compiler Commands
and Options...76
Name...76

Command Synopsis..76

General Options...77

Hardware Function Options ...78

Compiler Macros ..80

System Options ...82

Appendix A: Hardware Function Interface
Details...85
Hardware Function Control Protocols ..85

Vivado HLS Function Argument Types ...87

Appendix B: Additional Resources and Legal
Notices..90
Xilinx Resources ..90

Solution Centers ..90

References...90

Please Read: Important Legal Notices...91

SDSoC Environment User Guide www.xilinx.com 5
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=5

Chapter 1

The SDSoC Environment
The SDSoC™ (software-defined system-on-chip) environment is a tool suite that includes an
Eclipse-based integrated development environment (IDE) for implementing heterogeneous
embedded systems using the Zynq®-7000 All Programmable SoC platform, and system
compilers that transform C/C++ programs into complete hardware/software systems with select
functions compiled into programmable logic.

The SDSoC system compilers analyze a program to determine the data flow between software
and hardware functions, and generate an application specific system-on-chip to realize the
program. To achieve high performance, each hardware function runs as an independent thread;
the system compilers generate hardware and software components that ensure synchronization
between hardware and software threads, while enabling pipelined computation and
communication. Application code can involve many hardware functions, multiple instances of a
specific hardware function, and calls to a hardware function from different parts of the program.

The SDSoC IDE supports software development workflows including profiling, compilation,
linking, and debugging. In addition, the SDSoC environment provides a fast performance
estimation capability to enable "what if" exploration of the hardware/software interface before
committing to a full hardware compile.

The SDSoC system compilers target a base platform and invoke the Vivado® High-Level
Synthesis (HLS) tool to compile synthesizeable C/C++ functions into programmable logic.
They then generate a complete hardware system, including DMAs, interconnects, hardware
buffers, and other IPs, and an FPGA bitstream by invoking the Vivado Design Suite tools. To
ensure all hardware function calls preserve their original behavior, the SDSoC system compilers
generate system-specific software stubs and configuration data, integrating into the program
any associated drivers for generated IP blocks. Application and generated software is compiled
and linked using a standard GNU toolchain.

By generating complete applications from “single source”, the system compilers allow you to
iterate over design and architecture changes by refactoring at the program level, dramatically
reducing the time needed to achieve working programs running on the target platform.

Getting Started
Download and install the SDSoC™ environment according to the directions provided in SDSoC
Environment User Guide: An Introduction to the SDSoC Environment (UG1028). The this guide
provides detailed instructions and hands-on tutorials to introduce the primary work flows
for project creation, specifying functions to run in programmable logic, system compilation,
debugging, and performance estimation. Working through these tutorials is the best way
to get an overview of the SDSoC environment, and should be considered prerequisite to
application development.

SDSoC Environment User Guide www.xilinx.com 6
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1028-intro-to-sdsoc.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1028-intro-to-sdsoc.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=6

Chapter 1: The SDSoC Environment

Note the following:

• When running the SDSoC system compilers from the command-line or through makefile
flows, you must set the shell environment as described in SDSoC Environment User Guide:
An Introduction to the SDSoC Environment (UG1028) or the tools will not function properly.

• The SDSoC environment includes the entire tools stack to create a bitstream, object
code, and executables. If you have installed the Xilinx® Vivado® Design Suite and
Software Development Kit tools independently, you should not attempt to combine these
installations with the SDSoC environment.

Feature Overview
The SDSoC™ environment inherits many of the tools in the Xilinx® Software Development Kit
(SDK), including GNU toolchain and standard libraries (for example, glibc, OpenCV) for the ARM
CPUs within Zynq® devices, as well as the Target Communication Framework (TCF) and GDB
interactive debuggers, a performance analysis perspective within the Eclipse/CDT-based GUI,
and command-line tools.

The SDSoC environment includes system compilers (sdscc/sds++) that generate complete
hardware/software systems targeting Zynq® devices, an Eclipse-based user interface to create
and manage projects and workflows, and a system performance estimation capability to explore
different "what if" scenarios for the hardware/software interface.

The SDSoC system compilers employ underlying tools from the Vivado® Design Suite
(System Edition), including Vivado HLS, IP integrator (IPI), IP libraries for data movement and
interconnect, and the RTL synthesis, placement, routing, and bitstream generation tools.

The principle of design reuse underlies workflows you employ with the SDSoC environment,
using well established platform-based design methodologies. The SDSoC system compiler
generates an application-specific system on chip by extending a target platform. The SDSoC
environment includes a number of platforms for application development and others are
provided by Xilinx partners. SDSoC Environment User Guide: Platforms and Libraries (UG1146)
describes how to capture platform metadata so that a pre-existing design built using the
Vivado Design Suite, and corresponding software run-time environment can be used to build
an SDSoC platform and used in the SDSoC environment.

An SDSoC platform defines a base hardware and software architecture and application context,
including processing system, external memory interfaces, custom input/output, and software
run time including operating system (possibly "bare metal"), boot loaders, drivers for platform
peripherals and root file system. Every project you create within the SDSoC environment
targets a specific platform, and you employ the tools within the SDSoC IDE to customize
the platform with application-specific hardware accelerators and data motion networks
connecting accelerators to the platform. In this way, you can easily create highly tailored
application-specific systems-on-chip for different base platforms, and can reuse base platforms
for many different application-specific systems-on-chip.

SDSoC Environment User Guide www.xilinx.com 7
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1028-intro-to-sdsoc.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1028-intro-to-sdsoc.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1146-sdsoc-platforms-and-libraries.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=7

Chapter 2

User Design Flows
The SDSoC environment is a tool suite for building efficient application-specific systems-on-chip,
starting from a platform SoC that provides a base hardware and target software architecture
including boot options.

The figure below shows a representative top-level user visible design flow that involves key
components of the tool suite. For the purposes of exposition, the design flow proceeds linearly
from one step to the next, but in practice you are free to choose other work flows with different
entry and exit points. Starting with a software-only version of the application that has been
cross-compiled for ARM CPUs, the primary goal is to identify portions of the program to
move into programmable logic and to implement the application in hardware and software
built upon a base platform.

Figure 2–1: User Design Flow

SDSoC Environment User Guide www.xilinx.com 8
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=8

Chapter 2: User Design Flows

The first step is to select a development platform, cross-compile the application, and ensure it
runs properly on the platform. You then identify compute-intensive hot spots to migrate into
programmable logic to improve system performance, and to isolate them into functions that
can be compiled into hardware. You then invoke the SDSoC system compiler to generate a
complete system-on-chip and SD card boot image for your application. You can instrument
your code to analyze performance, and if necessary, optimize your system and hardware
functions using a set of directives and tools within the SDSoC environment.

The system generation process is orchestrated by the sdscc/sds++ system compilers through
the SDSoC IDE or in an SDSoC terminal shell using the command line and makefiles. Using the
SDSoC IDE or sdscc command line options, you select functions to run in hardware, specify
accelerator and system clocks, and set properties on data transfers (for example, interrupt vs.
polling for DMA transfers). You can insert pragmas into application source code to control
the system mapping and generation flows, providing directives to the system compiler for
implementing the accelerators and data motion networks.

Because a complete system compile can be time-consuming compared with an "object code"
compile for a CPU, the SDSoC environment provides a faster performance estimation capability
that allows you to approximate the expected speed up over a software-only implementation for
a given choice of hardware functions. This estimate is based on properties of the generated
system and estimates for the hardware functions provided by the IPs when available.

As shown in User Design Flow, the overall design process involves iterating the steps until the
generated system achieves your performance and cost objectives.

It is assumed that you have already worked through the introductory tutorials (see SDSoC
Environment User Guide: An Introduction to the SDSoC Environment (UG1028)) and are
familiar with project creation, hardware function selection, compilation, and running a
generated application on the target platform. If you have not done so, it is recommended you
do so before continuing.

Creating a Project for a Target Platform
In the SDSoC IDE, click on File > New > SDSoC Project to create a new project and open up
the New Project wizard. After entering the project name, the first step is to select a platform
target for development from the Platform pull-down menu. The platform includes a base
hardware system, software runtime (including operating system), boot loaders, and root file
system. For an SDSoC environment project, the platform is fixed and the command line options
are automatically inserted into every makefile. To retarget a project to a new platform, you
must create a new project with the new platform and copy the source files from your current
project into the new project.

SDSoC Environment User Guide www.xilinx.com 9
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1028-intro-to-sdsoc.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1028-intro-to-sdsoc.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=9

Chapter 2: User Design Flows

If you are writing makefiles outside of the SDSoC IDE, you must include the -sds-pf command
line option on every call to sdscc.

sdscc -sds-pf <platform path name>

where the platform is either a file path or a named platform within the
<sdsoc_root>/platforms directory. To view the available base platforms from the
command line, run the following command.

sdscc -sds-pf-list

In addition to the available base platforms, you can find additional sample platforms in the
<sds_root>/samples/platforms directory. To create a new project for one of these
platforms within the SDSoC IDE, create a new project, select Other for the platform and
navigate to the desired sample platform.

Data Motion Network Clock
Every platform supports one or more clock sources, one of which is selected by default if you
do not make an explicit choice. This default clock is defined by the platform provider, and is
used for the data motion network generated by sdscc during system generation. You can view
the platform clocks by selecting the Platform link in the General panel of the SDSoC Project
Overview window. You can select a different platform clock frequency with the Data Motion
Network Clock Frequency pull-down menu in the SDSoC Project Overview Options window,
or on the command line with the -dmclockid option.

sdscc -sds-pf zc702 -dmclockid 1

To see the available clocks for a platform from the command line, execute the following:
$ sdscc -sds-pf-info zc702
Platform Description
====================
Basic platform targeting the ZC702 board, which includes 1GB of DDR3, 16MB Quad-
SPI Flash and an SDIO card interface. More information at http://www.xilinx.com/
products/boards-and-kits/EK-Z7-ZC702-G.htm
Platform Information
====================
Name: zc702
Device

Architecture: zynq
Device: xc7z020
Package: clg484
Speed grade: -1
System Clocks

Clock ID Frequency
----------|------------
666.666687
0 166.666672
1 142.857132
2 100.000000
3 200.000000

SDSoC Environment User Guide www.xilinx.com 10
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=10

Chapter 2: User Design Flows

Compiling and Running Applications on an ARM
Processor
A first step in application development is to cross-compile your application code to run on the
target platform. Every platform included in the SDSoC environment includes a pre-built SD card
image from which you can boot and run cross-compiled application code. When you do not
select any functions for hardware in your project, this pre-built image is used.

When you make code changes, including changes to hardware functions, it is valuable to rerun
a software-only compile to verify your changes did not adversely change your program. A
software-only compile is much faster than a full system compile, and software-only debugging
is a much quicker way to detect logical program errors than hardware/software debugging.

Like the Xilinx SDK upon which it is built, the SDSoC environment includes two distinct
toolchains for the ARM CPUs within Zynq® architecture devices.

1. arm-xilinx-linux-eabi - for developing Linux applications

2. arm-xilinx-gnueabi - for developing standalone ("bare-metal") and FreeRTOS
applications

The underlying GNU toolchain is defined when you select the operating system during project
creation. The SDSoC system compilers (sdscc/sds++) automatically invoke the corresponding
toolchain when compiling code for the CPUs, including all source files not involved with
hardware functions.

All object code for the ARM CPUs is generated with the GNU toolchains, but the sdscc (and
sds++) compiler, built upon Clang/LLVM frameworks, is generally less forgiving of C/C++
language violations than the GNU compilers. As a result, you might find that some libraries
needed for your application cause front-end compiler errors when using sdscc. In such cases,
compile the source files directly through the GNU toolchain rather than through sdscc, either
in your makefiles or by setting the compiler Command to GCC or g++ by right-clicking on the
file (or folder) in the Project Explorer and selecting C/C++ Build > Settings > SDSCC/SDS++
Compiler.

The SDSoC system compilers generate an SD card image by default in a project subdirectory
named sd_card. For Linux applications, this directory includes the following files:

• README.TXT- contains brief instructions on how to run the application

• BOOT.BIN - the boot image contains first stage boot loader (FSBL), boot program (u-boot),
and the FPGA bitstream

• uImage, devicetree.dtb, uramdisk.image.gz - Linux boot image

• <app>.elf - the application binary executable

To run the application, copy the contents of sd_card directory onto an SD card and insert
into the target board. Open a serial terminal connection to the target and power up the board
(for more information see SDSoC Environment User Guide: An Introduction to the SDSoC
Environment (UG1028)). Linux boots, automatically logs you in as root, and enters a bash shell.
The SD card is mounted at /mnt, and from that directory you can run <app>.elf.

For standalone applications, the ELF, bitstream, and board support package (BSP) are contained
within BOOT.BIN, which automatically runs the application after the system boots.

SDSoC Environment User Guide www.xilinx.com 11
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1028-intro-to-sdsoc.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1028-intro-to-sdsoc.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=11

Chapter 2: User Design Flows

Profiling and Instrumenting Code to Measure
Performance
The first major task in creating a software-defined SoC is to identify portions of application
code that are suitable for implementation in hardware, and that significantly improve overall
performance when run in hardware. Program hot-spots that are compute-intensive are good
candidates for hardware acceleration, especially when it is possible to stream data between
hardware and the CPU and memory to overlap the computation with the communication.
Software profiling is a standard way to identify the most CPU-intensive portions of your
program.

The SDSoC environment includes all performance and profiling capabilities that are included in
the Xilinx SDK, including gprof, the non-intrusive Target Communication Framework (TCF)
Profiler, and the Performance Analysis perspective within Eclipse.

To run the TCF Profiler for a standalone application, run the following steps:

1. Set the Active Build Configuration to SDDebug.
2. In the SDSoC Project Overview window, click on Debug application. Note: the board

must be connected to your computer and powered on. The application automatically
breaks at the entry to main().

3. Launch the TCF Profiler by selecting Window > Show View > Other > Debug > TCF
Profiler.

4. Start the TCF Profiler by clicking on the green Start button at the top of the TCF Profiler
tab. Enable Aggregate per function in the Profiler Configuration dialog box.

5. Start the profiling by clicking on the Resume button. The program runs to completion and
breaks at the exit() function.

6. View the results in the TCF Profiler tab.

Profiling provides a statistical method for finding hot spots based on sampling the CPU
program counter and correlating to the program in execution. Another way to measure
program performance is to instrument the application to determine the actual duration
between different parts of a program in execution.

The sds_lib library included in the SDSoC environment provides a simple, source code
annotation based time-stamping API that can be used to measure application performance.

/*
* @return value of free-running 64-bit Zynq(TM) global counter
*/
unsigned long long sds_clock_counter(void);

SDSoC Environment User Guide www.xilinx.com 12
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=12

Chapter 2: User Design Flows

By using this API to collect timestamps and differences between them, you can determine
duration of key parts of your program. For example, you can measure data transfer or overall
round trip execution time for hardware functions as shown in the following code snippet:

#include "sds_lib.h"
unsigned long long total_run_time = 0;
unsigned int num_calls = 0;
unsigned long long count_val = 0;
#define sds_clk_start(){ \

count_val = sds_clock_counter(); \
num_calls++; \

}
#define sds_clk_stop() { \

long long tmp = sds_clock_counter(); \
total_run_time += (tmp - count_val); \

}
#define avg_cpu_cycles()(total_run_time / num_calls)
#define NUM_TESTS 1024
extern void f();
void measure_f_runtime()
{

for (int i = 0; i < NUM_TESTS; i++) {
sds_clock_start();
f();
sds_clock_stop();

}
printf("Average cpu cycles f(): %ld\n", avg_cpu_cycles());

}

The performance estimation feature within the SDSoC environment employs this API by
automatically instrumenting functions selected for hardware implementation, measuring actual
run-times by running the application on the target, and then comparing actual times with
estimated times for the hardware functions.

NOTE: While off-loading CPU-intensive functions is probably the most reliable heuristic
to partition your application, it is not guaranteed to improve system performance without
algorithmic modification to optimize memory accesses. A CPU almost always has much faster
random access to external memory than you can achieve from programmable logic, due to
multi-level caching and a faster clock speed (typically 2x to 8x faster than programmable
logic). Extensive manipulation of pointer variables over a large address range, for example,
a sort routine that sorts indices over a large index set, while very well-suited for a CPU, may
become a liability when moving a function into programmable logic. This does not mean that
such compute functions are not good candidates for hardware, only that code or algorithm
restructuring may be required. This issue is also well-known for DSP and GPU coprocessors.

Moving Functions into Programmable Logic
When you have created a new project, you can open up the SDSoC Project Overview by
double-clicking on the project.sdsoc file in the Project Explorer.

SDSoC Environment User Guide www.xilinx.com 13
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=13

Chapter 2: User Design Flows

Click on the symbol in the Hardware Functions panel to display the list of candidate
functions within your program. This list consists of functions in the call graph rooted at the
Root Function listed in the General panel, by default main, but changeable by clicking on
the ... button and selecting an alternative function root.

From within the popup window, you can select one or more functions for hardware acceleration
and click OK. The selected functions appear in the list box. Note that the Eclipse CDT indexing
mechanism is not foolproof, and you might need to close and reopen the selection popup
to view available functions. If a function does not appear in the list, you can navigate to
its containing file in the Project Explorer, expand the contents, right-click on the function
prototype, and select Toggle HW/SW.

From the command line, select a function foo in the file foo_src.c for hardware with the
following sdscc command line option.

-sds-hw foo foo_src.c -sds-end

If foo invokes sub-functions contained in files foo_sub0.c and foo_sub1.c, use the
-files option.

-sds-hw foo foo_src.c -files foo_sub0.c,foo_sub1.c -sds-end

Although the data motion network runs off of a single clock, it is possible to run hardware
functions at different clock rates to achieve higher performance. In the Hardware Functions
panel, select functions from the list and use the Clock Frequency pull-down menu to choose
their clocks. Be aware that it might not be possible to implement the hardware system with
some clock selections.

To set a clock on the command-line, determine the corresponding clock id using sdscc
-sds-pf-info <platform> and use the -clockid option.

-sds-hw foo foo_src.c -clockid 1 -sds-end

When moving a function optimized for CPU execution into programmable logic, you usually
need to revise the code to achieve best performance. See A Programmer’s Guide to Vivado HLS
and Coding Guidelines for programming guidelines.

SDSoC Environment User Guide www.xilinx.com 14
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=14

Chapter 2: User Design Flows

SDSCC/SDS++ Performance Estimation Flow Options
A full bitstream compile can take much more time than a software compile, so sdscc provides
performance estimation options to compute the estimated run-time improvement for a set
of hardware function calls. In the SDSoC IDE Project Overview window, invoke the estimator
by clicking on Performance Speedup for HW Functions, which switches the project to the
SDEstimate build configuration.

