
Vivado Design Suite
Tutorial:

Programming and Debugging

UG936 (v2012.3) October 16, 2012

Debugging with ChipScope www.xilinx.com 2
UG936 (v2012.3) October 16, 2012

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum
extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES
AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with,
the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such
damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct
any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce,
modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions
of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application
requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications:
http://www.xilinx.com/warranty.htm#critapps.
© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included
herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

Date Version Revision

07/25/12 2012.2 Initial Xilinx release.

10/16/12 2012.3 • Added section for Synplify EDIF flow.
• Various editorial f ixes and updated screen shots to track changes to dialog boxes.

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

Debugging with ChipScope www.xilinx.com 3
UG936 (v2012.3) October 16, 2012

Table of Contents
Revision History . 2

Debugging with Vivado™ ILA 2.0 and Integrated Logic Analyzer
Introduction . 4
Prerequisites . 4
Objectives . 4
Getting Started. 5
Step 1: Creating and Implementing an RTL Project in the Vivado Integrated Design

Environment. 7
Step 2: Probing and Adding Debug IP . 10
Step 3: Using the Vivado Logic Analyzer to Debug the Hardware . 23

Appendix A: Additional Resources
Xilinx Resources . 37
Solution Centers. 37
References . 37

http://www.xilinx.com

Getting Started
• Understand how to create an RTL project, probe your design, insert an ILA 2.0 core, and
implement the design in the Vivado Integrated Design Environment.

• Generate and customize an IP core netlist in the Vivado Integrated Design Environment.

• Debug the design using Vivado logic analyzer in real-time, and iterate the design using
the Vivado Integrated Design Environment and a KC705 Evaluation Kit Base Board that
incorporates a Kintex™-7 device.

Getting Started

Setup Requirements
Before you start this tutorial, make sure you have and understand the hardware and
software components needed to perform the steps. The following subsections list the
requirements.

Software

Vivado Design Suite 2012.3

Hardware

Kintex-7 FPGA KC705 Evaluation Kit Base Board.
X-Ref Target - Figure 1-1

Figure 1: KC705 Board Showing Key Components
Debugging with ChipScope www.xilinx.com 5
UG936 (v2012.3) October 16, 2012

http://www.xilinx.com

Getting Started
Tutorial Design Components

The design includes:

• A simple control state machine.

• Three sine wave generators using AXI-Streaming interface, native DDS Compiler.

• Common push buttons (GPIO_BUTTON).

• DIP switches (GPIO_SWITCH).

• LED displays (GPIO_LED).

Push Button Switches: Serve as inputs to the debounce and control state machine circuits.
Pushing a button generates a high-to-low transition pulse. Each generated output pulse is
then used as an input into the state machine.

DIP Switch: Enables or disables a debounce circuit.

Debounce Circuit: In this example, when enabled, provides a clean pulse or transition from
high to low. Eliminates a series of spikes or glitches when a button is pressed and released.

Sine Wave Sequencer State Machine: Captures and decodes input pulses from the two
push button switches. Provides sine wave selection and indicator circuits, sequencing
between 00, 01, 10, and 11 (zero to three).

LED Displays: GPIO_LED_0 and GPIO_LED_1 display selection status from the state
machine outputs, each of which represents a different sine wave frequency: high, medium,
and low.

Tutorial design files: For details on locating design files, see Getting Started, page 7.
Debugging with ChipScope www.xilinx.com 6
UG936 (v2012.3) October 16, 2012

http://www.xilinx.com

Step 1: Creating and Implementing an RTL Project in the Vivado Integrated Design Environment
Board Support and Pinout Information

Step 1: Creating and Implementing an RTL Project
in the Vivado Integrated Design Environment
To create and implement an RTL project, do the following:

• Get started by unzipping the tutorial source f iles and launching the Vivado Integrated
Design Environment (IDE).

• Create a New Project with the New Project Wizard.

• Synthesize the design.

Getting Started
1. In your C: drive, create a folder called /Vivado_Debug.

2. Find the tutorial source f iles.

Design f ile location:
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_3/ug936-vivado
-debug-design-files.zip

The tutorial and design f iles might be updated or modif ied in between software releases
on the Xilinx website, where you can download the latest version of the materials.

3. Unzip the tutorial source f ile to the /Vivado_Debug folder.

4. When unzipped, look in Vivado_Debug/src for the files and folder shown in Figure 2.

Table 1-1: : Pinout Information for the KC705 Board

Pinout Locations Function

CLK_N AD11 Clock

CLK_P AD12 Clock

GPIO_BUTTONS[0] AA12 Reset

GPIO_BUTTONS[1] AG5 Sine Wave Sequencer

GPIO_SWITCH Y28 Debounce Circuit
Selector

LEDS_n[0] AB8 Sine Wave Selection[0]

LEDS_n[1] AA8 Sine Wave Selection[1]

LEDS_n[2] AC9 Reserved

LEDS_n[3] AB9 Reserved
Debugging with ChipScope www.xilinx.com 7
UG936 (v2012.3) October 16, 2012

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_3/ug936-vivado-debug-design-files.zip

Step 1: Creating and Implementing an RTL Project in the Vivado Integrated Design Environment
Creating a Project with the Vivado New Project Wizard
To create a project, use the New Project wizard to name the project, to add RTL source files
and constraints, and to specify the target device.

