Lab Workbook Extending Memory Space with Block RAM

Extending Memory Space with Block RAM

Introduction

The Zynq device supports different types of memory including volatile (e.g. DDR3) and non-volatile (e.g.
QSPI Flash). There are volatile and non-volatile hard memory controllers on the Zyng PS. The PL portion
of the Zynq device has plenty of Block RAM (BRAM) which can be used by an IP without contending for
external resources and creating performance bottleneck. This lab guides you through the process of
extending the memory space in Zyng-based platform using available PL based BRAM resource.

Objectives

After completing this lab, you will be able to:
e Add BRAM and connect it to the processing system’s AXI master port
e Execute the software application having data section in the BRAM

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

Design Description

In this lab, you will add an AXI BRAM memory controller and associated 64 Kb BRAM memory to the
system you created in the first lab. The following block diagram represents the completed design (Figure

AX]
AxXl4
Interconnect —b' AXI-BRAM Controller H BRAM

Block

PL

AXI

- Interconnect AX4-Lite
B) oo TR

AXl4-Lite
e SO suiches |

Figure 1 Completed Design

v www.Xxilinx.com/universit Zynq 3-1
(‘ X”—INX@ xup@xilinx.com ! yne
© copyright 2014 Xilinx

Extending Memory Space with Block RAM Lab Workbook

General Flow for this Lab

Step 1: Step 2: Step 3: Step 4:
Open the Configure the Extend with Create
Project Processor to BRAM |:> Wrapper and |:>
Enable Generate the
M_AXI_GP1 Bitstream
Interface
Step 5: Step 6:
Generate Test in
Applications |:> Hardware
in SDK
Open the Project Step 1
1-1. Open the Vivado program. Open the /ab1 project you created earlier or use

the lab1 project from the labsolution directory, and save the project as /ab3.

1-1-1. Start Vivado if necessary and open either the lab1 project (lab1.xpr) you created earlier or the
lab1 project in the labsolutions directory using the Open Project link in the Getting Started page.

1-1-2. Select File > Save Project As ... to open the Save Project As dialog box. Enter lab3 as the
project name. Make sure that the Create Project Subdirectory and Import All Files to the New

Project options are checked, the project directory path is ¢:\xup\adv_embedded\labs\ and click

OK.

This will create the /lab3 directory and save the project and associated directory with [ab3 name.
Configure the Processor to Enable M_AXI_GP1 Step 2
2-1. Open the Block Design and enable the M_AXI_GP1 interface.

2-1-1. Click Open Block Design in the Flow Navigator pane
2-1-2. Double-click on the Zynqg processing system instance to open its configuration form.
2-1-3. Select PS-PL Configuration in the Page Navigator window in the left pane, expand GP Master

AXI Interface on the right, and click on the check-box of the M_AXI GP1 Interface to enable it.
2-1-4. Select Clock Configuration in the Page Navigator window in the left pane, expand PL Fabric

Clocks on the right, and click on the check-box of the FCLK_CLK1 to enable it.

2-1-5. Enter the Requested Frequency for the FCLK_CLK1 as 140.00000 MHz.
Zynq 3-2 www.xilinx.com/university v
xup@xilinx.com i‘ X”—INX@

© copyright 2014 Xilinx

Lab Workbook Extending Memory Space with Block RAM

2-1-6. Click OK to accept the settings and close the configuration form.

processing_system? 1

GPI0_04 ||
DOR 4 ||
FIXED_104 ||
—=lM_AXI_GPO_ACLK W M_AXI_GPO4
mna_ceiack 2 Y NQ M_AXI_GP1-
FCLK_CLKO

FCLK_CLKL

FCLK_RESETO_N

I'TT

NG Processing system

Figure 2 M_AXI_GP1 interface enabled

Extend with BRAM Step 3
3-1. Add an AXI BRAM Controller instance with BRAM.