Estimating the speed-up is a two phase process. First, the SDSoC IDE compiles the hardware
functions and generates the system. Instead of synthesizing the system to bitstream, sdscc
computes an estimate of the performance based on estimated latencies for the hardware
functions and data transfer time estimates for the callers of hardware functions. In the
generated Performance report, select Click Here to run an instrumented version of the
software on the target to determine a performance baseline and the performance estimate
(see SDSoC Environment User Guide: An Introduction to the SDSoC Environment (UG1028)
for more information).

You can also generate a performance estimate from the command line. As a first pass to gather
data about software runtime, you use the -perf-funcs option to specify functions to profile
and -perf-root to specify the root function encompassing calls to the profiled functions.
The sdscc compiler then automatically instruments these functions to collect run-time data
when the application is run on a board. When you run an "instrumented" application on
the target, the program creates a file on the SD card called swdata.xml, which contains
the run-time performance data for the run.

Copy swdata.xml to the host and run a build that estimates the performance gain on a per
hardware function caller basis and for the top-level function specified by the –perf-root
function in the first pass run. Use the –perf-est option to specify swdata.xml as input
data for this build.

The following table specifies the sdscc options normally used to build an application.

Option Description

-perf-funcs function_name_list Specify a comma separated list of all functions to be profiled
in the instrumented software application.

-perf-root function_name Specify the root function encompassing all calls to the
profiled functions. The default is the function main.

-perf-est data_file Specify the file contain runtime data generated by the
instrumented software application when run on the target.
Estimate performance gains for hardware accelerated
functions. The default name for this file is swdata.xml.

-perf-est-hw-only Run the estimation flow without running the first pass
to collect software run data. Using this option provides
hardware latency and resource estimates without providing a
comparison against baseline.

CAUTION! After running the sd_card image on the board for collecting profile data, run cd /;
sync; umount /mnt;. This ensures that the swdata.xml file is written out to the SD card.

A complete example of the makefile-based flow for performance estimation can be found in
<sdsoc_root>/samples/mmult_performance_estimation.

SDSoC Environment User Guide www.xilinx.com 15
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1028-intro-to-sdsoc.pdf;a=xTutorialEstimatingSystemPerformance
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=15

Chapter 3

SDSoC Environment Troubleshooting
There are three common types of issues you might encounter using the SDSoC™ environment
flow.

• Compile/link time errors can be the result of typical software syntax errors caught by
software compilers, or errors specific to the SDSoC environment flow, such as the design
being too large to fit on the target platform.

• Runtime errors can be the result of general software issues such as null-pointer access,
or SDSoC environment-specific issues such as incorrect data being transferred to/from
accelerators.

• Performance issues are related to the choice of the algorithms used for acceleration, the
time taken for transferring the data to/from the accelerator, and the actual speed at which
the accelerators and the data motion network operate.

Troubleshooting Compile and Link Time Errors
Typical compile/link time errors are indicated by error messages issued when running make.
To probe further, look at the log files and rpt files in the _sds/reports subdirectory
created by the SDSoC™ environment in the build directory. The most recently generated
log file usually indicates the cause of the error, such as a syntax error in the corresponding
input file, or an error generated by the tool chain while synthesizing accelerator hardware or
the data motion network.

SDSoC Environment User Guide www.xilinx.com 16
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=16

Chapter 3: SDSoC Environment Troubleshooting

Some tips for dealing with SDSoC environment specific errors follow.

• Tool errors reported by tools in the SDSoC environment chain.

– Check whether the corresponding code adheres to Coding Guidelines.

– Check the syntax of pragmas.

– Check for typos in pragmas that might prevent them from being applied to the correct
function.

• Vivado Design Suite High-Level Synthesis (HLS) cannot meet timing requirement.

– Select a slower clock frequency for the accelerator in the SDSoC IDE (or with the
sdscc/sds++ command line parameter).

– Modify the code structure to allow HLS to generate a faster implementation. See A
Programmer’s Guide to High-Level Synthesis for more information on how to do this.

• Vivado tools cannot meet timing.

– In the SDSoC IDE, select a slower clock frequency for the data motion network or
accelerator, or both (from the command line, use sdscc/sds++ command line
parameters).

– Synthesize the HLS block to a higher clock frequency so that the
synthesis/implementation tools have a bigger margin.

– Modify the C/C++ code passed to HLS, or add more HLS directives to make the HLS
block go faster.

– Reduce the size of the design in case the resource usage (see the Vivado tools report
in _sds/ipi/*.log and other log files in the subdirectories there) exceeds 80% or
so. See the next item for ways to reduce the design size.

• Design too large to fit.

– Reduce the number of accelerated functions.

– Change the coding style for an accelerator function to produce a more compact
accelerator. You can reduce the amount of parallelism using the mechanisms described
in A Programmer’s Guide to High-Level Synthesis.

– Modify pragmas and coding styles (pipelining) that cause multiple instances of
accelerators to be created.

– Use pragmas to select smaller data movers such as AXIFIFO instead of AXIDMA_SG.

– Rewrite hardware functions to have fewer input and output parameters/arguments,
especially in cases where the inputs/outputs are continuous stream (sequential access
array argument) types that prevent sharing of data mover hardware.

Troubleshooting Runtime Errors
Programs compiled using sdscc/sds++ can be debugged using the standard debuggers
supplied with the SDSoC™ environment or Xilinx® SDK. Typical runtime errors are incorrect
results, premature program exits, and program “hangs.” The first two kinds of errors are familiar
to C/C++ programmers, and can be debugged by stepping through the code using a debugger.

SDSoC Environment User Guide www.xilinx.com 17
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=17

Chapter 3: SDSoC Environment Troubleshooting

A program hang is a runtime error caused by specifying an incorrect amount of data
to be transferred across a streaming connection created using #pragma SDS data
access_pattern(A:SEQUENTIAL), by specifying a streaming interface in a synthesizeable
function within Vivado HLS, or by a C-callable hardware function in a pre-built library that has
streaming hardware interfaces. A program hangs when the consumer of a stream is waiting for
more data from the producer but the producer has stopped sending data.

Consider the following code fragment that results in streaming input/output from a hardware
function.

#pragma SDS data access_pattern(in_a:SEQENTIAL, out_b:SEQUENTIAL)
void f1(int in_a[20], int out_b[20]); // declaration

void f1(int in_a[20], int out_b[20]) { // definition
int i;
for (i=0; i < 19; i++) {

out_b[i] = in_a[i];
}

}

Notice that the loop reads the in_a stream 19 times but the size of in_a[] is 20, so the
caller of f1 would wait forever (or hang) if it waited for f1 to consume all the data that
was streamed to it. Similarly, the caller would wait forever if it waited for f1 to send 20 int
values because f1 sends only 19. Program errors that lead to such “hangs” can be detected
by instrumenting the code to flag streaming access errors such as non-sequential access or
incorrect access counts within a function and running in software. Streaming access issues are
typically flagged as improper streaming access warnings in the log file, and it is left to
the user to determine if these are actual errors.

The following list shows other sources of run-time errors:

• Improper placement of wait() statements could result in:

– Software reading invalid data before a hardware accelerator has written the correct value

– A blocking wait() being called before a related accelerator is started, resulting in a
system hang

• Inconsistent use of memory consistency #pragma SDS data mem_attribute can result
in incorrect results.

Troubleshooting Performance Issues
The SDSoC environment provides some basic performance monitoring capabilities in the form
of the sds_clock_counter() function described earlier. Use this to determine how much
time different code sections, such as the accelerated code, and the non-accelerated code
take to execute.

Estimate the actual hardware acceleration time by looking at the latency numbers in the Vivado
HLS report files (_sds/vhls/…/*.rpt). In the SDSoC IDE Project Platform Details tab, you
can determine the CPU clock frequency, and in the Project Overview you can determine the
clock frequency for a hardware function. A latency of X accelerator clock cycles is equal to X *
(processor_clock_freq/accelerator_clock_freq) processor clock cycles. Compare
this with the time spent on the actual function call to determine the data transfer overhead.

SDSoC Environment User Guide www.xilinx.com 18
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=18

Chapter 3: SDSoC Environment Troubleshooting

For best performance improvement, the time required for executing the accelerated function
must be much smaller than the time required for executing the original software function. If
this is not true, try to run the accelerator at a higher frequency by selecting a different clkid on
the sdscc/sds++ command line. If that does not work, try to determine whether the data
transfer overhead is a significant part of the accelerated function execution time, and reduce
the data transfer overhead. Note that the default clkid is 100 MHz for all platforms. More
details about the clkid values for the given platform can be obtained by running sdscc
–sds-pf-info <platform name>.

If the data transfer overhead is large, the following changes might help:

• Move more code into the accelerated function so that the computation time increases, and
the ratio of computation to data transfer time is improved.

• Reduce the amount of data to be transferred by modifying the code or using pragmas to
transfer only the required data.

Debugging an Application
The SDSoC™ environment allows projects to be created and debugged using the SDSoC IDE.
Projects can also be created outside the SDSoC IDE (user-defined makefiles) and debugged
either on the command line or using the SDSoC IDE.

See SDSoC Environment User Guide: An Introduction to the SDSoC Environment (UG1028),
Tutorial: Debugging Your System for information on using the interactive debuggers in the
SDSoC IDE.

SDSoC Environment User Guide www.xilinx.com 19
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1028-intro-to-sdsoc.pdf;a=xTutorialDebuggingYourSystem
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1028-intro-to-sdsoc.pdf;a=xTutorialDebuggingYourSystem
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=19

Chapter 4

Improving System Performance
There are many factors that affect overall system performance. A well-designed system generally
balances computation and communication so that all hardware components remain occupied
doing meaningful work. Some applications will be compute-bound, and for these, you should
concentrate on maximizing throughput and minimizing latency in hardware accelerators. Others
may be memory-bound, in which case you might need to restructure algorithms to increase
temporal and spatial locality in the hardware, for example, by adding copy-loops or memcpy to
pull blocks of data into hardware rather than making random array accesses to external memory.

This section describes underlying principles and inference rules within the SDSoC system
compiler to assist the programmer in controlling the compiler to improve overall system
performance through

• Improved access to external memory from programmable logic

• Increased concurrency and parallelism in programmable logic

In the SDSoC environment, you control the system generation process by structuring hardware
functions and calls to hardware functions to balance communication and computation, and by
inserting pragmas into your source code to guide the sdscc system compiler

The hardware/software interface is defined implicitly in your application source code once
you have selected a platform and a set of functions in the program to be implemented in
hardware. The sdscc/sds++ system compilers analyze the program data flow involving
hardware functions, schedule each such function call, and generate a hardware accelerator and
data motion network realizing the hardware functions in programmable logic. They do so
not by implementing each function call on the stack through the standard ARM application
binary interface, but instead by redefining hardware function calls as calls to function stubs
having the same interface as the original hardware function. These stubs are implemented with
low level function calls to a send / receive middleware layer that efficiently transfers data
between the platform memory and CPU and hardware accelerators, interfacing as needed to
underlying kernel drivers.

The send/receive calls are implemented in hardware with data mover IPs based on program
properties like memory allocation of array arguments, payload size, the corresponding hardware
interface for a function argument, as well as function properties such as memory access
patterns and latency of the hardware function.

Every transfer between the software program and a hardware function requires a data mover,
which consists of a hardware component that moves the data, and an operating system-specific
library function. The following table lists supported data movers and various properties for each.

SDSoC Environment User Guide www.xilinx.com 20
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=20

Chapter 4: Improving System Performance

Figure 4–1: SDSoC Data Movers Table

Scalar variables are always transferred over an AXI4-Lite bus interface with the axi_lite data
mover. For array arguments, the data mover inference is based on transfer size, hardware
function port mapping, and function call site information. The axi_dma_simple data mover is
the most efficient bulk transfer engine, but only supports up to 8MB transfers, so for larger
transfers, the axi_dma_sg (scatter-gather DMA) data mover is required. The axi_fifo data
mover does not require as many hardware resources as the DMA, but due to its slower transfer
rates, is preferred only for payloads of up to 300 bytes.

You can override the data mover selection by inserting a pragma into program source
immediately before the function declaration, for example,

#pragma SDS data data_mover(A:AXIDMA_SIMPLE)

Note that #pragma SDS is always treated as a rule, not a hint, so you must ensure that their
use conforms with the data mover requirements in SDSoC Data Movers Table.

Memory Allocation
The sdscc/sds++ compilers analyze your program and select data movers to match the
requirements for each hardware function call between software and hardware, based on payload
size, hardware interface on the accelerator, and properties of the function arguments. When the
compiler can guarantee an array argument is located in physically contiguous memory, it can
use the most efficient data movers. Allocating or memory-mapping arrays with the following
sds_lib library functions can inform the compiler that memory is physically contiguous.

sds_alloc(size_t size); // guarantees physically contiguous memory
sds_mmap(void *paddr, size_t size, void *vaddr); // paddr must point to contiguous memory
sds_register_dmabuf(void *vaddr, int fd); // assumes physically contiguous memory

It is possible that due to the program structure, the sdscc compiler cannot definitively deduce
the memory contiguity, and when this occurs, it issues a warning message, as shown:

WARNING: [SDSoC 0-0] Unable to determine the memory attributes passed to foo_arg_A of function
foo at foo.cpp:102

SDSoC Environment User Guide www.xilinx.com 21
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=21

Chapter 4: Improving System Performance

You can inform the compiler that the data is allocated in a physically contiguous memory
by inserting the following pragma immediately before the function declaration (note: the
pragma does not guarantee physically contiguous allocation of memory; your code must
use sds_alloc to allocate such memory).

#pragma SDS data mem_attribute (A:PHYSICAL_CONTIGUOUS) // default is NON_PHYSICAL_CONTIGUOUS

Copy and Shared Memory Semantics
By default, hardware function calls involve copy-in, copy-out semantics for function arguments.
It is possible to impose a shared memory model for hardware function arguments, but you
must keep in mind that while throughput on burst transfers is quite good, the latency to
external DDR from the programmable logic is significantly higher than it is for the CPU. The
following pragma, inserted immediately preceding the function declaration, is used to declare
that a variable transfer employs shared memory semantics.

#pragma SDS data zero_copy(A[0:<array_size>]) // array_size = number of elements

Within a synthesizeable hardware function, it is usually inefficient to read/write single words
from the shared memory (specified using the zero-copy pragma). A more efficient approach is
to employ memcpy to read/write data from memory in bursts and store it in a local memory.

For copy and zero copy memory semantics, another efficient alternative is to stream data
between programmable logic and external DDR to maximize memory efficiency, storing data
in local memory within a hardware function whenever you need to make non-sequential and
repeated accesses to variables. For example, video applications typically have data coming in
as pixel streams and implement line buffers in FPGA memory to support multiple accesses
to the pixel stream data.

To declare to sdscc that a hardware function can admit streaming access for an array data
transfer (that is, each element is accessed precisely once in index order), insert the following
pragma immediately preceding the function prototype.

#pragma SDS data access_pattern(A:SEQUENTIAL) // access pattern = SEQUENTIAL | RANDOM

For arrays passed as pointer typed arguments to hardware functions, sometimes the compilers
can infer transfer size, but if they cannot, they issue the following message.

ERROR: [SDSoC 0:0] The bound callers of accelerator foo have different/

indeterminate data size for port p.

Use the following to specify the size of the data to be transferred.
#pragma SDS data copy(p[0:<array_size>]) // for example, int *p

You can vary the data transfer size on a per function call basis to avoid transferring data that
is not required by a hardware function by setting <array_size> in the pragma definition
to be an expression defined in the scope of the function call (that is, all variables in the size
expression must be scalar arguments to the function), for example:

#pragma SDS data copy(A[0:L+2*T/3]) // scalar arguments L, T to same function

SDSoC Environment User Guide www.xilinx.com 22
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=22

Chapter 4: Improving System Performance

Data Cache Coherency
The sdscc/sds++ compilers automatically generate software configuration code for each data
mover required by the system, including interfacing to underlying device drivers as needed.
The default assumption is that the system compiler maintains cache coherency for the memory
allocated to arrays passed between the CPU and hardware functions. Consequently, the
compiler might generate code to perform a cache flush before transferring data to a hardware
function and to perform a cache-invalidate before transferring data from a hardware function
to the memory. Both actions are necessary for correctness, but have performance implications.
When using Zynq® device HP ports, for example, you can override the default when you know
that the CPU will not access the memory indicating that the correctness of the application does
not depend on cache coherency. To avoid the overhead of unnecessary cache flushes use the
following pragma inserted immediately before the function declaration.

#pragma SDS data mem_attribute(A:NON_CACHEABLE) // default is CACHEABLE

Declaring an array as non-cacheable means the compiler does not need to ensure the cache
coherency when accessing the specified array in the memory, but it is your responsibility to do
so when necessary. A typical use case is a video application where some frame buffers are
accessed by programmable logic but not the CPU.

Increasing System Parallelism and Concurrency
Increasing the level of concurrent execution is a standard way to increase overall
system performance, and increasing the level of parallel execution is a standard way to
increase concurrency. Programmable logic is well-suited to implement architectures with
application-specific accelerators that run concurrently, especially communicating through
flow-controlled streams that synchronize between data producers and consumers.

In the SDSoC environment, you influence the macro-architecture parallelism at the function
and data mover level, and the micro-architecture parallelism within hardware accelerators. By
understanding how the sdscc system compiler infers system connectivity and data movers, you
can structure application code and apply pragmas as needed to control hardware connectivity
between accelerators and software, data mover selection, number of accelerator instances for a
given hardware function, and task level software control. You can control the micro-architecture
parallelism, concurrency, and throughput for hardware functions within Vivado HLS or within the
IPs you incorporate as C-callable/linkable libraries. A Programmer’s Guide to Vivado High-Level
Synthesis provides to guidelines and methodologies for creating efficient hardware function
micro-architectures that can be employed within the SDSoC environment.

SDSoC Environment User Guide www.xilinx.com 23
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=23

Chapter 4: Improving System Performance

At the system level, the sdscc compiler chains together hardware functions when the data flow
between them does not require transferring arguments out of programmable logic and back to
system memory. For example, consider the code in the following figure, where mmult and
madd functions have been selected for hardware.

Figure 4–2: Hardware /Software Connectivity with Direct Connection

Because the intermediate array variable tmp1 is used only to pass data between the two
hardware functions, the sdscc system compiler chains the two functions together in hardware
with a direct connection between them.

It is instructive to consider a time line for the calls to hardware as shown in the following figure.