IMPORTANT: If you are already familiar with creating a new project in Vivado, use the script provided
in step_1.tcl to perform the tasks described in Step 1. Make sure you cd to the same level of the ./src
folder before sourcing the step_1.tcl, i.e. cd c:/Vivado_Debug/src

X-Ref Target - Figure 2

Figure 2: Tutorial Design File Set
Debugging with ChipScope www.xilinx.com 8
UG936 (v2012.3) October 16, 2012

http://www.xilinx.com

Step 1: Creating and Implementing an RTL Project in the Vivado Integrated Design Environment
1. Invoke the Vivado IDE.

2. In the Getting Started screen, click Create New Project to start the New Project wizard.

3. Select Next to continue to the next screen.

4. In the Project Name screen, name the new project proj_step1 and provide the project
location (C:\Vivado_Debug). Ensure that Create Project Subdirectory is checked and
click Next.

5. In the Project Type screen, specify the Type of Project to create as RTL Project and
click Next.

6. In the Add Sources screen:

a. Set Target Language to VHDL.

b. Click the Add Files button.

c. In the Add Source Files dialog box, navigate to the /src directory.

d. Select all VHD source files, and click OK.

e. Verify that the f iles are added, and Copy Sources into Project is checked. Click
Next.

7. In the Add Existing IP (optional) dialog box:

a. Click the Add Files button.

b. In the Add Configurable IP dialog box, navigate to the /src directory.

c. Select all XCI source files, and click OK.

d. Verify that the f iles are added, and Copy Sources into Project is checked. Click
Next.

8. In the Add Constraints (optional) dialog box, the provided XDC file should
automatically appear in the main window. Another file called synplify_1.sdc should also
appear as a part of the included f iles. Select and remove the synplify_1.sdc f ile by
clicking the Remove Selected File button.

If none of the files appear in the dialog box by default, click the Add Files button,
navigate to the /src directory and select sinegen_demo_kc.xdc.

Click Next to continue.

Note: The synplify_1.sdc f ile is needed for the Synopsys Synplify Pro flow.

9. In the Default Part dialog box, specify the xc7k325tffg900-2 part for the KC705
platform. It is easiest to specify Boards for this target device and select Kintex-7 KC705
Evaluation Platform, and click Next.

10. Review the New Project Summary screen. Verify that the data appears as expected, per
the steps above, click Finish.
Debugging with ChipScope www.xilinx.com 9
UG936 (v2012.3) October 16, 2012

http://www.xilinx.com

Step 2: Probing and Adding Debug IP
Note: It might take a moment for the project to initialize.

After you exit the New Project wizard, use the Project Manager in the Vivado IDE main
window to add IP and to synthesize the design.

Synthesizing the Design
1. In the Project Manager, click Project Settings, change Synthesis -flatten_hierarchy

option to none, and click OK.

Note: The reason for changing this setting to none is to prevent the synthesis tool from performing
any boundary optimizations for this tutorial.

2. In the left panel, expand the Synthesis folder, and click the Run Synthesis button.

Note: When synthesis runs, a progress indicator appears, showing that synthesis is occurring. This
could take a few minutes.

3. In the Synthesis Completed dialog box, click Cancel. You will implement the design
later.

4. Select File > Save Project As and save the project as proj_step2. Saving the project to
a new file allows you to more easily resume the tutorial if you do not wish to complete
all the steps in one sitting.

Step 2: Probing and Adding Debug IP

Using the Netlist Insertion Method
To add a Vivado ILA 2.0 core to the design, take advantage of the integrated flows between
the Vivado IDE and Vivado logic analyzer.

IMPORTANT: If you are already familiar with adding Debug Nets and adding Debug IP using the Core
Insertion method, use the provided step_2.tcl to perform the same tasks as described below. Make
sure you cd into the same level of the ./src folder before sourcing the step_2.tcl, i.e. cd
c:/Vivado_Debug/src

You will accomplish the following tasks:

• Add debug nets to the project.

• Run the Set Up Debug Wizard.

• Implement and open the design.

• Generate the Bitstream.
Debugging with ChipScope www.xilinx.com 10
UG936 (v2012.3) October 16, 2012

http://www.xilinx.com

Step 2: Probing and Adding Debug IP
Adding Debug Nets to the Project

Working in the project_step2 project:

Following are some examples of how to add debug nets using the Vivado IDE:

• Add mark_debug attribute to the target XDC file

set_property mark_debug true [get_nets sine*]

Note: Use these attributes in synthesized designs only. Do not use then with pre-synthesis or
elaborated design netlists.