3-1-1. Click the Add IP icon “F and search for BRAM in the catalog.
3-1-2. Double-click the AXI BRAM Controller to add an instance to the design.
3-1-3. Click on Run Connection Automation, and select axi_bram_ctrl 0

3-1-4. Click S_AXI, and change the Master option to /processing_system7_0/M_AXI_GP1, change the
Clock Connection to /processing_system7_0/FCLK_CLK1 and click OK

g“_ Run Connection Automation @
Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the left to display its
configuration options on the right. ‘
@, | B8] All Autemnation (3 out of 4 selected) TenEaT
= 4F axi_bram_ctrl_0
g 7] {} BRAM_PCRTA Connect Slave interface (faxi_bram_ctrl_0/5_AXI) to a selected Master address space.
= {i} BRAM_PORTE
il Qptons
=H Lk processing_system7_0 Master: Jprocessing_system7_0/M_AXI_GP1 ~
T M_AXT_GP
Clock Connection (for unconnected dks) : | fprocessing_system?_0/FCLK_CLK1 (140 MHz) -
OK | Cancel
Figure 3 Connecting AXI BRAM Controller to M_AXI_GP1 to run at faster clock speed
Notice that an instance of AXI Interconnect is added, and the M_AX|_GP1_ ACLK is connected to
FCLK_CLK1.
v www.xilinx.com/university Zynq 3-3
& XILINX.

xup@xilinx.com
© copyright 2014 Xilinx

Extending Memory Space with Block RAM

Lab Workbook

processing_system?_0

IM_AXI_GPO_ACLK

i aa ars ek 2 Y NCL

P10 0.3
DOR ..

bt
DDR
FIXED_IO

FIXED 103
™ M oAMLGRO-p

M_AXL GPL-3

FOLK_CLKO

FOLK_CLKL

axi_mem_intercon

FOLK RESETO N —

ZYNQ? Processing System

rst_processing system?7_0_140M

L_f5s00 a0

WCLK

RESETH Herl axi_bram_ctrl 0
0_ACLK | I%\ 1MO0_AXT -} o _;,5_.,\}4 BRAMPORTA +
LARESETH sl ok M PORTS 1
0_ACLE 5_ai_aresetn = 2t
| ARESETN e

AXT BRAM Controller

axi_bram_ctrl_0_bram

|F——]||-+BRAM_PORTA
||| -+-BRAM_PORTE

Block Memary Genarator

slowest_syne_clk mib_reset AXT Interconnect
reset_in bus_struct_reset{0:0]
=@ reset_in peripheral_reset[0:0] . - _
~fvb_debu_sys_ret ¢ aresetn[0:0] processing_system?_0_axi_periph
H i S -
demn_loded |_aresetn[0:0] hs00 axt
Processor System Reset ACLK
rst_processing_system?7_0_100M == ARESETN[0:0] switches
ls00_ACLK (5l] . %
islowest_syne_clk mb_reset MOO_AXT -1 25 -bS_AXI
| ARESETN[0:0] [I€30 £ = : a
_resel_in bus_struct_reset{(:0] i MOL_AXI -3 5 ;_a_aclk [c 2By | [sws_8bits
—3Lx_reset_in peripheral_reset[0:0] 0_ARESETN[O0] ;_axi_aresetn
=mb_debug_sys_rst t_aresetn[0:0] L ACLKC
i - T ¥ AX1 GPIO
dem| Lo 0] [t ARESEM[D0] leds
Processor System Reset P
AXI Interconnect ek P10 [D leds_Bbits
;_axi_aresetn
AX1 GP1O

Figure 4 Clocking network connections

3-1-5. Double-click on the axi_bram_ctrl_0 instance to open the configuration form.
3-1-6. Set the width to 64.
@: Re-customnize IP @
AXI BRAM Controller (4.0) ‘
I Documentation [IP Location
[”] show disabled ports Component Mame | axi_bram_ctrl_0
AXI Protocol AXI4 hd :
e | Data Width |:|
_and_imsem EMH_DDWH}: l
i Memary Depth (Auto)
1D Width (Auto)
4 | I":I Auto) Support AXI Marrow Bursts
Figure 5 Setting the BRAM controller size to support 64KB
3-1-7. Click OK.
- ili i i v
Zynq 3-4 www.xilinx.com/university iA XILINX®

xup@xilinx.com
© copyright 2014 Xilinx

Lab Workbook Extending Memory Space with Block RAM

3-2. Using the Address Editor tab, set the BRAM controller size to 64KB.
Validate the design.

3-2-1. Select the Address Editor tab and notice that the BRAM controller memory space is 4K.