Figure 4–3: Timeline for mmult/madd Function Calls

The program preserves the original program semantics, but instead of the standard ARM
procedure calling sequence, each hardware function call is broken into multiple phases
involving setup, execution, and cleanup, both for the data movers (DM) and the accelerators.
The CPU in turn sets up each hardware function (that is, the underlying IP control interface) and
the data transfers for the function call with non-blocking APIs, and then waits for all calls and
transfers to complete. In the example shown in the diagram, the mmult and madd functions
run concurrently whenever their inputs become available. The ensemble of function calls is
orchestrated in the compiled program by control code automatically generated by sdscc
according to the program, data mover, and accelerator structure.

SDSoC Environment User Guide www.xilinx.com 24
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=24

Chapter 4: Improving System Performance

In general, it is impossible for the sdscc compiler to determine side-effects of function calls in
your application code (for example, sdscc may have no access to source code for functions
within linked libraries), so any intermediate access of a variable occurring lexically between
hardware function calls requires the compiler to transfer data back to memory. So for example,
an injudicious simple change to uncomment the debug print statement (in the "wrong place")
as shown in the figure below, can result in a significantly different data transfer graph and
consequently, an entirely different generated system and application performance.

Figure 4–4: Hardware/Software Connectivity with Broken Direct Connection

A program can invoke a single hardware function from multiple call sites. In this case, the
sdscc compiler behaves as follows. If any of the function calls results in "direct connection"
data flow, then sdscc creates an instance of the hardware function that services every similar
direct connection, and an instance of the hardware function that services the remaining calls
between memory ("software") and programmable logic.

Structuring your application code with "direct connection" data flow between hardware
functions is one of the best ways to achieve high performance in programmable logic. You can
create deep pipelines of accelerators connected with data streams, increasing the opportunity
for concurrent execution.

There is another way in which you can increase parallelism and concurrency using the sdscc
compiler. You can direct the compiler to create multiple instances of a hardware function by
inserting the following pragma immediately preceding a call to the function.

#pragma SDS async(<id>) // <id> a non-negative integer

This pragma creates a hardware instance that is referenced by <id>. The generated control
code for the hardware function call returns to the caller as soon as all of the setup has
completed without waiting for the function execution to complete. The program must correctly
synchronize with the function call by inserting a matching wait pragma for the same <id> at
an appropriate point in the program.

#pragma SDS wait(<id>) // <id> synchronizes to hardware function with <id>

A simple code snippet that creates two instances of a hardware function mmult is as follows.
{
#pragma SDS async(1)
mmult(A, B, C); // instance 1
#pragma SDS async(2)
mmult(D, E, F); // instance 2
#pragma SDS wait(1)
#pragma SDS wait(2)
}

SDSoC Environment User Guide www.xilinx.com 25
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=25

Chapter 4: Improving System Performance

The async mechanism gives the programmer ability to handle the "hardware threads"
explicitly to achieve very high levels of parallelism and concurrency, but like any explicit
multi-threaded programming model, requires careful attention to synchronization details to
avoid non-deterministic behavior or deadlocks.

SDSoC Environment User Guide www.xilinx.com 26
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=26

Chapter 5

Data Motion Network Generation in SDSoC
This chapter describes the components that make up the data motion network in the SDSoC™
environment. It helps the user understand the data motion network generated by the SDSoC
compiler. The chapter also provides guidelines to help you guide the data motion network
generation by using appropriate SDSoC pragmas.

Data Motion Network
The data motion network in SDSoC™ is made up of three components: the hardware
interface on an accelerator, data movers between the PS and accelerators as well as among
accelerators, and the memory system ports on the PS. The following figure illustrates these
three components.

Figure 5–1: Data Motion Network Components

SDSoC Environment User Guide www.xilinx.com 27
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=27

Chapter 5: Data Motion Network Generation in SDSoC

Accelerator Interface
The accelerator interface generated in SDSoC™ depends on the data type of the argument.

Scalar
For a scalar argument, the register interface is generated to pass in and/or out of the
accelerator.

Arrays

The hardware interface on an accelerator for transferring an array can be either a RAM
interface or a streaming interface, depending on how the accelerator accesses the data in
the array.

The RAM interface allows the data to be accessed randomly within the accelerator;
however, it requires the entire array to be transferred to the accelerator before any memory
accesses can happen within the accelerator. Moreover, the use of this interface requires
BRAM resources on the accelerator side to store the array.

The streaming interface, on the other hand, does not require memory to store the whole
array, it allows the accelerator to pipeline the processing of array elements, i.e., the
accelerator can start processing a new array element while the previous ones are still being
processed. However, the streaming interface requires the accelerator to access the array
in a strict sequential order, and the amount of data transferred must be the same as
the accelerator expects.

SDSoC, by default, will generate the RAM interface for an array; however, SDSoC provides
pragmas to direct it to generate the streaming interface.

struct or class

For struct/class argument, the accelerator interface depends on the property of the
argument.

1. A single struct/class is flattened so that all struct/class hierarchies are removed, and
each data member has its own interface, depending on if it is a scalar or an array.

2. An array of struct/class must be “packed” and correctly aligned to have the same
memory layout between the processor and the accelerator. The SDSoC compiler will
automatically insert the “data_pack” directive for the accelerator, and inform the user to
insert the correct “pack and align” attribute for the struct/class in the source code. The
"Color Space Conversion" template provides an example for using array of struct.

Data Mover
The data mover transfers data between PS and accelerators, and among accelerators. SDSoC™
can generate various types of data movers based on the properties and size of the data being
transferred.

Scalar

Scalar data is always transferred by the AXI_LITE data mover.

SDSoC Environment User Guide www.xilinx.com 28
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=28

Chapter 5: Data Motion Network Generation in SDSoC

Array

SDSoC can generate AXI_DMA_SG, AXI_DMA_SIMPLE, AXI_DMA_2D, AXI_FIFO, AXI_M, or
AXI_LITE data movers, depending on the memory attributes and data size of the array. For
example, if the array is allocated using malloc(), hence the memory is not physically
contiguous, SDSoC typically generates AXI_DMA_SG. However, if the data size is less
than 300 bytes, AXI_FIFO is generated instead since the data transfer time is less than
AXI_DMA_SG, and it occupies much less PL resource.

Struct or Class
Since a single struct/class is flattened, each data member uses its own data mover
depending on if it is a scalar or array. For an array of struct/class, the data mover
choice is the same as an array discussed previously.

System Port
The system port connects the data mover to the PS. It can be either the ACP or AFI port on
Zynq. The ACP port is a cache-coherent port and the cache coherency is maintained by the
hardware. The AFI port is a non-cache-coherent port. Cache coherency (i.e. cache flushing and
cache invalidation) is maintained by software if needed. Selecting between the ACP port versus
the AFI port depends on the cache requirement of the transferred data.

Using SDS Pragmas to Guide Data Motion Network
Generation
Without any SDS pragma, SDSoC™ generates the data motion network based on an analysis
of the source code. However, SDSoC also provides some pragmas for you to guide the data
motion network generation.

Accelerator Interface
The following SDS pragma can be used to guide the interface generation for the accelerator.

#pragma SDS data access_pattern(arg:pattern)

Where “pattern” can be either “RANDOM” or “SEQUENTIAL”, and “arg” be an array argument
name of the accelerator function.

If an array argument’s access pattern is specified as “RANDOM”, a RAM interface will be
generated. And if specified as “SEQUENTIAL”, a streaming interface will be generated. Several
notes regarding this pragma:

• The default access pattern for an array argument is “RANDOM”.

• The specified access pattern must be consistent with the accelerator function’s behavior.
For “SEQUENTIAL” access patterns, the function must access every array element in a
strict sequential order.

• This pragma only applies to arguments without the “zero_copy” pragma. This will be
detailed later.

SDSoC Environment User Guide www.xilinx.com 29
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=29

Chapter 5: Data Motion Network Generation in SDSoC

Data Mover
The selection of which data mover to use for transferring an array is dependent on two
attributes of the array: data size and physical memory contiguity. For example, if the memory
size is 1Mbytes and not physically contiguous (allocated by malloc()), you should use
AXIDMA_SG. The following table shows the applicability of these data movers.

Table 5–1: Data Mover Selection

Data Mover Physical Memory Contiguity Data Size (bytes)

AXIDMA_SG Either > 300

AXIDMA_Simple Contiguous < 8M

AXIDMA_2D Contiguous < 8M

AXI_FIFO Non-contiguous < 300

Normally, the SDSoC™ compiler analyzes the array that is transferred to the hardware accelerator
for these two attributes, and selects the appropriate data mover accordingly. However, there
are cases where such analysis is not possible, at that time. SDSoC™ issues a warning message
and asks you to specify the memory attributes via SDS pragmas. An example of the message:

WARNING: [SDSoC 0-0] Unable to determine the memory attributes passed to rgb_data_in of function
img_process at C:/simple_sobel/src/main_app.c:84

The pragma to specify the memory attributes is:
#pragma SDS data mem_attribute(arg:contiguity|cache)

Where contiguity can be either PHYSICAL_CONTIGUOUS or NON_PHYSICAL_CONTIGUOUS.
cache will be discussed later. You can specify either contiguity or cache or both. When
both attributes are specified, use “|” as a separator. The pragma to specify the data size is:

#pragma SDS data copy(arg[offset:size])

Where size can be a number or an arbitrary expression.

Zero Copy Data Mover
As mentioned previously, the zero copy data mover is a special one because it covers both the
accelerator interface and the data mover. The syntax of this pragma is:

#pragma SDS data zero_copy(arg[offset:size])

Where [offset:size] is optional, and only needed if data transfer size for an array cannot
be determined at compile time.

By default, SDSoC assumes copy semantics for an array argument, meaning the data is
explicitly copied from the PS to the accelerator via a data mover. When this zero_copy
pragma is specified, SDSoC generates an AXI-Master interface for the specified argument on
the accelerator, which grabs the data from the PS as specified in the accelerator code.

To use the zero_copy pragma, the memory corresponding to the array has to be physically
contiguous, that is allocated with sds_alloc.

SDSoC Environment User Guide www.xilinx.com 30
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=30

Chapter 5: Data Motion Network Generation in SDSoC

System Port
The system port choice is dependent on the data’s cache attribute and data size. If the data is
allocated with sds_alloc_non_cacheable() or sds_register_dmabuf(), it is better to
connect to the AFI port to avoid cache flushing/invalidation. If the data is allocated in other
ways, it is better to connect to the ACP port for fast cache flushing/invalidation. Also, when the
data size is much bigger than the cache size, transferring such data via ACP port will thrashing
the cache, so it is better to connect to the AFI port.

SDSoC compiler will analyze these memory attributes for the data transferred to and received
from the accelerator, and connect data movers to appropriate system port. However, if the user
would like to override the compiler decision, or in some cases, the compiler is not able to do
such analysis, the user can use the following pragma to specify the data’s cache attribute.

#pragma SDS data mem_attribute (arg:contiguity|cache)

Where cache can be either CACHEABLE or NON_CACHEABLE. Notice this pragma overrides
the compiler analysis so the user must make sure it is correct.

The data size pragmas (#pragma SDS data copy and #pragma SDS data zero_copy)
have been discussed previously. Notice the user must make sure the specified pragma is correct.

SDS Pragmas
If you want to directly specify which data mover to use, use the following pragma:

#pragma SDS data data_mover(arg:dm)

Where dm can be AXIDMA_SG, AXIDMA_SIMPLE, AXIDMA_2D, or AXI_FIFO, and arg can
be an array or pointer argument of the accelerator function. Please note that using this
pragma may cause the design to not work in the hardware, if the requirements in the above
table are not met.

If you would like to directly specify which system port to connect to, use the following pragma:
#pragma SDS data sys_port(arg:port)

Where port can be ACP or AFI.

SDSoC Environment User Guide www.xilinx.com 31
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=31

Chapter 6

Coding Guidelines
This contains general coding guidelines for application programming using the SDSoC system
compilers, with the assumption of starting from application code that has already been
cross-compiled for the ARM CPU within the Zynq® device, using the GNU toolchain included
as part of the SDSoC environment.

Guidelines for Invoking SDSCC/SDS++
The SDSoC IDE automatically generates makefiles that invoke sds++ for all C++ files and
sdscc for all C files, but the only source files that must be compiled with sdscc/sds++ are
those containing code that:

• Define a hardware function

• Call a hardware function

• Use sds_lib functions, for example, to allocate or memory map buffers that are sent to
hardware functions

• Files that contain functions in the transitive closure of the downward call graph of the above

All other source files can safely be compiled with the ARM GNU toolchain.

A large software project may include many files and libraries that are unrelated to the hardware
accelerator and data motion networks generated by sdscc. If the sdscc compiler issues errors
on source files unrelated to the generated hardware system (for example, from an OpenCV
library), you can compile these files through GCC instead of sdscc by right-clicking on the file
(or folder) Properties > C/C++ Build > Settings and setting the Command to GCC.

SDSoC Environment User Guide www.xilinx.com 32
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=32

Chapter 6: Coding Guidelines

Makefile Guidelines
The makefiles provided with the designs in <sdsoc_root>/samples consolidate all sdscc
hardware function options into a single command line. This is not required, but has the benefit
of preserving the overall control structure and dependencies within a makefile without requiring
change to the makefile actions for files containing a hardware function.
• You can define make variables to capture the entire SDSoC environment command line, for

example: CC = sds++ ${SDSFLAGS} for C++ files, invoking sdscc for C files. In
this way, all SDSoC environment options are consolidated in the ${CC} variable. Define the
platform and target OS once in this variable.

• There must be a separate -sds-hw/-sds-end clause in the command line for each file
that contains a hardware function. For example:

-sds-hw foo foo.cpp -clkid 1 -sds-end

For the list of the SDSoC compiler and linker options, see SDSSC/SDS++ Compiler
Commands and Options or use sdscc --help.

General C/C++ Guidelines
• Hardware functions can execute concurrently under the control of a master thread. A

program can have multiple threads and processes, but must have only a single master
thread that controls hardware functions.

• A top-level hardware function must be a global function, not a class method, and it cannot
be an overloaded function.

• There is no support for exception handling in hardware functions.
• It is an error to refer to a global variable within a hardware function or any of its

sub-functions when this global variable is also referenced by other functions running in
software.

• If a hardware function returns a value, then the return type must be a scalar type that
fits in a 32-bit container.

• A hardware function must have at least one argument.
• An output or inout scalar argument to a hardware function should be assigned once.

Create a local variable when multiple assignments to an output or inout scalar are required
within a hardware function.

• Use predefined macros to guard code with #ifdef and #ifndef preprocessor statements;
the macro names begin and end with two underscore characters ‘_’. For examples, see
SDSSC/SDS++ Compiler Commands and Options.
– The __SDSCC__ macro is defined and passed as a -D option to sub-tools whenever

sdscc or sds++ is used to compile source files, and can be used to guard code
dependent on whether it is compiled by sdscc/sds++ or by another compiler, for
example a GNU host compiler.

– When sdscc or sds++ compiles source files targeted for hardware acceleration using
Vivado HLS, the __SDSVHLS__ macro is defined and passed as a -D option, and can
be used to guard code dependent on whether high-level synthesis is run or not.

SDSoC Environment User Guide www.xilinx.com 33
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=33

Chapter 6: Coding Guidelines

Hardware Function Argument Types
The SDSoC™ environment sdscc/sds++ system compilers support hardware function
arguments with types that resolve to a single or array of C99 basic arithmetic type (scalar), a
struct or classwhose members flatten to a single or array of C99 basic arithmetic type
(hierarchical structs are supported), an array of struct whose members flatten to a single C99
basic arithmetic type. Scalar arguments must fit in a 32-bit container. The SDSoC™ environment
automatically infers hardware interface types for each hardware function argument based on
the argument type and the following pragmas:

#pragma SDS data copy|zero_copy
#pragma SDS data access_pattern

To avoid interface incompatibilities, you should only incorporate Vivado® HLS interface type
directives and pragmas in your source code as described in Vivado HLS Function Argument
Types when sdscc fails to generate a suitable hardware interface directive.

• Vivado® HLS provides arbitrary precision types ap_fixed<int>, ap_int<int>, and an
hls::stream class. In the SDSoC environment, arguments to top-level hardware functions
must have width of 8, 16, 32, or 64 bits, and you must guard such declarations with
#ifndef __SDS_VHLS__ to coerce to a like-sized C99 type such as char, short, int, or
long long. Vivado HLS hls::stream arguments must be presented to sdscc/sds++
as arrays. The example <sdsoc_install_dir>/samples/hls_if/hls_stream
demonstrates how to use HLS hls::stream typed arguments in the SDSoC environment.

• By default, an array argument to a hardware function is transferred by copying the data,
that is, it is equivalent to using #pragma SDS data copy. As a consequence, an array
argument must be either used as an input or produced as an output, but not both. For
an array that is both read and written by the hardware function, you must use #pragma
SDS data zero_copy to tell the compiler that the array should be kept in the shared
memory and not copied.

• To ensure alignment across the hardware/software interface, do not use hardware function
arguments that have type long, or an array of bool.

IMPORTANT: Pointer arguments for a hardware function require special consideration.
Although pointers are common and powerful abstractions, they can lead to challenges for the
sdscc and vivado_hls tools, due to the way they are synthesized by the latter.

SDSoC Environment User Guide www.xilinx.com 34
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=34

Chapter 6: Coding Guidelines

IMPORTANT: By default, in the absence of any pragmas, a pointer argument is taken to be
a scalar parameter, even though in C/C++ it might denote a one-dimensional array type. The
following are the permitted pragmas.

• This pragma provides pointer semantics using shared memory.
#pragma SDS data zero_copy

• This pragma maps the argument onto a stream, and requires that array elements are
accessed in index order. The data copy pragma is only required when the sdscc system
compiler is unable to determine the data transfer size and issues an error.

#pragma SDS data copy(p[0:<p_size>)
#pragma SDS data access_pattern(p:SEQUENTIAL)

When you require non-sequential access to the array in the hardware function, you should
change the pointer argument to an array with an explicit declaration of its dimensions, for
example, A[1024].

Hardware Function Call Guidelines
• Stub functions generated in the SDSoC™ environment transfer the exact number of bytes

according the compile-time determinable array bound of the corresponding argument in
the hardware function declaration. If a hardware function admits a variable data size,
you can use the following pragma to direct the SDSoC environment to generate code to
transfer data whose size is defined by an arithmetic expression:

#pragma SDS data copy|zero_copy(arg[0:<C_size_expr>]

where the <C_size_expr> must compile in the scope of the function declaration.

The zero_copy pragma directs the SDSoC environment to map the argument into shared
memory.

Be aware that mismatches between intended and actual data transfer sizes can cause the
system to hang at runtime, requiring laborious hardware debugging.

• Align arrays transferred by DMAs on cache-line boundaries (for L1 and L2 caches). Use the
sds_alloc API provided with the SDSoC environment or posix_memalign() instead of
malloc() to allocate these arrays.