• Add mark_debug attribute to HDL f iles

VHDL

attribute mark_debug : string;
attribute keep : string;
attribute mark_debug of sine : signal is "true";
attribute mark_debug of sineSel : signal is "true";

Verilog

(* mark_debug = "true" *) wire sine;
(* mark_debug = "true" *) wire sineSel;

• Right-click and select Mark Debug or Unmark Debug on Synthesis netlist.

• Use a Tcl prompt to set the mark_debug attribute. For example, set mark_debug
true [get_nets sine*]. This applies the mark_debug on the current, open netlist.

In this tutorial, you will learn how to add debug nets to HDL files and the synthesized design
using Vivado IDE.

1. From the Synthesis pull-down, click Open Synthesized Design.

Note: Before proceeding, make sure that the Flow Navigator on the left panel is enabled. Use
Ctrl-Q to toggle off and on. Secondly, the window layout must be set to Debug.

At this point you will get a Synthesis is Out-of-Date warning. Click Open Design.

2. Click the Debug tab if it is not already selected.

3. Expand Unassigned Debug Nets folder. In Figure 4 you should see those debug nets
that were tagged in the sinegen_demo.vhd with mark_debug attributes, as shown in
Figure 3.
Debugging with ChipScope www.xilinx.com 11
UG936 (v2012.3) October 16, 2012

http://www.xilinx.com

Step 2: Probing and Adding Debug IP
4. Select the Netlist tab to expand Nets. Select the following nets as shown in Figure 5 for
debugging.

° GPIO_BUTTONS_IBUF(2) - Nets folder under the top-level hierarchy

° sine(20) - Nets folder under the U_SINEGEN hierarchy

° sel(2) -Nets folder under the U_SINEGEN hierarchy

Note: These signals represent the signif icant behavior of this design and will be used to verify
and debug the design in subsequent steps.

5. Right-click the selected nets and select Mark Debug.

X-Ref Target - Figure 3

Figure 3: VHDL Example Using MARK_DEBUG Attributes

X-Ref Target - Figure 4

Figure 4: Unassigned Debug Nets Post-synthesis
Debugging with ChipScope www.xilinx.com 12
UG936 (v2012.3) October 16, 2012

http://www.xilinx.com

Step 2: Probing and Adding Debug IP
Note: With the Debug tab selected, you can see the unassigned nets you just selected. In Vivado
IDE, you can also see the green bug icon next to each scalar or bus, which indicates that a net has the
attribute mark_debug = true as shown in Figure 6.

Running the Set Up Debug Wizard

1. From the Debug tab (by clicking on the tab) or Tools menu, select Set Up Debug. The
Set Up Debug wizard opens.

2. Click through the wizard to create Vivado logic analyzer debug cores, keeping the
default settings.

X-Ref Target - Figure 5

Figure 5: Adding Nets from the Netlist Tab

X-Ref Target - Figure 6

Figure 6: Mark_Debug Nets Post-synthesis
Debugging with ChipScope www.xilinx.com 13
UG936 (v2012.3) October 16, 2012

http://www.xilinx.com

Step 2: Probing and Adding Debug IP
Using the HDL Instantiation Method
The HDL Instantiation method is one of the two methods that are supported in Vivado
Debug Probing. For this flow, a you will have to generate an ILA 2.0 IP using the Vivado IP
Catalog and instantiate the core in a design manually as you would with any other IP.

If you choose to use this method then you can skip all the instructions described under the
Using the Netlist Insertion Method section.

1. With this flow, use sinegen_demo_inst.vhd as the top-level VHDL f ile instead of
sinegen_demo.vhd.

2. Add ila_v2_0_0.xci IP.

3. Synthesize the design.

HDL Debug Flow Using Synopsys Synplify Pro Synthesis Tool
Skip this section in its entirety if you are not using the Synopsys Synplify Pro synthesis tool
as a part of your design flow.

This simple tutorial shows how to do the following:

• Create a Synplify Pro project for the wave generator design.

• Mark nets for debug in the Synplify Pro constraints f ile as well as VHDL source f iles.

• Synthesize the Synplify Pro project to create an EDIF netlist.

• Create a Vivado project based on the Synplify Pro netlist.

Use the Vivado IDE to setup and debug the design from the synthesized design using
Synplify Pro.

Create a Synplify Pro Project

1. Launch Synplify Pro and select File > New. Set File Type to Project File (Project) as
highlighted in Figure 7. In the New File Name box, enter synplify_1. Click OK.
Debugging with ChipScope www.xilinx.com 14
UG936 (v2012.3) October 16, 2012

http://www.xilinx.com

Step 2: Probing and Adding Debug IP
2. In the left panel of the Synplify Pro window, click Add File as shown in Figure 8.

X-Ref Target - Figure 7

Figure 7: Synplify Pro New Project Dialog Box

X-Ref Target - Figure 8

Figure 8: Adding Files to a Synplify Pro Project
Debugging with ChipScope www.xilinx.com 15
UG936 (v2012.3) October 16, 2012