3-2-2. Click in the Range column of the axi_bram_ctrl_1 instance and set the size as 64K.

IoDiagram ¥ | [Address Editor X

Q| cel Slave Interface Base Name Offset Address Range High Address

E [=-{F processing_system7_0

=] El- B Data (32 address bits : 4G)
== .

twm gnitches 5_AXI Reg 0x41200000 84~ 0x4120FFFF
R imm lods 5_AXI Reg 0x41210000 &4 ~ 0x4121FFFF
[- aibamero | [vemo [oxscoooooo 0X80001FFF

Figure 6 AXI BRAM space assignment

Notice that the address range changed to 0x80000000-0x8000FFFF. This is in the M_GP1
addressing space.

3-2-3. Select Tools > Validate Design and fix any errors if necessary.

Generate the Bitstream Step 4

4-1-1. Click on the Generate Bitstream to run the synthesis, implementation, and bit generation
processes.

4-1-2. Click Save if prompted to save the project, and Yes to run the processes.

4-1-3. When the bitstream generation process has completed successfully, click Cancel.

Generate Applications in the SDK Step 5

5-1. Export the implemented design, and start SDK
5-1-1. Export the hardware configuration by clicking File > Export > Export Hardware...

5-1-2. Click the box to Include Bitstream and click OK (Click Yes if prompted to overwrite the previous
module)

5-1-3. Launch SDK by clicking File > Launch SDK and click OK

5-1-4. Right-click on the lab1 and standalone_bsp_0 and system_wrapper_hw_platfrom_0 projects
in the Project Explorer view and select close project.

v www.xilinx.com/universit Zynq 3-5
(‘ XILINX@ xup@xilinx.com ! yne
© copyright 2014 Xilinx

Extending Memory Space with Block RAM Lab Workbook

5-2. Create a hello_world application project using the standard template.

5-2-1. Select File > New > Application Project.

5-2-2. In the Project Name field, enter hello_world as the project name.

5-2-3. Use the default settings to create a new BSP and click Next.

5-2-4. Select the Hello World template and click Finish.
The hello_world and hellow_world_bsp projects will be created in the Project Explorer window of
SDK

5-3. Create an empty application project, named lab3, and import the provided
lab3.c or lab3.c file.

5-3-1. Select File > New > Application Project.

5-3-2. Inthe Project Name field, enter lab3 as the project name.

5-3-3. Use the default settings to create a new BSP and click Next.

5-3-4. Select the Empty Application template and click Finish.
The lab3 and lab3_bsp projects will be created in the Project Explorer window of SDK.

5-3-5. Select lab3>src directory in the project view, right-click, and select Import.

5-3-6. Expand the General category and double-click on File System.

5-3-7. Browse to c:\xup\adv_embedded\sources\lab3 folder.

5-3-8. Select lab3.c and click Finish.
A snippet of the source code is shown in the following figure. It shows that we write a pattern to
the LED port, execute a software delay loop, and repeat for 256 times and repeat the process
again. It also shows the code (greyed) which will be used in Lab5 which will execute the loop only
sixteen times.

Zynq 3-6 www.xilinx.com/university v

xup@xilinx.com i‘ X”—INX@

© copyright 2014 Xilinx

Lab Workbook Extending Memory Space with Block RAM

hinclude "xparameters.h"
#include "xgpio.h"
#ifdef MULTIBOOT
#include "xdevcfg.h"
#endif

int main (void)

{

XGpio led;
int j=0;
int i;

xil_printf("-- Start of the Program --\r\n");
XGpio Initialize(&led, XPAR_LEDS DEVICE ID);

#ifndef MULTIBOOT
while (1)

{
j=0;

for(j=0; j<16; j++) {
XGpio Discretelrite(&led, 1, J);
for (i=@; 1<99999999; i++);

#else
for(j=0; j<16; j++) {
XGpio_DiscreteWrite(&led, 1, j);
for (i=@; 1<99999999; i++);

¥

xil _printf("End of the program\r\n");

print("Loading master image\r\n");

// Driver Instantiations

XDcfg XDcfg_@;

u32 MultiBootReg = @;