• Align arrays to page boundaries to minimize the number of pages transferred with the
scatter-gather DMA, for example, for arrays allocated with malloc.

• You must use sds_alloc to allocate an array for the following two cases:

1. You are using zero-copy pragma for the array.

2. You are using pragmas to explicitly direct the system compiler to use Simple-DMA or
2D-DMA.

Note that in order to use sds_alloc() from sds_lib.h, it is necessary to include
stdlib.h before including sds_lib.h. stdlib.h is included to provide the size_t
type.

SDSoC Environment User Guide www.xilinx.com 35
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=35

Chapter 7

A Programmer’s Guide to Vivado High-Level
Synthesis

This section provides a concise introduction to writing efficient code that can be cross-compiled
into programmable logic.

The SDSoC environment employs Vivado HLS as a programmable logic cross-compiler to
transform C/C++ functions into hardware. By applying the principles described in this section,
you can dramatically increase the performance of the synthesized functions, which can lead to
significant increases in overall system performance for your application.

Top-Level Hardware Function Guidelines
This section describes coding guidelines to ensure that a Vivado HLS hardware function has a
consistent interface with object code generated by the ARM GNU toolchain.

Use Standard C99 Data Types for Top-Level Hardware Function
Arguments
1. Avoid using the long data type. The long data type is not portable between 64-bit

architecture (such as x64) or 32-bit architecture (such as the ARM A9 in Zynq® devices).

2. Avoid using arrays of bool. An array of bool has different memory layout between ARM
GCC and Vivado® HLS.

3. Avoid using ap_int<>, ap_fixed<>, hls::stream, except with data width of 8, 16, 32
or 64 bits. Navigate to <SDSoC Installation Path>/samples/hls_if/hls_stream
for a sample design on how to use hls::stream in the SDSoC environment.

SDSoC Environment User Guide www.xilinx.com 36
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=36

Chapter 7: A Programmer’s Guide to Vivado High-Level Synthesis

Omit HLS Interface Directives for Top-Level Hardware Function
Arguments
A top-level hardware function should not contain any HLS interface pragmas. In this case,
the SDSoC environment generates appropriate HLS interface directives. There are two SDSoC
environment pragmas you can specify for a top-level hardware function to guide the SDSoC
environment to generate the desired HLS interface directives.

#pragma SDS data zero_copy() can be used to generate a shared memory interface
implemented as an AXI master interface in hardware.

#pragma SDS data access_pattern(argument:SEQUENTIAL) can be used to
generate a streaming interface implemented as a FIFO interface in hardware.

IMPORTANT: If you specify the interface using #pragma HLS interface for a top-level
function argument, the SDSoC environment does not generate a HLS interface directive for
that argument, and it is your responsibility to ensure that the generated hardware interface
is consistent with all other function argument hardware interfaces. Because a function with
incompatible HLS interface types can result in cryptic sdscc error messages, it is strongly
recommended (though not absolutely mandatory) that you omit HLS interface pragmas.

Optimization Guidelines
This section documents several fundamental HLS optimization techniques to enhance hardware
function performance. These techniques are: function inlining, loop and function pipelining,
loop unrolling, increasing local memory bandwidth and streaming data flow between loops
and functions.

Function Inlining
Similar to function inlining of software functions, it can be beneficial to inline hardware functions.

Function inlining replaces a function call by substituting a copy of the function body after
resolving the actual and formal arguments. After that, the inlined function is dissolved and no
longer appears as a separate level of hierarchy. Function inlining allows operations within the
inlined function be optimized more effectively with surrounding operations, thus improves the
overall latency or the initiation interval for a loop.

To inline a function, put #pragma HLS inline at the beginning of the body of the desired
function. The following code snippet directs Vivado HLS to inline the mmult_kernel function:

void mmult_kernel(float in_A[A_NROWS][A_NCOLS],
float in_B[A_NCOLS][B_NCOLS],
float out_C[A_NROWS][B_NCOLS])

{
#pragma HLS INLINE

int index_a, index_b, index_d;
// rest of code body omitted

}

SDSoC Environment User Guide www.xilinx.com 37
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=37

Chapter 7: A Programmer’s Guide to Vivado High-Level Synthesis

Loop Pipelining and Loop Unrolling
Both loop pipelining and loop unrolling improve the hardware function’s performance by
exploiting the parallelism between loop iterations. The basic concepts of loop pipelining and
loop unrolling and example codes to apply these techniques are shown and the limiting factors
to achieve optimal performance using these techniques are discussed.

Loop Pipelining

In sequential languages such as C/C++, the operations in a loop are executed sequentially and
the next iteration of the loop can only begin when the last operation in the current loop
iteration is complete. Loop pipelining allows the operations in a loop to be implemented in a
concurrent manner as shown in the following figure.

Figure 7–1: Loop Pipelining

As shown in the above figure, without pipelining, there are three clock cycles between the two
RD operations and it requires six clock cycles for the entire loop to finish. However, with
pipelining, there is only one clock cycle between the two RD operations and it requires four
clock cycles for the entire loop to finish, that is, the next iteration of the loop can start before
the current iteration is finished.

An important term for loop pipelining is called Initiation Interval (II), which is the number
of clock cycles between the start times of consecutive loop iterations. In Loop Pipelining the
Initiation Interval (II) is one, because there is only one clock cycle between the start times of
consecutive loop iterations.

SDSoC Environment User Guide www.xilinx.com 38
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=38

Chapter 7: A Programmer’s Guide to Vivado High-Level Synthesis

To pipeline a loop, put #pragma HLS pipeline at the beginning of the loop body, as
illustrated in the following code snippet. Vivado HLS tries to pipeline the loop with minimum
Initiation Interval.

for (index_a = 0; index_a < A_NROWS; index_a++) {
for (index_b = 0; index_b < B_NCOLS; index_b++) {

#pragma HLS PIPELINE II=1
float result = 0;
for (index_d = 0; index_d < A_NCOLS; index_d++) {

float product_term = in_A[index_a][index_d] * in_B[index_d][index_b];
result += product_term;

}
out_C[index_a * B_NCOLS + index_b] = result;

}
}

Loop Unrolling

Loop unrolling is another technique to exploit parallelism between loop iterations. It creates
multiple copies of the loop body and adjust the loop iteration counter accordingly. The
following code snippet shows a normal rolled loop:

int sum = 0;
for(int i = 0; i < 10; i++) {

sum += a[i];
}

After the loop is unrolled by a factor of 2, the loop becomes:
int sum = 0;
for(int i = 0; i < 10; i+=2) {

sum += a[i];
sum += a[i+1];

}

So unrolling a loop by a factor of N basically creates N copies of the loop body, the loop
variable referenced by each copy is updated accordingly (such as the a[i+1] in the above
code snippet), and the loop iteration counter is also updated accordingly (such as the i+=2 in
the above code snippet).

Loop unrolling creates more operations in each loop iteration, so that Vivado HLS can exploit
more parallelism among these operations. More parallelism means more throughput and
higher system performance. If the factor N is less than the total number of loop iterations (10
in the example above), it is called a "partial unroll". If the factor N is the same as the number
of loop iterations, it is called a "full unroll". Obviously, "full unroll" requires the loop bounds
be known at compile time but exposes the most parallelism.

To unroll a loop, simply put #pragma HLS unroll [factor=N] at the beginning of the
desired loop. Without the optional factor=N , the loop will be fully unrolled.

int sum = 0;
for(int i = 0; i < 10; i++) {
#pragma HLS unroll factor=2

sum += a[i];
}

Factors Limiting the Parallelism Achieved by Loop Pipelining and Loop Unrolling

Both loop pipelining and loop unrolling exploit the parallelism between loop iterations.
However, parallelism between loop iterations is limited by two main factors: one is the data
dependencies between loop iterations, the other is the number of available hardware resources.

SDSoC Environment User Guide www.xilinx.com 39
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=39

Chapter 7: A Programmer’s Guide to Vivado High-Level Synthesis

A data dependence from an operation in one iteration to another operation in a subsequent
iteration is called a loop-carried dependence. It implies that the operation in the subsequent
iteration cannot start until the operation in the current iteration has finished computing the
data input for the operation in subsequent iteration. Loop-carried dependencies fundamentally
limit the initiation interval that can be achieved using loop pipelining and the parallelism
that can be exploited using loop unrolling.

The following example demonstrates loop-carried dependencies among operations producing
and consuming variables a and b.

while (a != b) {
if (a > b)

a –= b;
else

b –= a;
}

Obviously, operations in the next iteration of this loop can not start until the current iteration
has calculated and updated the values of a and b. Array accesses are a common source of
loop-carried dependencies, as shown in the following example:

for (i = 1; i < N; i++)
mem[i] = mem[i-1] + i;

In this case, the next iteration of the loop must wait until the current iteration updates the
content of the array. In case of loop pipelining, the minimum Initiation Interval is the total
number of clock cycles required for the memory read, the add operation, and the memory write.

Another performance limiting factor for loop pipelining and loop unrolling is the number of
available hardware resources. The following figure shows an example the issues created by
resource limitations, which in this case prevents the loop to be pipelined with an initiation
interval of 1.

Figure 7–2: Resource Contention

In this example, if the loop is pipelined with an initiation interval of one, there are two read
operations. If the memory has only a single port, then the two read operations cannot be
executed simultaneously and must be executed in two cycles. So the minimal initiation interval
can only be two, as shown in part (B) of the figure. The same can happen with other hardware
resources. For example, if the op_compute is implemented with a DSP core which cannot
accept new inputs every cycle, and there is only one such DSP core. Then op_compute cannot
be issued to the DSP core each cycle, and an initiation interval of one is not possible.

SDSoC Environment User Guide www.xilinx.com 40
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=40

Chapter 7: A Programmer’s Guide to Vivado High-Level Synthesis

Increasing Local Memory Bandwidth
This section shows several ways provided by Vivado HLS to increase local memory bandwidth,
which can be used together with loop pipelining and loop unrolling to improve system
performance.

Arrays are intuitive and useful constructs in C/C++ programs. They allow the algorithm be
easily captured and understood. In Vivado HLS, each array is by default implemented with a
single port memory resource. However, such memory implementation may not be the most
ideal memory architecture for performance oriented programs. At the end of previous section,
an example of resource contention caused by limited memory ports is shown.

Array Partitioning

Arrays can be partitioned into smaller arrays. Physical implementation of memories have only a
limited number of read ports and write ports, which can limit the throughput of a load/store
intensive algorithm. The memory bandwidth can sometimes be improved by splitting up
the original array (implemented as a single memory resource) into multiple smaller arrays
(implemented as multiple memories), effectively increasing the number of load/store ports.

Vivado HLS provides three types of array partitioning, as shown in Array Partitioning.

1. block: The original array is split into equally sized blocks of consecutive elements of the
original array.

2. cyclic: The original array is split into equally sized blocks interleaving the elements of the
original array.

3. complete: The default operation is to split the array into its individual elements. This
corresponds to implementing an array as a collection of registers rather than as a memory.

Figure 7–3: Array Partitioning

SDSoC Environment User Guide www.xilinx.com 41
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=41

Chapter 7: A Programmer’s Guide to Vivado High-Level Synthesis

To partition an array in Vivado HLS, insert
#pragma HLS array_partition variable=<variable> <block, cyclic, complete> factor=<int> dim=<int>

in the hardware function source code. For block and cyclic partitioning, the factor option can
be used to specify the number of array which are created. In the figure, Array Partitioning, a
factor of two is used, dividing the array into two smaller arrays. If the number of elements in the
array is not an integer multiple of the factor, the last array will have fewer than average elements.

When partitioning multi-dimensional arrays, the dim option can be used to specify which
dimension is partitioned. The following figure shows an example of partitioning different
dimensions of a multi-dimensional array.

Figure 7–4: Multi-dimension Array Partitioning

Array Reshaping

Arrays can also be reshaped to increase the memory bandwidth. Reshaping takes different
elements from a dimension in the original array, and combines them into a single wider
element. Array reshaping is similar to array partitioning, but instead of partitioning into multiple
arrays, it widens array elements. The following figure illustrates the concept of array reshaping.

Figure 7–5: Array Reshaping

SDSoC Environment User Guide www.xilinx.com 42
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=42

Chapter 7: A Programmer’s Guide to Vivado High-Level Synthesis

To use array reshaping in Vivado HLS, insert
#pragma HLS array_reshape variable=<variable> <block, cyclic, complete> factor=<int> dim=<int>

in the hardware function source code. The options have the same meaning as the array
partition pragma.

Data Flow Pipelining
The previously discussed optimization techniques are all "fine grain" parallelizing optimizations
at the level of operators, such as multiplier, adder, and memory load/store operations. These
techniques optimize the parallelism between these operators. Data flow pipelining on the other
hand, exploits the "coarse grain" parallelism at the level of functions and loops. Data flow
pipelining can increase the concurrency between functions and loops.

Function Data Flow Pipelining

The default behavior for a series of function calls in Vivado HLS is to complete a function
before starting the next function. Part (A) in Function Data Flow Pipelining, shows the latency
without function data flow pipelining. Assuming, it takes 8 cycles for the three functions to
complete, the code requires eight cycles before a new input can be processed by "func_A" and
also eight cycles before an output is written by "func_C" (assume the output is written at
the end of "func_C").

Figure 7–6: Function Data Flow Pipelining

An example execution with data flow pipelining is shown in the part (B) of the figure above.
Assuming the execution of func_A takes 3 cycles, func_A can begin processing a new input
every three clock cycles rather than waiting for all the three functions to complete, resulting in
increased throughput, The complete execution to produce an output then requires only five
clock cycles, resulting in shorter overall latency.

SDSoC Environment User Guide www.xilinx.com 43
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=43

Chapter 7: A Programmer’s Guide to Vivado High-Level Synthesis

Vivado HLS implements function data flow pipelining by inserting "channels" between the
functions. These channels are implemented as either ping-pong buffers or FIFOs, depending on
the access patterns of the producer and the consumer of the data.

• If a function parameter (producer or consumer) is an array, the corresponding channel is
implemented as a multi-buffer using standard memory accesses (with associated address
and control signals).

• For scalar, pointer and reference parameters as well as the function return, the channel is
implemented as a FIFO, which uses less hardware resources (no address generation) but
requires that the data is accessed sequentially.

To use function data flow pipelining, put #pragma HLS dataflow where the data flow
optimization is desired. The following code snippet shows an example:

void top(a, b, c, d) {
#pragma HLS dataflow

func_A(a, b, i1);
func_B(c, i1, i2);
func_C(i2, d);

}

Loop Data Flow Pipelining

Data flow pipelining can also be applied to loops in similar manner as it can be applied
to functions. It enables a sequence of loops, normally executed sequentially, to execute
concurrently. Data flow pipelining should be applied to a function, loop or region which
contains either all function or all loops: do not apply on a scope which contains a mixture of
loops and functions.

Loop Data Flow Pipelining shows the advantages data flow pipelining can produce when
applied to loops. Without data flow pipelining, loop N must execute and complete all iterations
before loop M can begin. The same applies to the relationship between loops M and P. In this
example, it is eight cycles before loop N can start processing the next value and eight cycles
before an output is written (assuming the output is written when loop P finishes).

SDSoC Environment User Guide www.xilinx.com 44
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=44

Chapter 7: A Programmer’s Guide to Vivado High-Level Synthesis

Figure 7–7: Loop Data Flow Pipelining

With data flow pipelining, these loops can operate concurrently. An example execution with
data flow pipelining is shown in part (B) of the figure above. Assuming the loop M takes 3
cycles to execute, the code can accept new inputs every three cycles. Similarly, it can produce
an output value every five cycles, using the same hardware resources. Vivado HLS automatically
inserts channels between the loops to ensure data can flow asynchronously from one loop to
the next. As with data flow pipelining, the channels between the loops are implemented either
as multi-buffers or FIFOs.

To use loop data flow pipelining, put #pragma HLS dataflow where the data flow
optimization is desired.

SDSoC Environment User Guide www.xilinx.com 45
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=45

Chapter 8

Using C-Callable IP Libraries
The SDSoC Environment User Guide: Platforms and Libraries (UG1146), Creating a Library
chapter describes the process for creating C-callable libraries that employ IP cores.

Using a C-callable library is similar to using any software library. You #include header files
for the library in appropriate source files and use the sdscc -I<path> option to compile
your source, for example

> sdscc –c –I<path to header> –o main.o main.c

When you are using the SDSoC IDE, you add these sdscc options by right-clicking on your
project, selecting C/C++ Build Settings->SDSCC Compiler->Directories (or SDS++
Compiler->Directories for C++ compilation).

To link the library into your application, you use the -L<path> and -l<lib> options.
> sdscc –sds-pf zc702 ${OBJECTS} –L<path to library> -l<library_name> –o myApp.elf

As with the standard GNU linkers, for a library called libMyLib.a, you use -lMyLib.

When you are using the SDSoC IDE, you add these sdscc options by right-clicking on your
project, selecting C/C++ Build Settings > SDS++ Linker > Libraries.

You can find code examples that employ C-callable libraries in the SDSoC™ environment
installation under the samples/fir_lib/use and samples/rtl_lib/arraycopy/use
directories.

SDSoC Environment User Guide www.xilinx.com 46
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1146-sdsoc-platforms-and-libraries.pdf;a=xCreatingALibrary
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=46

Chapter 9

Using Vivado Design Suite HLS Libraries
This section describes how to use Vivado HLS libraries with the SDSoC environment.

Vivado® High-Level Synthesis (HLS) libraries are provided as source code with the Vivado HLS
installation in the SDSoC environment. Consequently, you can use these libraries as you would
any other source code that you plan to cross-compile for programmable logic using Vivado
HLS. In particular, you must ensure that the source code conforms to the rules described in
Hardware Function Argument Types, which might require you to provide a C/C++ wrapper
function to ensure the functions export a software interface to your application.

The synthesizeable FIR example template for all basic platforms in the SDSoC IDE provides an
example that uses an HLS library. You can find several additional code examples that employ
HLS libraries in the samples/hls_lib directory. For example, samples/hls_lib/hls_math
contains an example to implement and use a square root function.

The file my_sqrt.h contains:
#ifndef _MY_SQRT_H_
#define _MY_SQRT_H_

#ifdef __SDSVHLS__
#include "hls_math.h"
#else
// The hls_math.h file includes hdl_fpo.h which contains actual code and
// will cause linker error in the ARM compiler, hence we add the function
// prototypes here
static float sqrtf(float x);
#endif

void my_sqrt(float x, float *ret);

#endif // _SQRT_H_

The file my_sqrt.cpp contains:
#include "my_sqrt.h"

void my_sqrt(float x, float *ret)
{

*ret = sqrtf(x);
}

The makefile has the commands to compile these files:
sds++ -c -hw my_sqrt –sds-pf zc702 my_sqrt.cpp
sds++ -c my_sqrt_test.cpp
sds++ my_sqrt.o my_sqrt_test.o -o my_sqrt_test.elf

SDSoC Environment User Guide www.xilinx.com 47
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=47

Chapter 10

Exporting an Application as a Library
When you create an application in the SDSoC environment, you select an SDSoC platform as
a starting point and specify a set of functions to be implemented in hardware on top of it.
The SDSoC system compiler creates a hardware design that includes the functions selected
for hardware as well as the corresponding data movers, and also generates the required
software to communicate with these accelerators and data movers. By default, the output of
the system compilation is a complete boot image including bitstream, file system, operating
system, and application executable.

You can change the SDSoC system compiler options to generate either a static or a shared
library instead of an application binary, and you can then link to this library when developing
the rest of your application using the standard GNU toolchain. You are still targeting the same
hardware system and using the sdscc-generated boot environment, but you are then free
to develop your software using the GNU toolchain in the software development environment
of your choice.

One use case for a library flow is to partition the application into the hardware-specific portion
and the rest of the application software that runs entirely on the CPU and does not need to be
compiled through sdscc. After you have determined the hardware accelerators and built the
application-specific hardware system, a library allows you to develop the rest of the software
application using the ARM toolchain, with fast software compilation.

The entry points into the shared library are specific stub functions generated by sdscc during
system compilation that you declare in the library header file.

IMPORTANT: Because the same hardware is being used for the shared library, you must
ensure that the entry points into your library enforce consistency with the generated system,
including all assumptions on memory allocation, direct hardware connectivity between hardware
functions, and data movers. When the overall application code is linked with the shared library,
there are no additional consistency checks (for example, memory allocation for buffers passed
to hardware functions) with the assumptions made by sdscc during system generation. It
is strongly recommended that you wrap any "connected components" of multiple hardware
functions that are directly connected in hardware, into a single function that controls access
to all of the individual hardware functions.

When sdscc generates a system, it automatically creates a static library with entry points for
each of the hardware functions. For a project named myApp created in the SDSoC IDE, the
library is <build_configuration>/ _sds/swstubs/libmyApp.a. For myApp.elf built
using the command line interface, the library is _sds/swstubs/libmyApp.a.

The stub function entry points to the library are not precisely the same as the set of hardware
function prototypes. The sdscc compiler automatically renames hardware functions with
"mangled" names to support multiple bitstreams (that is, partitions using #pragma SDS
partition) and multiple hardware function instances. In general you do not need to be
aware of this renaming, but when you export a design as a library, the library header file must
declare the stub functions.

SDSoC Environment User Guide www.xilinx.com 48
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=48

Chapter 10: Exporting an Application as a Library

For example, a hardware function mmult_accel typically has the following declaration:
// mmult_accel.h
void _p0_mmult_accel_0(float[], float[], float[]); // hardware function mmult_accel

For any hardware function, the entry point should be straightforward to determine by
expanding the library in the Project Explorer and inspecting functions within the library.

You can find a complete example in the samples/mmult_static_lib/build directory
in the SDSoC environment install.

To create a shared library in the SDSoC IDE, you select the Shared Library check box when
you create a new SDSoC environment project.

The shared library libmySharedLib.so is created along with the SD card boot image. You
can export a design as a shared library from the command line by compiling source files
containing the hardware functions and functions calling them with the sdscc/sds++ position
independent code flag (-fPIC) and linking using the –shared option.

SDSoC Environment User Guide www.xilinx.com 49
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=49

Chapter 10: Exporting an Application as a Library

The SDSoC IDE provides a Matrix Multiplication Shared Library example template when you
select the Shared Library check box shown in the figure above. The connectivity of the hardware
blocks is determined using a source file that includes a process function that defines how the
user calls the library. The SDSoC system compiler then determines the system connectivity
based on this function as usual.

File: mmult_call.c
#include "mmult_accel.h"

void mmult_call (float in_A[A_NROWS*A_NCOLS],
float in_B[A_NCOLS*B_NCOLS],
float out_C[A_NROWS*B_NCOLS])

{
mmult_accel(in_A, in_B, out_C);

}

This example specifies that there is a single call to the function mmult_accel that is selected
for hardware implementation, but you can specify multiple hardware functions for the library.

The hardware function is compiled using sdscc with an additional -fPIC flag to make the
object code position independent.

sdscc –sds-pf zc702 -sds-hw mmult_accel mmult_accel.cpp -sds-end \
–c –fPIC mmult_accel.c –o mmult_accel.o

You must also compile the calling function code with the -fPIC flag.
sdscc –sds-pf zc702 –c –fPIC mmult_call.c –o mmult_call.o

Finally, link all object files and specify the shared library options.
sdscc –sds-pf zc702 -shared mmult_accel.o mmult_call.o -o libmmult_accel.so

This creates a libmmult_accel.so library that can be linked using the standard ARM GNU
toolchain on the command line or in any software development environment.

The above command also creates an sd_card image that contains the boot files needed to
execute the program that links against the library.

You can find a complete example in the samples/mmult_shared_lib/build directory
in the SDSoC environment install.

Linking to an Application Library
A library generated for an application in the SDSoC environment is linked like any other
software library. You #include header files associated with the library into source files and
compile them with the GCC -I option to specify the directory path to the header files. You
link your application using the GCC -L option to specify the path to the library, and the -l
option to declare the library name.

As an example, assume you created a file called mmult.cpp that contains the main function
and calls an mmult_accel function in a shared library. Compile the file using:

arm-xilinx-linux-gnueabi-g++ -c -O3 mmult.cpp –o mmult.o

and link the application using:
arm-xilinx-linux-gnueabi-g++ -O3 mmult.o -L./lib -lmmult_accel -lpthread \
-o mmult.elf

SDSoC Environment User Guide www.xilinx.com 50
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=50

Chapter 10: Exporting an Application as a Library

This creates an executable called mmult.elf that you copy into your SD card along with
the boot files. The POSIX Threads (pthread) library is required for the software runtime
code generated by sdscc.

To run the program, copy the sd_card directory created in the SDSoC environment into an SD
card, boot the board and wait for the command prompt. Execute the following commands
on the board:

sh-4.3# export LD_LIBRARY_PATH=/mnt
sh-4.3# /mnt/mmult.elf

You can find complete examples in the samples/mmult_shared_lib/use and
samples/mmult_static_lib/use directories in the SDSoC environment install.

SDSoC Environment User Guide www.xilinx.com 51
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=51

Chapter 11

Debugging an Application
The SDSoC™ environment allows projects to be created and debugged using the SDSoC IDE.
Projects can also be created outside the SDSoC IDE (user-defined makefiles) and debugged
either on the command line or using the SDSoC IDE.

See SDSoC Environment User Guide: An Introduction to the SDSoC Environment (UG1028),
Tutorial: Debugging Your System for information on using the interactive debuggers in the
SDSoC IDE.

Debugging Linux Applications in the SDSoC IDE
Within the SDSoC™ IDE, use the following procedure to debug your application:

1. Select the SDDebug as the active build configuration and build the project.
2. Copy the generated SDDebug/sd_card image to an SD card, and boot the board with it.

3. Make sure the board is connected to the network, and note its IP address, for example,
by executing ifconfig eth0 at the command prompt.

4. Select the Debug As option to create a new debug-configuration, and enter the IP
address for the board

5. You now switch to the SDSoC environment debug perspective which allows you to start,
stop, step, set breakpoints, examine variables and memory, and perform various other
debug operations.

Debugging Standalone Applications in the SDSoC IDE
Use the following procedure to debug a standalone (bare-metal) application project using
the SDSoC™ IDE.

1. Select SDDebug as the active build configuration and build the project.
2. Make sure the board is connected to your host computer using the JTAG Debug connector.

3. Select the Debug As option to create a new debug-configuration

You now switch to the SDSoC environment debug perspective which allows you to start,
stop, step, set breakpoints, examine variables and memory, and perform various other
debug operations.

In the SDSoC IDE Project Overview panel, click on the Debug application link, which
provides a shortcut to the procedure described above.

SDSoC Environment User Guide www.xilinx.com 52
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1028-intro-to-sdsoc.pdf;a=xTutorialDebuggingYourSystem
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1028-intro-to-sdsoc.pdf;a=xTutorialDebuggingYourSystem
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=52

Chapter 11: Debugging an Application

Debugging FreeRTOS Applications
If you create a FreeRTOS application project using the SDSoC™ environment, you can debug
your application using the same steps as a standalone (bare-metal) application project.

Peeking and Poking IP Registers
Two small executables called mrd and mwr are available to peek and poke registers in
memory-mapped programmable logic. These executables are invoked with the physical address
to be accessed.

For example: mrd 0x80000000 10 reads ten 4-byte values starting at physical address
0x80000000 and prints them to standard output, while mwr 0x80000000 20writes the value
20 to the address 0x8000000.

These executables can be used to monitor and change the state of memory-mapped registers
in hardware functions and in other IP generated by the SDSoC™ environment.

CAUTION! Trying to access non-existent addresses can cause the system to hang.

Debugging Performance Tips
The SDSoC environment provides some basic performance monitoring capabilities in the form of
the sds_clock_counter() function. Use this function to determine how much time different
code sections, such as the accelerated code and the non-accelerated code, take to execute.

Estimate the actual hardware acceleration time by looking at the latency numbers in the
Vivado® Design Suite HLS report files (_sds/vhls/…/*.rpt). Latency of X accelerator clock
cycles = X * (processor_clock_freq/accelerator_clock_freq) processor clock cycles. Compare this
with the time spent on the actual function call to determine the data transfer overhead.

For best performance improvement, the time required for executing the accelerated function
must be much smaller than the time required for executing the original software function. If
this is not true, try to run the accelerator at a higher frequency by selecting a different clkid
on the sdscc/sds++ command line. If that does not work, try to determine whether the data
transfer overhead is a significant part of the accelerated function execution time, and reduce
the data transfer overhead. Note that the default clkid is 100 MHz for all platforms. More
details about the clkid values for the given platform can be obtained by running sdscc
–sds-pf-info <platform name>.

If the data transfer overhead is large, the following changes might help:

• Move more code into the accelerated function so that the computation time increases, and
the ratio of computation to data transfer time is improved.

• Reduce the amount of data to be transferred by modifying the code or using pragmas to
transfer only the required data.

SDSoC Environment User Guide www.xilinx.com 53
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=53

Chapter 12

Performance Measurement Using the AXI
Performance Monitor

The AXI Performance Monitor (APM) module is used to monitor basic information about
data transfers between the processing system (PS) ARM cores and the hardware in the
programmable logic (PL). It captures statistics such as number of read/write transactions,
throughput, and latency for the AXI transactions on the busses in the system.

In this section we will show how to insert an APM core into the system, monitor the
instrumented system, and view the performance data produced.

Creating a Project and Implementing APM
Open the SDSoC environment and create a new SDSoC Project using any platform or operating
system selection. Choose the Matrix Multiplication and Addition Template.

In the SDSoC Project Overview, check the option Insert AXI Performance Monitor. Enabling
this option and building the project adds the APM IP core to your hardware system. The APM
IP uses a small amount of resources in the programmable logic. SDSoC connects the APM to
the hardware/software interface ports, which are the Accelerator Coherency Port (ACP), General
Purpose Ports (GP) and High Performance Ports (HP).

Select the mmult and madd functions to be implemented in hardware. Clean and build the
project using the SDDebug configuration, which is selected by default.

SDSoC Environment User Guide www.xilinx.com 54
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=54

Chapter 12: Performance Measurement Using the AXI Performance Monitor

Monitoring the Instrumented System
After the build completes, connect the board to your computer and power up the board. Click
the Debug button to launch the application on the target. Switch to the Debug perspective.
After programming the PL and launching the ELF, the program halts in main. Click on Window
> Open Perspective > Other ...

Select Performance Analysis in the OpenPerspective dialog and click OK.

SDSoC Environment User Guide www.xilinx.com 55
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=55

Chapter 12: Performance Measurement Using the AXI Performance Monitor

Switch back to the SDSoC perspective.

Expand the SDDebug folder in the ProjectExplorer view. Right click the ELF executable and
select Debug As > Launch on Hardware (SDSoC Debugger). If you are prompted to relaunch
the application, click OK.

SDSoC Environment User Guide www.xilinx.com 56
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=56

Chapter 12: Performance Measurement Using the AXI Performance Monitor

Click Yes to switch to the Debug perspective. Once the application launches and halts at a
breakpoint in the main function, switch back to the Performance Analysis perspective.

SDSoC Environment User Guide www.xilinx.com 57
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=57

Chapter 12: Performance Measurement Using the AXI Performance Monitor

In the Debug view in the top left of the perspective, click on ARM Cortex-A9 MPCore #0.

Next, click on the Start Analysis button, which opens the Performance Analysis Input dialog.

Check the box to Enable APM Counters. Click the Edit button to set up APM Hardware
Information.

SDSoC Environment User Guide www.xilinx.com 58
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=58

Chapter 12: Performance Measurement Using the AXI Performance Monitor

Click the Load button in the APM Hardware Information dialog. Navigate to
workspace_path/project/SDDebug/_sds/p0/ipi/zc702.sdk and select the
zc702.hdf file (zc702 is the platform name used in this example - use your platform instead).
Click Open, then click OK in the APM Hardware Information dialog. Finally, click OK in
the Performance Analysis Input dialog.>

The Analysis views open in the PL Performance tab. Click the Resume button to run the
application.

After your program completes execution, click the Stop Analysis button. If prompted by the
Confirm Perspective Switch dialog to stay in the Performance Analysis perspective, click No.

Scroll through the analysis plots in the lower portion of the perspective to view different
performance statistics. Click in any plot area to show a bigger version in the middle of the
perspective. The orange box below allows you to focus on a particular time slice of data.

SDSoC Environment User Guide www.xilinx.com 59
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=59

Chapter 12: Performance Measurement Using the AXI Performance Monitor

Analyzing the Performance
In this system, the APM is connected to the two ports in use between the PS and the PL: the
Accelerator Coherency Port (ACP) and the general purpose AXI port (GP). The multiplier and
adder accelerator cores are both connected to the ACP for data input and output. The GP port
is used to issue control commands and get the status of the accelerator cores only, not for data
transfer. The blue Slot 0 is connected to the GP port, and the green Slot 1 is connect to the ACP.

The APM is configured in Profile mode with two monitoring slots, one for each: ACP and GP
ports. Profile mode provides event counting functionality for each slot. The type of statistics
computed by the APM for both reading and writing include:

• Transaction Count - Total number of requests that occur on the bus

• Byte Counter - Total number of bytes sent (used for write throughput calculation)

• Latency - Time from the start of the address issuance to the last element sent

The latency and byte counter statistics are used by the APM to automatically compute the
throughput (in mega-bytes per second: MB/sec). The latency and throughput values shown
are for a 50 millisecond (ms) time interval. Also, minimum, maximum, and averages are also
displayed for latency and throughput statistics.

SDSoC Environment User Guide www.xilinx.com 60
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=60

Chapter 13

Target Operating System Support
The SDSoC environment currently supports Linux, standalone ("bare metal"), and FreeRTOS
target operating systems. The SDSoC system compilers use target OS-specific characterization
data in choosing data movers for each application, so the same application code running under
different operating systems may result in different generated hardware systems.

Linux Applications
The SDSoC™ environment supports Linux applications that run on Zynq® devices, which
lets users compile their programs to run on the hardware with the Linux operating system.
The SDSoC environment links in a library to communicate with the hardware using services
provided by the operating system.

Usage
In order to compile and link an SDSoC environment program for Linux, the makefile should
include -target-os linux in CFLAGS, as well as LFLAGS. If the -target-os linux option
is omitted, the SDSoC™ environment by default targets the Linux operating system.

The SD boot image consists of multiple files in the sd_card directory. BOOT.BIN contains the
first stage boot loader (FSBL), which is invoked directly after powering on the board, and in
turn invokes U-boot. Linux boot uses a device tree, Linux kernel and ramdisk image. Finally,
SD boot image also includes the application ELF and hardware bitstream used to configure
the programmable logic.

Supported Platforms
Linux mode is supported for all SDSoC™ platforms.

Limitations
The provided Linux operating system utilizes a pre-built kernel image (3.19, Xilinx branch
xilinx-v2015.2.03) and a ramdisk containing BusyBox. To configure the Linux image or ramdisk
image for your own platform or requirements, follow the instructions at wiki.xilinx.com to
download and build the Linux kernel. SDSoC Environment User Guide: Platforms and Libraries
(UG1146), Linux Boot Files describes the Linux boot files and summarizes the process for
creating them using PetaLinux.

SDSoC Environment User Guide www.xilinx.com 61
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.wiki.xilinx.com/
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1146-sdsoc-platforms-and-libraries.pdf;a=xLinuxBootFiles
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1146-sdsoc-platforms-and-libraries.pdf;a=xLinuxBootFiles
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=61

Chapter 13: Target Operating System Support

Standalone Target Applications
In addition to Linux applications that run on Zynq® devices, the SDSoC™ environment supports
standalone mode, which lets users compile their programs to run directly on the hardware
without any operating system. The SDSoC environment links in a library that provides the
services normally provided by the target operating system.

Usage
In order to compile and link an SDSoC environment program for standalone mode, the makefile
should include -target-os standalone in CFLAGS, as well as LFLAGS.

The SD boot image consists of a single file BOOT.BIN in the sd_card directory that contains
the first stage boot loader (FSBL) as well as the user application, which is invoked directly
after powering on the board.

Supported Platforms
Standalone mode is supported for the following platforms:

• zc702 (based on the Xilinx ZC702 evaluation board)

• zc706 (based on the Xilinx ZC706 evaluation board)

• zed (based on the ZedBoard from zedboard.org)

• microzed (based on the MicroZed board from zedboard.org)

• zybo (based on the Zybo board from)

Limitations
Standalone mode does not support multi-threading, virtual memory, or address protection as
documented in OS and Libraries Document Collection (UG643). Access to the file system is
not through the usual C API, but instead through a special API using libxilffs. The sample
program file_io_manr_sobel_standalone shows an example of its use. This program
can be compared with the Linux version file_io_manr_sobel to see what changes are
necessary for accessing the file system. In general, the procedure to access the file system is to
include a few extra files, use different types (for example, FIL instead of FILE), use a slightly
different API for file system access (for example, f_open instead of fopen), and disable DCache
before doing any file operations.

IMPORTANT: On the ZedBoard, a serial connection to the board takes a couple of seconds. If
your program runs for a time shorter than that, you will never see its output. When the ZedBoard
is power cycled, the serial connection goes down and it is not possible to see the output in the
subsequent run either. The ZC702 and ZC706 boards keep the serial connection alive across
power cycles and do not suffer from this limitation.

SDSoC Environment User Guide www.xilinx.com 62
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://zedboard.org/
http://zedboard.org/
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=oslib_rm.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=62

Chapter 13: Target Operating System Support

FreeRTOS Target Applications
In addition to Linux applications that run on Zynq®-7000 AP SoC devices, the SDSoC™
environment supports applications that use the FreeRTOS real time operating system from Real
Time Engineers Ltd (www.freertos.org), which allows users to compile their programs with a real
time kernel using APIs for scheduling, inter-task communication, timing and synchronization.

The SDSoC environment includes FreeRTOS v8.2.1 header files and a pre-configured library
containing the real time kernel, API functions and Zynq device-specific platform code. It also
builds the standalone library that provides drivers and functions required to support a C/C++
bare-metal application.

Usage
In order to compile and link an SDSoC™ environment program for FreeRTOS, the makefile
should include the -target-os freertos option in all compiler and linker calls in the
makefile. This is typically specified in an SDSoC environment variable, which in turn is included
in a compiler toolchain variable, as shown below:

SDSFLAGS = -sds-pf zc702 –target-os freertos \
-sds-hw mmult_accel mmult_accel.cpp -sds-end \
-poll-mode 1
CPP = sds++ ${SDSFLAGS}
CC = sds ${SDSFLAGS}
:
all: ${EXECUTABLE}
${EXECUTABLE}: ${OBJECTS}
${CPP} ${LFLAGS} ${OBJECTS} -o $@
%.o: %.cpp
${CPP} ${CFLAGS} $< -o $@
:

When the SDSoC environment links the application ELF file, it builds a standalone (bare-metal)
library, provides a predefined linker script and uses a pre-configured FreeRTOS kernel using
headers and a pre-built library, and includes their paths when it calls the ARM GNU toolchain
(you do not need to specify the paths in your makefile):

<path_to_install>/SDSoC/2015.4/arm-xilinx-eabi/include/freertos
<path_to_install>/SDSoC/2015.4/arm-xilinx-eabi/lib/freertos

The SD boot image consists of a single file BOOT.BIN in the sd_card directory that contains
the first stage boot loader (FSBL) as well as the user application, which is invoked directly
after powering on the board.

SDSoC environment GUI flows for working with FreeRTOS applications are the same as those
for standalone (bare-metal) applications, except the target OS is specified as FreeRTOS. The
user application code needs to include the following:

• Hardware configuration function

• Task functions and task creation calls using the xTaskCreate() API function

• Scheduler start call using the vTaskStartScheduler() API function

• Callback functions such as vApplicationMallocFailedHook(),
vApplicationStackOverflowHook(), vApplicationIdelHook(),
vAssertCalled(), vApplicationTickHook(), and
vInitialiseTimerForRunTimeStats

SDSoC Environment User Guide www.xilinx.com 63
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.freertos.org
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=63

Chapter 13: Target Operating System Support

Simple SDSoC environment applications based on the Zynq®-7000 AP SoC series demo
included in the FreeRTOS v8.2.1 software distribution are available in the SDSoC GUI application
wizard and in the SDSoC environment installation:

<path_to_install>/SDSoC/2015.4/samples/mmult_datasize_freertos
<path_to_install>/SDSoC/2015.4/samples/mmult_optimized_sds_freerttos

User or sample applications that normally target the Standalone BSP can be built using the
–target-os freertos option in compile and link, but the FreeRTOS linker script is used and
predefined callback functions found in the pre-built FreeRTOS library are used. Applications
built this way do not explicitly call FreeRTOS API functions and run as standalone applications.
While it is possible to begin FreeRTOS application development in this way, Xilinx recommends
that FreeRTOS API functions and callbacks be incorporated as early as possible.

Supported Platforms
FreeRTOS mode is supported for two Zynq®-7000 AP SoC platforms:

• ZC702

• ZC706

Limitations and Implementation Notes
The SDSoC environment FreeRTOS support uses the standalone board support package (BSP)
library and includes the same limitations as standalone mode.

In performance estimation flows, a FreeRTOS application instrumented to collect software
runtime data needs to exit for the data to be collected and merged with hardware performance
data to create a report.

SDSoC Environment User Guide www.xilinx.com 64
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=64

Chapter 13: Target Operating System Support

The SDSoC environment uses a pre-configured FreeRTOS v8.2.1 library that has been pre-built
for the user, and a dynamically built (at application link time) standalone library. Characteristics
of the FreeRTOS library include:

• Uses the standard FreeRTOS v8.2.1 distribution for platform independent code; platform
dependent code uses the default FreeRTOSConfig.h file included as part of FreeRTOS
v8.2.1 (see the FreeRTOS reference http://www.freertos.org/a00110.html, with downloads
available at http://sourceforge.net/projects/freertos/files/FreeRTOS)

• Uses heap_3.c for its memory allocation implementation (see the FreeRTOS reference
http://www.freertos.org/a00111.html)

• Uses source from the following FreeRTOS v8.2.1 distribution folders:

– Demo/CORTEX_A9_Zynq_ZC702/RTOSDemo/src

– Source

– Source/include

– Source/portable/GCC/ARM_CA9

– Source/portable/MemMang

• Uses a linker script found in <path_to_install>/SDSoC/2015.4
/platforms/<platform>/freertos/lscript.ld (To temporarily use a modified
version of this file instead, make a copy of the file and add the linker option –Wl,-T
–Wl,<path_to_your_linker_script> to the sdscc/sds++ command line used to
create the ELF file.)

• Is based on the porting description for Zynq ZC702 found at
http://www.freertos.org/RTOS-Xilinx-Zynq.html, including replacement functions for
memcpy(), memset(), and memcmp() as part of the pre-built library rather than user
application code; does not use a Xilinx® SDK-based BSP package

• Includes predefined callback functions to enable standalone applications to be linked with
the sdscc/sds++ –target-os freertos option. Xilinx recommends that you define your
own versions of these functions as part of the application.

– vApplicationMallocFailedHook

– vApplicationStackOverflowHook

– vApplicationIdleHook

– vAssertCalled

– vApplicationTickHook

– vInitialiseTimerForRunTimeStats

SDSoC Environment User Guide www.xilinx.com 65
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.freertos.org/a00110.html
http://sourceforge.net/projects/freertos/files/FreeRTOS
http://www.freertos.org/a00111.html
http://www.freertos.org/RTOS-Xilinx-Zynq.html
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=65

Chapter 14

Representative Example Designs
When you create a new SDSoC environment project for one of the base platforms within the
SDSoC IDE, you can optionally choose one of several representative designs.

• File I/O Video Example - a simple file-base video-processing example

• Synthesizeable FIR Filter - example using a Vivado HLS library

• Matrix Multiplication - a standard linear algebra hardware accelerator

• Using a C-Callable RTL Library - example using a packaged C-callable IP written in a
hardware description language (HDL)

File I/O Video Example
It is sometimes useful to read video data from a file and write back the processed data to a file,
instead of reading and writing frame buffers. A simple example called file_io_manr_sobel
illustrates the methodology. The example uses the base ZC702 platform. The overall structure
of the main() function is:

int main()
{

// code omitted
read_frames(in_filename, frames, rows, cols, …);
process_frames(frames, …);
write_frames(out_filename, frames, rows, cols, …);
// code omitted

}

Since there is no need for synchronization of the input and output with the video hardware, the
software loop in process_frames() is straightforward, creating a hardware function pipeline
when manr and sobel_filter are selected for hardware implementation.

for (int loop_cnt = 0; loop_cnt<frames; loop_cnt++) {
// set up manr_in_current and manr_in_prev frames
manr(nr_strength,manr_in_current, manr_in_prev, yc_out_tmp);
sobel_filter(yc_out_tmp, out_frames[frame]);

}

The input and output video files are in YUV422 format. The platform directory contains sources
for converting these files to/from the frame arrays used in the accelerator code. The makefile
in the top level directory compiles the application sources along with the platform sources
to generate the application binary.

SDSoC Environment User Guide www.xilinx.com 66
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=66

Chapter 14: Representative Example Designs

Synthesizeable FIR Filter
Many of the functions in the Vivado HLS source code libraries included in the SDSoC
environment do not comply with the SDSoC environment Coding Guidelines. To use these
libraries in the SDSoC environment, you typically have to wrap the functions to insulate the
SDSoC system compilers from non-portable data types or unsupported language constructs.

The Synthesizeable FIR Filter example demonstrates a standard idiom to use such a library
function that in this case, computes a finite-impulse response digital filter. This example uses a
filter class constructor and operator to create and perform sample-based filtering. To use this
class within the SDSoC environment, the example wraps within a function wrapper as follows.

void cpp_FIR(data_t x, data_t *ret)
{

static CF<coef_t, data_t, acc_t> fir1;
*ret = fir1(x);

}

This wrapper function becomes the top-level hardware function that can be invoked from
application code.

Matrix Multiplication
Matrix multiplication is a common compute-intensive operation for many application domains.
The SDSoC IDE provides template examples for all base platforms, and the code for these
provide instructive use of SDSoC environment system optimizations for memory allocation and
memory access described in Improving System Performance, and Vivado HLS optimizations like
function inlining, loop unrolling and pipelining, and array partitioning, described in Hardware
Function Guidelines for Software Programmers.

Using a C-Callable RTL Library
The SDSoC system compilers can incorporate libraries with hardware functions that are
implemented using IP blocks written in register transfer level (RTL) in a hardware description
language (HDL) like VHDL or Verilog. The process of creating such a library is described in
Using C-Callable IP Libraries. This example demonstrates how to incorporate the library in an
SDSoC project.

To build this example in the SDSoC IDE, create a new SDSoC project and select the C-callable
RTL Library template. As described in src/SDSoC_project_readme.txt, you must first
build the library from an SDSoC terminal window at the command line.

To use the library and build the application, you must add the -l and -L linker options as
described in Using C-Callable IP Libraries. Right-click on the project in the Project Explorer and
select C/C++ Build Settings->-> > SDS++ Linker > Libraries, to add the -lrtl_arraycopy
and -L<path to project> options.

SDSoC Environment User Guide www.xilinx.com 67
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=67

Chapter 15

SDSoC Pragma Specification
This section describes pragmas (directives) for the SDSoC system compilers sdscc/sds++ to
assist system optimization.

All pragmas specific to the SDSoC environment are prefixed with #pragma SDS and should be
inserted into C/C++ source code, prior either to a function declaration or at a function call site.

There is no single dominant industry standard in wide use for compilers that target
heterogeneous embedded systems that employ hardware accelerators, but the pragmas and
pragma syntax has been defined to be consistent with standards like OpenACC. In a future
release, the SDSoC environment might adopt an industry standard pragmas should a suitable
standard become widely adopted.

Data Transfer Size
The syntax for this pragma is:

#pragma SDS data copy|zero_copy(ArrayName[offset:length])

This pragma must be specified immediately preceding a function declaration, or immediately
preceding another #pragma SDS bound to the function declaration, and applies to all the
callers of the function.

SDSoC Environment User Guide www.xilinx.com 68
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=68

Chapter 15: SDSoC Pragma Specification

Some notes about the syntax:

• The data copy implies that data is explicitly copied from the processor memory to the
hardware function. A suitable data mover as described in Improving System Performance
performs the data transfer. The data zero_copy means that the hardware function
accesses the data directly from shared memory. For the latter, the hardware function must
access the array through an AXI4 bus interface.

• For a multi-dimensional array, each dimension should be
specified. For example, for a 2-dimensional array, use
ArrayName[offset_dim1:length_dim1][offset_dim2:length2_dim2]

• Multiple arrays can be specified in the same pragma, separated by a comma(,). For example:
copy(ArrayName1[offset1:length1], ArrayName2[offset2:length2])

• The [offset:length] part is optional

• ArrayName must be one of the formal parameters of the function definition, that is, not
from the prototype (where parameter names are optional) but from the function definition.

• offset is the number of elements from the first element in the corresponding dimension.
It must be a compile-time constant. This is currently ignored.

• length is the number of elements transferred for that dimension. It can be an arbitrary
expression as long as the expression can be resolved at runtime inside the function. For
example:

#pragma SDS data copy(InData[0:num_rows+3*num_coeffs_active + L*(P+1)])
#pragma SDS data copy(OutData[0:2*(L-M-R+2)+4*num_coeffs_active*(1+num_rows)])
void evw_accelerator (uint8_t M,

uint8_t R,
uint8_t P,
uint16_t L,
uint8_t num_coeffs_active,
uint8_t num_rows,
uint32_t InData[InDataLength],
uint32_t OutData[OutDataLength]);

This pragma specifies the number of elements to be transferred for an array argument to a
hardware function, and applies to all calls to the function. As shown in the example above,
length need not be a constant; it can be a C arithmetic expression involving other scalar
parameters to the same function.

If this pragma is not specified for an array argument, the SDSoC environment first checks the
argument type. If the argument type has a compile-time array size, the compiler uses that as the
data transfer size. Otherwise, the SDSoC environment analyzes the calling code to determine
the transfer size based on the memory allocation APIs for the array (for example, malloc or
sds_alloc). If the analysis fails or there is inconsistency between callers about the transfer
size, the compiler generates an error message so that the user can modify the source code.

Memory Attributes
For an operating system like Linux that supports virtual memory, user-space allocated memory
is paged, which can affect system performance. To improve system performance, the pragmas
in this section can be used to declare arguments that have been allocated in physically
contiguous memory, or to tell the compiler that it need not enforce cache coherency.

SDSoC Environment User Guide www.xilinx.com 69
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=69

Chapter 15: SDSoC Pragma Specification

Physically Contiguous Memory and Data Caching

IMPORTANT: The syntax and implementation of this pragma might be revised in a future
release.

The syntax for this pragma is:
#pragma SDS data mem_attribute(ArrayName:cache|contiguity)

This pragma must be specified immediately preceding a function declaration, or immediately
preceding another #pragma SDS bound to the function declaration, and applies to all the
callers of the function.

Some notes about the syntax:

• ArrayName must be one of the formal arguments of the function.

• cache must be either CACHEABLE or NON_CACHEABLE. The default value is set to be
CACHEABLE.CACHEABLE means that the compiler must maintain cache coherency between
the CPU and accelerator for the memory allocated to the array. To maintain the cache
coherency, it may be necessary (for example, when using HP ports) to perform a cache
flush before transferring the data to an accelerator and to perform a cache-invalidate when
transferring the data from the accelerator to the memory.

NON-CACHEABLE means that the compiler does not need to ensure the cache coherency
of the specified memory. It is then the responsibility of the user to do so when necessary. It
gives compiler more freedom in allocating memory ports. A typical use case is in video
applications where:

– Cache flushing/invalidating for a large chunk of video data can significantly decrease
the system performance

– Software code does not read or write the video data so the cache coherency between
processor and accelerator is not required.

• Contiguity must be either PHYSICAL_CONTIGUOUS or NON_PHYSICAL_CONTIGUOUS.
The default value is set to be NON_PHYSICAL_CONTIGUOUS.PHYSICAL_CONTIGUOUS
means that all memory corresponding to the associated ArrayName is allocated using
sds_alloc, while NON_PHYSICAL_CONTIGUOUS means that all memory corresponding
to the associated ArrayName is allocated using malloc. This helps the SDSoC compiler
select the optimal data mover.

• Multiple arrays can be specified in one pragma, separated by commas.

Data Access Pattern
The syntax for this pragma is:

#pragma SDS data access_pattern(ArrayName:pattern)

This pragma must be specified in the header file that contains the accelerator function
prototype, immediately preceding the function declaration.

Some notes about the syntax:

pattern can be either SEQUENTIAL or RANDOM, by default it is RANDOM

SDSoC Environment User Guide www.xilinx.com 70
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=70

Chapter 15: SDSoC Pragma Specification

This pragma specifies the data access pattern in the hardware function. If a copy pragma has
been specified for an array argument, SDSoC checks the value of this pragma to determine
the hardware interface to synthesize. If the access pattern is SEQUENTIAL, a streaming
interface (such as ap_fifo) will be generated. Otherwise, with RANDOM access pattern, a RAM
interface will be generated.

Data Mover Type
IMPORTANT: This pragma is not recommended for normal use. Only use this pragma if the
compiler-generated data mover type does not meet the design requirement.

The syntax for this pragma is:
#pragma SDS data data_mover(ArrayName:DataMover)

This pragma must be specified immediately preceding a function declaration, or immediately
preceding another #pragma SDS bound to the function declaration, and applies to all the
callers of the function.

Some notes about the syntax:

• Multiple arrays can be specified in one pragma, separated by a comma (,). For example:
#pragma SDS data_mover(ArrayName:DataMover, ArrayName:DataMover)

• ArrayName must be one of the formal parameters of the function.

• DataMover must be either AXIFIFO, AXIDMA_SG, AXIDMA_SIMPLE, or AXIDMA_2D.

This pragma specifies the data mover HW IP type used to transfer an array argument. Typically,
the compiler chooses the type of the data automatically by analyzing the code. This pragma
can be used to override the compiler inference rules.

There are some additional requirements for using AXIDMA_SIMPLE and AXIDMA_2D. The first
requirement is that the corresponding array must be allocated using sds_alloc().

• For AXIDMA_2D, the pragma SDS data dim must be present to specify the 2D array’s size
of each dimension. The SDS data copy pragma is also needed to specify a rectangular
sub-region of the 2D array to be transferred. The array second dimension size, sub-region
offset and column size must all result in addresses aligned to 64-bit boundaries (number of
bytes divisible by 8).

• In the example shown below, NUMCOLS, row_offset, col_offset and cols must be
multiples of 8 (each char bitwidth is 8) for AXIDMA_2D to work properly.

#pragma SDS data data_mover(y_lap_in:AXIDMA_SIMPLE, y_lap_out:AXIDMA_2D)
#pragma SDS data dim(y_lap_out[NUMROWS][NUMCOLS])
#pragma SDS data copy(y_lap_out[row_offset:rows][col_offset:cols])
void laplacian_filter(unsigned char y_lap_in[NUMROWS*NUMCOLS],

unsigned char y_lap_out[NUMROWS*NUMCOLS],
int rows, int cols, int row_offset, int col_offset);

SDSoC Environment User Guide www.xilinx.com 71
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=71

Chapter 15: SDSoC Pragma Specification

SDSoC Platform Interfaces to External Memory
IMPORTANT: The syntax and implementation of this pragma might be revised in a future
release.

The syntax for this pragma is:
#pragma SDS data sys_port(ArrayName:port)

This pragma must be specified immediately preceding a function declaration, or immediately
preceding another #pragma SDS bound to the function declaration, and applies to all the
callers of the function.

Some notes about the syntax:

• ArrayName must be one of the formal arguments of the function.

• port must be ACP or AFI or MIG. The Zynq-7000 All Programmable SoC provides a cache
coherent interface between programmable logic and external memory (S_AXI_ACP) and
high-performance ports (S_AXI_HP) for non-cache coherent access (AFI). If no sys_port
pragma is specified for an array argument, the interface to external memory is determined
automatically by the SDSoC system compilers, based on array memory attributes (cacheable
or non-cacheable), array size, data mover used, etc. This pragma overrides the SDSoC
compiler choice of memory port. MIG is valid only for the zc706_mem platform.

• Multiple arrays can be specified in one pragma, separated by commas.

SDSoC Environment User Guide www.xilinx.com 72
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=72

Chapter 15: SDSoC Pragma Specification

Hardware Buffer Depth
The syntax of this pragma is:

#pragma SDS data buffer_depth(ArrayName:BufferDepth)

IMPORTANT: The hardware interpretation of this pragma might be revised in a future release.

This pragma must be specified immediately preceding a function declaration, or immediately
preceding another #pragma SDS bound to the function declaration, and applies to all the
callers of the function.

Some notes about the syntax:

• Multiple arrays can be specified in one pragma, separated by a comma(,). For example:
#pragma SDS buffer_depth(ArrayName:BufferDepth, ArrayName:BufferDepth)

• ArrayName must be one of the formal parameters of the function.

• BufferDepth must a compile-time constant value.

• This pragma applies only to arrays that map to BRAM or FIFO interfaces, and specifies the
number of hardware buffers to allocate for the array argument, for example, to support
pipelining. For a hardware buffer the following must hold:

– BRAM: 1 ≤ BufferDepth ≤ 4, and 2 ≤ ArraySize ≤ 16384 with data width ≤ 64

– FIFO: 2 ≤ BufferDepth * ArraySize ≤ 16384 with data width ≤ 64

Asynchronous Function Execution
These pragmas are paired to support asynchronous invocation of a hardware function.

The syntax of these pragmas is:
#pragma SDS async(ID)
#pragma SDS wait(ID)

The async pragma is specified immediately preceding a call to a hardware function, directing
the compiler to return control to the CPU immediately after setting up the hardware function
and its data transfers.

SDSoC Environment User Guide www.xilinx.com 73
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=73

Chapter 15: SDSoC Pragma Specification

The wait pragma must be inserted at an appropriate point in the program to direct the CPU to
wait until the associated async function (and data transfers) have completed.

• The ID must be a compile time unsigned integer constant, and must represent a unique
identifier for the hardware function. That is, using a different ID for the same hardware
function results in a different hardware instance for the function. Consequently, these
pragmas can be used to force the creation of multiple hardware instances.

• In the presence of an async pragma, the SDSoC system compiler does not generate
an sds_wait() in the stub function for the associated call. The program must contain
the matching sds_wait(ID) or #pragma SDS wait(ID) at an appropriate point to
synchronize the controlling thread running on the CPU with the hardware function thread.
An advantage of using the #pragma SDS wait(ID) over the sds_wait(ID) function
call is that the source code can then be compiled by compilers other than sdscc (that do
not interpret either async or wait pragmas).

Partition Specification
The SDSoC system compilers sdscc/sds++ can automatically generate multiple bitstreams for
a single application that is loaded dynamically at run-time. Each bitstream has a corresponding
partition identifier. A platform might not support bitstream reloading, for example, due to
platform peripherals that cannot be shut down and then brought back up after reloading.

The syntax of this pragma is:
#pragma SDS partition(ID)

The partition pragma is specified immediately preceding a call to a hardware function,
directing the compiler to assign the implementation of the hardware function to the partition ID.

• In the absence of a partition pragma, a hardware function is implemented in partition 0.

• ID must be a positive integer. Partition ID 0 is reserved.

• The following example shows an example of using this pragma:
foo(a, b, c);
#pragma SDS partition (1)
bar(c, d);
#pragma SDS partition (2)
bar(d, e);

In this example, hardware function foo has no partition pragma, so it is implemented in
the partition 0. The first call to bar is implemented in the partition1 and the second bar is
implemented in the partition 2.

A complete example showing the usage of this pragma can be found in
samples/file_io_manr_sobel_partitions.

SDSoC Environment User Guide www.xilinx.com 74
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=74

Chapter 16

SDSoC Environment API
This chapter describes functions in sds_lib available for applications developed in the
SDSoC environment.

NOTE: To use the library, #include "sds_lib.h" in source files. You must include
stdlib.h before including sds_lib.h to provide the size_t type declaration.

The SDSoC™ environment API provides functions to map memory spaces, and to wait for
asynchronous accelerator calls to complete.

void sds_wait(unsigned int id)
Wait for the first accelerator in the queue identified by id, to complete. The recommended
alternative is the use #pragma SDS wait(id), as described in Asynchronous Function
Execution.

void *sds_alloc(size_t size)
Allocate a physically contiguous array of size bytes.

void *sds_alloc_non_cacheable(size_t size)

Allocate a physically contiguous array of size bytes that is marked as non-cacheable.
Memory allocated by this function is not cached in the processing system. Pointers to this
memory should be passed to a hardware function in conjunction with

#pragma SDS data mem_attribute (p:NON_CACHEABLE)

void sds_free(void *memptr)
Free an array allocated through sds_alloc()

void *sds_mmap(void *physical_addr, size_t size, void *virtual_addr)
Create a virtual address mapping to access a memory of size bytes located at physical
address physical_addr.

• physical_addr: physical address to be mapped.

• size: size of physical address to be mapped.

• virtual_addr:

– If not null, it is considered to be the virtual-address already mapped to the
physical_addr, and sds_mmap keeps track of the mapping.

– If null, sds_mmap invokes mmap() to generate the virtual address, and
virtual_addr is assigned this value.

void *sds_munmap(void *virtual_addr)
Unmaps a virtual address associated with a physical address created using sds_mmap().

unsigned long long sds_clock_counter(void)
Returns the value associated with a free-running counter used for fine-grain time-interval
measurements. The counter counts ARM CPU clock cycles, and wraps to zero.

SDSoC Environment User Guide www.xilinx.com 75
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=75

Chapter 17

SDSCC/SDS++ Compiler Commands
and Options

This section describes the SDSoC sdscc/sds++ compiler commands and options.

Name
sdscc – SDSoC C compiler

sds++ - SDSoC C++ compiler

Command Synopsis
sdscc | sds++ [hardware_function_options] [system_options]
[performance_estimation_options] [options_passed_through_to_cross_compiler]
[-sds-pf platform_name] [-sds-pf-info platform_name] [-sds-pf-list] [-target-os os_name]
[-verbose] [--help] [-version] [files]

Hardware Function Options
[-sds-hw function_name file [-files file_list] [-hls-tcl hls_tcl_directives_file]
[-clkid clock_id_number] –sds-end]*

Performance Estimation Options
[[-perf-funcs function_name_list -perf-root function_name] |
[-perf-est data_file][-perf-est-hw-only]]

System Options
[[-apm] [-dmclkid clock_id_number] [-impl-tcl tcl_file] [-mno-bitstream] [-mno-boot-files]
[-rebuild-hardware] [-poll-mode <0|1>] [-instrument-stub]]

The sdscc/sds++ compilers compile and link C/C++ source files into an application-specific
hardware/software system on chip implemented on a Zynq-7000 All Programmable SoC.

The command usage and options are identical for sdscc and sds++.

Options not recognized by sdscc are passed to the ARM cross-compiler. Compiler options
within an -sds-hw ... -sds-end clause are ignored for the -c foo.c option when
foo.c is not the file containing the specified hardware function.

When linking the application ELF, sdscc creates and implements the hardware system, and
generates an SD card image containing the ELF and boot files required to initialize the hardware
system, configure the programmable logic and run the target operating system.

SDSoC Environment User Guide www.xilinx.com 76
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=76

Chapter 17: SDSCC/SDS++ Compiler Commands and Options

When linking application ELF files for non-Linux targets, for example Standalone or FreeRTOS,
default linker scripts found in the folder <install_path>/platforms/<platform_name>
are used. If a user-defined linker script is required, it can be specified using the –Wl,-T
–Wl,<path_to_linker_script> linker option.

When building a system containing no functions marked for hardware implementation, sdscc
uses pre-built hardware when available for the target platform. To force bitstream generation,
use the -rebuild-hardware option.

Report files are found in the folder _sds/reports.

General Options
The following command line options are applicable to any sdscc invocation or display
information for the user.

-sds-pf platform_name
Specify the target platform that defines the base system hardware and software, including
operation system and boot files. The platform_name can be the name of a platform in the
SDSoC™ environment installation, or a file path to a folder containing platform files, with
the last component of the path matching the platform name. The platform defines the base
hardware and software, including operation system and boot files. Use this option when
compiling accelerator source files and when linking the ELF file. Use the –sds-pf-list
option to list available platforms.

-sds-pf-info platform_name
Display general information about a platform. Use the –sds-pf-list option to list available
platforms.

-sds-pf-list
Display a list of available platforms and exit (no other options are specified).

-target-os os_name
Specify the target operating system. The selected OS determines the compiler toolchain used,
and include file and library paths added by sdscc. os_name can be one of the following:
• linux : for the Linux OS. This is the default if the command line contains no -target-os

option
• standalone : for standalone or bare-metal applications
• freertos : for FreeRTOS

-verbose
Print verbose output to STDOUT.

SDSoC Environment User Guide www.xilinx.com 77
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=77

Chapter 17: SDSCC/SDS++ Compiler Commands and Options

-version
Print the sdscc version information to STDOUT.

--help
Print command line help information. Note that two consecutive hyphen or dash characters -
are used.

Hardware Function Options
Hardware function options provide a means to consolidate sdscc options within a Makefile
to simplify command line calls and make minimal modifications to a pre-existing Makefile.
The Makefile fragment below illustrates the use of –sds-hw blocks to collect all options
in the SDSFLAGS Makefile variable and to replace an original definition of CC with sdscc
${SDSFLAGS} or sds++ ${SDSFLAGS}. Thus the original Makefile for an application can
be converted to an sdscc/sds++ compiler Makefile with minimal changes.

APPSOURCES = add.cpp main.cpp
EXECUTABLE = add.elf

CROSS_COMPILE = arm-xilinx-linux-gnueabi-
AR = ${CROSS_COMPILE}ar
LD = ${CROSS_COMPILE}ld
#CC = ${CROSS_COMPILE}g++
PLATFORM = zc702
SDSFLAGS = -sds-pf ${PLATFORM} \

-sds-hw add add.cpp -clkid 1 -sds-end \
-dmclkid 2

CC = sds++ ${SDSFLAGS}

INCDIRS = -I..
LDDIRS =
LDLIBS =
CFLAGS = -Wall -g -c ${INCDIRS}
LDFLAGS = -g ${LDDIRS} ${LDLIBS}

SOURCES := $(patsubst %,../%,$(APPSOURCES))
OBJECTS := $(APPSOURCES:.cpp=.o)

.PHONY: all

all: ${EXECUTABLE}

${EXECUTABLE}: ${OBJECTS}
${CC} ${OBJECTS} -o $@ ${LDFLAGS}

%.o: ../%.cpp
${CC} ${CFLAGS} $<

-sds-hw function_name file [-files file_list] [-hls-tcl
hls_tcl_directives_file] [-clkid <n>]] –sds-end
An sdscc command line may include zero or more –sds-hw blocks, and each block is
associated with a top-level hardware function specified as the first argument and its containing
source file specified as the second argument. If the file name associated with an -sds-hw
block matches the source file to be compiled, the options are applied. Options outside of
–sds-hw blocks are applied where applicable.

SDSoC Environment User Guide www.xilinx.com 78
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=78

Chapter 17: SDSCC/SDS++ Compiler Commands and Options

-files file_list
Specify a comma-separated list (without white space) of one or more files required to compile
the current top-level function into hardware using Vivado® HLS. If any of these files contain
source code that is not used by HLS but is required to produce the application executable,
they must be compiled separately to create object files (.o), and linked with other object files
during the link phase.

-hls-tcl hls_tcl_directives_file
When using the Vivado® HLS tool to synthesize the hardware accelerator, source the specified
Tcl file containing HLS directives. During HLS synthesis, sdscc creates a run.tcl file used to
drive the Vivado HLS tool and in this Tcl file, the following commands are inserted:

synthesis directives
create_clock -period <clock_period>
config_rtl -reset_level low
source <sdsoc_generated_tcl_directives_file>
end synthesis directives

If the –hls-tcl option is used, the user-defined Tcl file is sourced instead of the Tcl file
generated by the SDSoC environment. Ensure that the specified Tcl file contains commands
that result in a functionally correct directives file. The clock period is platform-specific and
reset levels are required to be active-Low.

synthesis directives
create_clock -period <clock_period>
config_rtl -reset_level low
user-defined synthesis directives
source <user_hls_tcl_directives_file>
end user-defined synthesis directives
end synthesis directives

SDSoC Environment User Guide www.xilinx.com 79
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=79

Chapter 17: SDSCC/SDS++ Compiler Commands and Options

-clkid <n>
Set the accelerator clock ID to <n>, where <n> has one of the values listed in the table
below. (You can use the command sdscc –sds-pf-info platform_name to display the
information about a platform.) If the clkid option is not specified, the default value for the
platform is used. Use the command sdscc –sds-pf-list to list available platforms and
settings.

Platform Value of <n>

0 – 166 MHz

1 – 142 MHz

2 – 100 MHz

zc702

3 – 200 MHz

1 – 142 MHz

2 – 100 MHz

zc702_hdmi

3 - 166 MHz

0 – 166 MHz

1 – 142 MHz

2 – 100 MHz

zc706

3 – 200 MHz

0 – 166 MHz

1 – 142 MHz

2 – 100 MHz

zed and microzed

3 – 200 MHz

0 – 25 MHz

1 – 100 MHz

2 – 125 MHz

zybo

3 – 50 MHz

Compiler Macros
Predefined macros allow you to guard code with #ifdef and #ifndef preprocessor
statements; the macro names begin and end with two underscore characters ‘_’. The
__SDSCC__ macro is defined whenever sdscc or sds++ is used to compile source files; it
can be used to guard code depending on whether it is compiled by sdscc/sds++ or another
compiler, for example GCC.

When sdscc or sds++ compiles source files targeted for hardware acceleration using Vivado
HLS, the __SDSVHLS__ macro is defined to be used to guard code depending on whether
high-level synthesis is run or not.

SDSoC Environment User Guide www.xilinx.com 80
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=80

Chapter 17: SDSCC/SDS++ Compiler Commands and Options

The code fragment below illustrates the use of the __SDSCC__ macro to use the sds_alloc()
and sds_free() functions when compiling source code with sdscc/sds++, and malloc()
and free() when using other compilers.

#ifdef __SDSCC__
#include <stdlib.h>
#include "sds_lib.h"
#define malloc(x) (sds_alloc(x))
#define free(x) (sds_free(x))
#endif

In the example below, the __SDSVHLS__ macro is used to guard code in a function definition
that differs depending on whether it is used by Vivado HLS to generate hardware or used in a
software implementation.

#ifdef __SDSVHLS__
void mmult(ap_axiu<32,1,1,1> A[A_NROWS*A_NCOLS],

ap_axiu<32,1,1,1> B[A_NCOLS*B_NCOLS],
ap_axiu<32,1,1,1> C[A_NROWS*B_NCOLS])

#else
void mmult(float A[A_NROWS*A_NCOLS],

float B[A_NCOLS*B_NCOLS],
float C[A_NROWS*B_NCOLS])

#endif

SDSoC Environment User Guide www.xilinx.com 81
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=81

Chapter 17: SDSCC/SDS++ Compiler Commands and Options

System Options
-apm
Insert an AXI Performance Monitor (APM) IP block to monitor all generated hardware/software
interfaces. Within the SDSoC IDE, in the Debug Perspective, you can activate the APM prior
to running your application by clicking the Start button within the Performance Counters
View. For more information on the SDSoC IDE, see the SDSoC Environment User Guide: An
Introduction to the SDSoC Environment (UG1028).

-dmclkid <n>
Set the data motion network clock ID to <n>, where <n> has one of the values listed in the
table below. (You can use the command sdscc –sds-pf-info platform_name to display
the information about the platform.) If the dmclkid option is not specified, the default value
for the platform is used. Use the command sdscc –sds-pf-list to list available platforms
and settings.

Platform Value of <n>

0 – 166 MHz

1 – 142 MHz

2 – 100 MHz

zc702 platform

3 – 200 MHz

1 – 142 MHz

2 – 100 MHz

zc702_hdmi platform

3 - 166 MHz

0 – 166 MHz

1 – 142 MHz

2 – 100 MHz

zc706 platform

3 – 200 MHz

0 – 166 MHz

1 – 142 MHz

2 – 100 MHz

zed and microzed platforms

3 – 200 MHz

0 – 25 MHz

1 – 100 MHz

2 – 125 MHz

zybo platform

3 – 50 MHz

SDSoC Environment User Guide www.xilinx.com 82
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1028-intro-to-sdsoc.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1028-intro-to-sdsoc.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=82

Chapter 17: SDSCC/SDS++ Compiler Commands and Options

-impl-tcl tcl_file
Specify a Vivado TCL file containing synthesis and implementation commands to use instead of
the commands normally generated by sdscc/sds++. The code block below is an example
of an sdscc/sds++ TCL file generated to run Vivado synthesis and implementation for the
user design:

Open the Vivado Project

open_project /home/user/test/_sds/p0/ipi/zc702.xpr

Run synthesis and implementation

set_property STEPS.OPT_DESIGN.IS_ENABLED true [get_runs impl_1]
set_property STEPS.OPT_DESIGN.ARGS.DIRECTIVE Default [get_runs impl_1]
reset_run synth_1
launch_runs synth_1
wait_on_run synth_1
launch_runs impl_1 -to_step write_bitstream
wait_on_run impl_1

Save bitstream for SD card creation

set bitstream [get_property top [current_fileset]].bit
set directory [get_property directory [current_run]]
file copy -force [file join $directory $bitstream] [file join $directory bitstre
am.bit]

If the -impl-tcl option is specified, the synthesis and implementation commands are
replaced with a command to source the specified TCL file. At a minimum, the TCL file must
include the commands listed in the comments (launch_runs, reset_run, wait_on_run)
and use the run names synth_1 and impl_1:

Open the Vivado Project

open_project /home/user/test/_sds/p0/ipi/zc702.xpr

Run synthesis and implementation

User synthesis and implementation TCL was specified.
It must include these commands and run names :
launch_runs synth_1
reset_run synth_1
wait_on_run synth_
launch_runs impl_1 -to_step write_bitstream
wait_on_run impl_1

source /home/user/test/impl.tcl
End user implementation TCL

Save bitstream for SD card creation

set bitstream [get_property top [current_fileset]].bit
set directory [get_property directory [current_run]]
file copy -force [file join $directory $bitstream] [file join $directory bitstre
am.bit]

SDSoC Environment User Guide www.xilinx.com 83
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=83

Chapter 17: SDSCC/SDS++ Compiler Commands and Options

The sample impl.tcl TCL file below uses opt_design and phys_opt_design optimization
commands with the Explore directive:

set_property STEPS.OPT_DESIGN.IS_ENABLED true [get_runs impl_1]
set_property STEPS.OPT_DESIGN.ARGS.DIRECTIVE Explore [get_runs impl_1]
set_property STEPS.PHYS_OPT_DESIGN.IS_ENABLED true [get_runs impl_1]
set_property STEPS.PHYS_OPT_DESIGN.ARGS.DIRECTIVE Explore [get_runs impl_1]
reset_run synth_1
launch_runs synth_1
wait_on_run synth_1
launch_runs impl_1 -to_step write_bitstream
wait_on_run impl_1

-mno-bitstream
Do not generate the bitstream for the design used to configure the programmable logic (PL).
Normally a bitstream is generated by running the Vivado implementation feature, which can
be time-consuming with runtimes ranging from minutes to hours depending on the size and
complexity of the design. This option can be used to disable this step when iterating over
flows that do not impact the hardware generation. The application ELF is compiled before
bitstream generation.

-mno-boot-files
Do not generate the SD card image in the folder sd_card. This folder includes your application
ELF and files required to boot the device and bring up the specified OS. This option disables
the creation of the sd_card folder in case you would like to preserve an earlier version of
this folder.

-rebuild-hardware
When building a software-only design with no functions mapped to hardware, sdscc uses a
pre-built bitstream if available within the platform, but use this option to force a full system
build.

-poll-mode <0|1>
The –poll-mode <0|1> option enables DMA polling mode when set to 1 or interrupt
mode when set to 0 (default). For example, to specify DMA polling mode, add the sdscc
-poll-mode 1 option.

-instrument-stub
The –instrument-stub option instruments the generated hardware function stubs with
calls to the counter function sds_clock_counter(). When a hardware function stub is
instrumented, the time required to call send and receive functions, as well as the time spent for
waits, is displayed for each call to the function.

Optional PL Configuration After Linux Boot
When sdscc/sds++ creates a bitstream .bin file in the sd_card folder, it can be used to
configure the PL after booting Linux and before running the application ELF. The embedded
Linux command used is cat bin_file > /dev/xdevcfg.

SDSoC Environment User Guide www.xilinx.com 84
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=84

Appendix A

Hardware Function Interface Details
IMPORTANT: This appendix contains reference material related to hardware interfaces for
hardware functions that is not generally required when you are using the SDSoC environment. It
is only needed when you are forced to write explicit HLS hardware interface pragmas in your
source code, for example because a function requires more than eight stream inputs or outputs,
or because you are creating C-callable/C-linkable libraries for your IP and you want your RTL
to match the hardware interfaces generated by Vivado HLS.

Hardware Function Control Protocols
The SDSoC system compiler automatically determines the correct control protocol for a
hardware function. This section includes reference material that is only needed when you are
forced to write explicit Vivado® HLS pragmas in your source code, for example, because your
function requires more than eight stream inputs or eight stream outputs, or because you
are creating C-callable/C-linkable libraries for your IP and you want your RTL to mimic the
hardware interfaces generated by Vivado® HLS.

SDSoC Environment User Guide www.xilinx.com 85
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=85

Appendix A: Hardware Function Interface Details

The SDSoC™ environment supports the following hardware function control protocols, which
are automatically inferred based on the hardware interface definition. The automatically
generated software stub functions implement the control protocols, synchronizing data transfers
with hardware function execution using cf_send_i(), cf_receive_i(), and cf_wait()
APIs defined in <sds_install_root>/arm-xilinx*-gnueabi/include/cf_lib.h.

• None – no software control interface. The hardware function must self-synchronize entirely
based on arguments mapped to AXI streams and cannot have any scalar arguments
or arguments that are memory mapped. All AXI stream ports must include TLAST and
TKEEP sideband signals.

• axis_acc_adapter – the default interface in the SDSoC environment for Vivado® Design
Suite HLS hardware functions. The SDSoC environment automatically inserts an instance of
the axis_accelerator_adapter IP to interface a Vivado HLS hardware function. This IP
provides pipelined AXI4-Lite control and data interfaces for software pipelining, and clock
domain crossing circuitry to run hardware functions at higher (or lower) clock rates than
the data motion network to balance computation and communication.The adapter also
provides optional multi-buffering for arguments that map to BRAM and FIFO interfaces, and
automatically maps them into AXI4-Streams (see Hardware Buffer Depth for buffer_depth
pragma). The hardware function interface cannot include any arguments with #pragma
HLS interface s_axilite, but can contain any number of arguments that map onto
a single AXI-MM master interface (with pragma attribute offset=direct) and onto
AXI4-Stream interfaces that include TLAST and TKEEP sideband signals.

The axis_accelerator_adapter IP supports up to eight AXI4-Stream inputs and up to
eight AXI4-Stream outputs each of which can map onto either a BRAM or FIFO interface.
The IP also provides an AXI4-Lite register interface to support scalar arguments, with
eight input registers, eight output registers, and eight input/output registers that can be
used either for an input, output, or inout argument. Scalar arguments can be of type
bool, char, short, int, or float. A function return value is mapped into an output
scalar register. A hardware function that cannot adhere to these constraints must employ
the generic_axi_lite control protocol.

• generic_axi_lite – the “native” Vivado HLS control interface when any of the arguments
are mapped via #pragma HLS interface s_axilite.This interface is suitable for
C-callable HDL IP, described in SDSoC Environment User Guide: Platforms and Libraries
(UG1146), Creating a Library. The hardware control register must reside at offset 0x0 with
the following bit encoding.

// 0x00 : Control signals
// bit 0 - ap_start (Read/Write/COH)
// bit 1 - ap_done (Read/COR)
// bit 2 - ap_idle (Read)
// bit 3 - ap_ready (Read)
// bit 7 - auto_restart (Read/Write)
// others - reserved
// (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH = Clear on Handshake)

SDSoC Environment User Guide www.xilinx.com 86
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1146-sdsoc-platforms-and-libraries.pdf;a=xCreatingALibrary
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1146-sdsoc-platforms-and-libraries.pdf;a=xCreatingALibrary
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=86

Appendix A: Hardware Function Interface Details

Vivado HLS Function Argument Types
This section describes supported hardware interface types for hardware functions compiled
by the SDSoC™ system compilers using Vivado® HLS. The compilers automatically
determine hardware interface types based on the argument type, #pragma SDS data
copy|zero_copy and #pragma SDS data access_pattern.

IMPORTANT: To avoid interface incompatibilities, you should only incorporate Vivado® HLS
interface type directives and pragmas in your source code when sdscc fails to generate a
suitable hardware interface directive, and you should only use the HLS interface types described
in this section.

• Vivado® HLS provides arbitrary precision types ap_fixed<int>, ap_int<int>, and an
hls::stream class. In the SDSoC environment, arguments to top-level hardware functions
must have width of 8, 16, 32, or 64 bits, and you must guard such declarations with
#ifndef __SDS_VHLS__to coerce to a like-sized C99 type such as char, short, int, or
long long. Vivado HLS hls::stream arguments must be presented to sdscc/sds++
as arrays. The example <sdsoc_install_dir>/samples/hls_if/hls_stream
demonstrates how to use HLS hls::stream typed arguments in the SDSoC environment.

• By default, an array argument to a hardware function is transferred by copying the data,
that is, it is equivalent to using #pragma SDS data copy. As a consequence, an array
argument must be either used as an input or produced as an output, but not both. For
an array that is both read and written by the hardware function, you must use #pragma
SDS data zero_copy to tell the compiler that the array should be kept in the shared
memory and not copied.

The sdscc compiler selects a hardware function control protocol based on the program
structure, a hardware function prototype, and the types of its arguments. The remainder of
this section describes the hardware interface types supported by the system compilers, but
it should be emphasized that explicit use of Vivado HLS interface pragmas is discouraged to
avoid inadvertent errors due to conflicts between tools defaults and requirements for the
control protocols.

The following diagram describes supported hardware interface types (white boxes) and their
relation to the supported function control protocols (green). Several mappings involve
constraints (yellow). Unsupported HLS interface directives are in gray.

SDSoC Environment User Guide www.xilinx.com 87
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=87

Appendix A: Hardware Function Interface Details

Figure 17–1: Hardware Function Control Protocols and Supported Hardware Interfaces

The SDSoC environment supports the following hardware interface types:
• RAM – using #pragma SDS data access_pattern(A:RANDOM) immediately

preceding the accelerator function declaration.The SDSoC environment automatically maps
onto a packetized AXI4-Stream channel compatible with the DMA protocol, with optional
multi-buffering at the accelerator. A hardware function can have no more than eight input
bram or ap_fifo arguments and no more than eight output bram or ap_fifo arguments.
The example <sdsoc_install_dir>/samples/hls_if/mmult_hls_bram
demonstrates how to use BRAM interfaces in the SDSoC environment.

• FIFO – using #pragma SDS data access_pattern(A:SEQUENTIAL) immediately
preceding the accelerator function declaration.The SDSoC environment automatically maps
onto a packetized AXI4-Stream channel compatible with the DMA protocol. A hardware
function can have no more than eight input bram or ap_fifo arguments and no more than
eight output bram or ap_fifo arguments.
The example <sdsoc_install_dir>/samples/hls_if/mmult_hls_ap_fifo
demonstrates how to use HLS ap_fifo interfaces in the SDSoC environment.

• SCALARThe SDSoC environment automatically maps arguments with basic arithmetic
types (8, 16, or 32 bits) onto a register accessible over an AXI-Lite interface. The SDSoC
environment treats registers as FIFOs to support task pipelining with multiple in-flight task
calls. An HLS hardware function can have up to 8 inout scalar arguments, up to 16 input
scalars or 16 output scalars, with no more than 24 scalar arguments total including a return
value. If more scalar arguments are required, you must explicitly map all scalar arguments
onto an HLS-generated AXI4-Lite interface using HLS pragmas.
A hardware function cannot contain both scalar register mapped and explicit axilite
mapped arguments.

• AXI4-Lite – using #pragma HLS INTERFACE s_axilite port=arg in the hardware
function. Inclusion of this pragma also requires #pragma HLS INTERFACE s_axilite
port=return to generate a memory mapped control interface in HLS. There are no
FIFOs on the command interface or on scalar arguments.A hardware function can have

SDSoC Environment User Guide www.xilinx.com 88
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=88

Appendix A: Hardware Function Interface Details

only one explicit AXI4-Lite interface; you must bundle all ports, including ap_control,
into a single AXI4-Lite interface.

• AXI-memory mapped (AXI-MM) master – Using the VHLS pragma #pragma HLS
INTERFACE m_axi port=arg to pass physical addresses over the AXI4-Lite interface. In
this mode, the hardware function acts as its own data mover.When a hardware function
maps an argument onto an AXI-MM master, it must also include an output scalar argument
or a return value.

The example <sdsoc_install_dir>/samples/hls_if/mmult_hls_aximm
demonstrates how to use HLS AXI-MM interfaces in the SDSoC environment.

• AXI4-Stream – using #pragma HLS INTERFACE axis port=arg in the
hardware function.The SDSoC environment supports direct connections between
hardware functions with commensurate AXI4-Stream interfaces. The example
<sdsoc_install_dir>/samples/hls_if/mmult_hls_axis demonstrates how to
use HLS AXI4-Stream interfaces in the SDSoC environment.

IMPORTANT: It is recommended that you do not use this type unless absolutely required,
for example, when a hardware function has more than eight input array arguments or eight
array arguments that must be mapped onto AXI4-Stream transport channels. Otherwise, it
is recommended you use the #pragma SDS data access_pattern(A:SEQUENTIAL)
attribute, which directs sdscc to automatically map the array transfer onto an AXI4-Stream
channel.

IMPORTANT: Data transport using a DMA data mover requires AXI4-Stream TLAST, TKEEP
side band signals, which must be explicitly coded within HLS code.

SDSoC Environment User Guide www.xilinx.com 89
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=89

Appendix B

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips

References
These documents provide supplemental material useful with this guide:

1. SDSoC Environment User Guide: An Introduction to the SDSoC Environment (UG1028), also
available in the docs folder of the SDSoC environment.

2. SDSoC Environment User Guide (UG1027), also available in the docs folder of the SDSoC
environment.

3. SDSoC Environment User Guide: Platforms and Libraries (UG1146), also available in the docs
folder of the SDSoC environment.

4. UltraFast Embedded Design Methodology Guide (UG1046)

5. ZC702 Evaluation Board for the Zynq-7000 XC7Z020 All Programmable SoC User Guide
(UG850)

6. Vivado Design Suite User Guide: High-Level Synthesis (UG902)

7. PetaLinux Tools Documentation Workflow Tutorial (UG1156)

8. Vivado® Design Suite Documentation

9. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)

SDSoC Environment User Guide www.xilinx.com 90
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/support.html
http://www.xilinx.com/support.html
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1028-intro-to-sdsoc.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1027-sdsoc-user-guide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1146-sdsoc-platforms-and-libraries.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1046-ultrafast-design-methodology-guide.pdf
http://www.xilinx.com/cgi-bin/docs/bkdoc?k=zc702_zvik;d=ug850-zc702-eval-bd.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug1156-petalinux-tools-workflow-tutorial.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;t=vivado+docs
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;d=ug1118-vivado-creating-packaging-custom-ip.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=90

Appendix B: Additional Resources and Legal Notices

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials
are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES
AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence,
or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials),
including for any direct, indirect, special, incidental, or consequential loss or damage (including
loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action
brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions
of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can be viewed at
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe
or for use in any application requiring fail-safe performance; you assume sole risk and liability
for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of Sale which
can be viewed at www.xilinx.com/legal.htm#tos.

© Copyright 2015 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado,
Zynq, and other designated brands included herein are trademarks of Xilinx in the United States
and other countries. All other trademarks are the property of their respective owners.

SDSoC Environment User Guide www.xilinx.com 91
UG1027 (v2015.4) December 14, 2015

Send Feedback

http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide%20%28UG1027%29&releaseVersion=2015.4&docPage=91

	SDSoC Environment User Guide
	Revision History
	Table of Contents
	Ch. 1: The SDSoC Environment
	Getting Started
	Feature Overview

	Ch. 2: User Design Flows
	Creating a Project for a Target Platform
	Data Motion Network Clock

	Compiling and Running Applications on an ARM Processor
	Profiling and Instrumenting Code to Measure Performance
	Moving Functions into Programmable Logic
	SDSCC/SDS++ Performance Estimation Flow Options

	Ch. 3: SDSoC Environment Troubleshooting
	Troubleshooting Compile and Link Time Errors
	Troubleshooting Runtime Errors
	Troubleshooting Performance Issues
	Debugging an Application

	Ch. 4: Improving System Performance
	Memory Allocation
	Copy and Shared Memory Semantics
	Data Cache Coherency
	Increasing System Parallelism and Concurrency

	Ch. 5: Data Motion Network Generation in SDSoC
	Data Motion Network
	Accelerator Interface
	Data Mover
	System Port

	Using SDS Pragmas to Guide Data Motion Network Generation
	Accelerator Interface
	Data Mover
	Zero Copy Data Mover
	System Port

	SDS Pragmas

	Ch. 6: Coding Guidelines
	Guidelines for Invoking SDSCC/SDS++
	Makefile Guidelines
	General C/C++ Guidelines
	Hardware Function Argument Types
	Hardware Function Call Guidelines

	Ch. 7: A Programmer's Guide to Vivado High-Level Synthesis
	Top-Level Hardware Function Guidelines
	Use Standard C99 Data Types for Top-Level Hardware Function Argu
	Omit HLS Interface Directives for Top-Level Hardware Function Ar

	Optimization Guidelines
	Function Inlining
	Loop Pipelining and Loop Unrolling
	Loop Pipelining
	Loop Unrolling
	Factors Limiting the Parallelism Achieved by Loop Pipelining and

	Increasing Local Memory Bandwidth
	Array Partitioning
	Array Reshaping

	Data Flow Pipelining
	Function Data Flow Pipelining
	Loop Data Flow Pipelining

	Ch. 8: Using C-Callable IP Libraries
	Ch. 9: Using Vivado Design Suite HLS Libraries
	Ch. 10: Exporting an Application as a Library
	Linking to an Application Library

	Ch. 11: Debugging an Application
	Debugging Linux Applications in the SDSoC IDE
	Debugging Standalone Applications in the SDSoC IDE
	Debugging FreeRTOS Applications
	Peeking and Poking IP Registers
	Debugging Performance Tips

	Ch. 12: Performance Measurement Using the AXI Performance Mon
	Creating a Project and Implementing APM
	Monitoring the Instrumented System
	Analyzing the Performance

	Ch. 13: Target Operating System Support
	Linux Applications
	Usage
	Supported Platforms
	Limitations

	Standalone Target Applications
	Usage
	Supported Platforms
	Limitations

	FreeRTOS Target Applications
	Usage
	Supported Platforms
	Limitations and Implementation Notes

	Ch. 14: Representative Example Designs
	File I/O Video Example
	Synthesizeable FIR Filter
	Matrix Multiplication
	Using a C-Callable RTL Library

	Ch. 15: SDSoC Pragma Specification
	Data Transfer Size
	Memory Attributes
	Physically Contiguous Memory and Data Caching

	Data Access Pattern
	Data Mover Type
	SDSoC Platform Interfaces to External Memory
	Hardware Buffer Depth
	Asynchronous Function Execution
	Partition Specification

	Ch. 16: SDSoC Environment API
	Ch. 17: SDSCC/SDS++ Compiler Commands and Options
	Name
	Command Synopsis
	Hardware Function Options
	Performance Estimation Options
	System Options

	General Options
	-sds-pf platform_name
	-sds-pf-info platform_name
	-sds-pf-list
	-target-os os_name
	-verbose
	-version
	--help

	Hardware Function Options
	-sds-hw function_name file [-files file_list] [-hls-tcl hls_tcl_
	-files file_list
	-hls-tcl hls_tcl_directives_file
	-clkid <n>

	Compiler Macros
	System Options
	-apm
	-dmclkid <n>
	-impl-tcl tcl_file
	-mno-bitstream
	-mno-boot-files
	-rebuild-hardware
	-poll-mode <0|1>
	-instrument-stub

	Appx. A: Hardware Function Interface Details
	Hardware Function Control Protocols
	Vivado HLS Function Argument Types

	Appx. B: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	References
	Please Read: Important Legal Notices