#define PS_RST_CTRL_REG (XPS_SYS_CTRL_BASEADDR + @x200)
#define PS_RST MASK ©x1 /* PS software reset */
#define SLCR_UNLOCK_OFFSET ©x@8

// Initialize Device Configuration Interface
XDcfg_Config *Config = XDcfg LookupConfig(XPAR_XDCFG_@ DEVICE ID);
XDcfg_Cfeglnitialize(&XDcfg_0, Config, Config->BaseAddr);

MultiBootReg = @; // Once done, boot the master image stored at 8xfc0@_eeoe
Xil Out32(0xF800000@ + SLCR_UNLOCK OFFSET, @xDF@DDF@D); // unlock SLCR
XDcfg_liriteReg(XDcfg_0.Config.BaseAddr, XDCFG_MULTIBOOT_ADDR_OFFSET, MultiBootReg); // write to multiboot
// synchronize
__asm__
"dsb\n\t"
"ish"
);
// Generate soft reset
Xil Out32(PS_RST_CTRL_REG, PS_RST_MASK);
#endif
return @;

}
Figure 7 Source Code

v www.xilinx.com/university Zynq 3-7
(‘ XI LINX@ xup@xilinx.com

© copyright 2014 Xilinx

Extending Memory Space with Block RAM Lab Workbook

Test in Hardware Step 6

6-1.

Connect and power up the board. Establish the serial communication using
the SDK Terminal tab. Program the FPGA. Run the hello_world.elf
application.

6-1-1. Connect and power up the board.
6-1-2. In SDK, select Xilinx Tools > Program FPGA and click the Program button to program the
FPGA.
6-1-3. Select the & Terminal tab._ If it is not visible then select Window > Show view > Terminal.
6-1-4. Click on ' toinitiated the serial connection and select the appropriate COM port (depending
on your computer). Configure it with 115200 baud rate.
6-1-5. Select hello_world in Project Explorer, right-click and select Run As > Launch on Hardware to
download the application, execute ps7_init, and execute hello_world.elf
You should see “Hello World” displayed in the Terminal window.
6-2. Modify the linker script to use the BRAM for the data section and run it.
6-2-1. Select the hello_world application in the Project Explorer view.
6-2-2. Right-click and select Generate Linker Script.
6-2-3. Change the data segment memory to axi_bram_ctrl_0.
Basic | Advanced
Place Code Sections in: ps/_ram_0_S_AXI BASEADDR -
Place Data Sections in: -
Place Heap and Stack in: ps7_ram_0_5_AXI BASEADDR -
Heap Size: 1KB
Stack Size: 1KB
Figure 8 Assigning Data Segments to AXI BRAM
6-2-4. Click the Generate button.
6-2-5. Click the Yes button to overwrite.
6-2-6. Select the hello_world application, right-click, and run it.
You should see “Hello World” displayed in the Terminal window again, this time the data section
is running from BRAM.
Zynq 3-8 www.xilinx.com/university v
xup@xilinx.com i‘ XILINX@

© copyright 2014 Xilinx

Lab Workbook Extending Memory Space with Block RAM

6-3. Run the lab3 application from the RAM memory.

6-3-1. Right-click /ab3, select Generate Linker Script, verify the program is set to execute from ram
and click Cancel.

6-3-2. Select the lab3 project in Project Explorer, right-click and select Run As > Launch on Hardware
(GDB).
The application (lab3.elf) will be downloaded into the target device, execute ps7_init, and execute.

6-3-3. You should see the on-board LEDs changing patterns at roughly a one second delay rate.

6-3-4. Click the Terminate button (®)on the Console ribbon bar to terminate the execution.

6-4. Modify the linker scipt to use the BRAM for the data section and execute.

6-4-1. Select the lab3 application in the Project Explorer view.

6-4-2. Right-click and select Generate Linker Script.

6-4-3. Change the data segment memory to axi_bram_ctrl_0.

6-4-4. Click the Generate button.

6-4-5. Click the Yes button to overwrite.

6-4-6. Select the lab3 project in Project Explorer, right-click and select Run As > Launch on Hardware
(GDB).
The application (lab3.elf) will be downloaded into the target device, execute ps7_init, and will be
executed.

6-4-7. Click the Terminate button (®)on the Console ribbon bar to terminate the execution.

6-4-8. Close the SDK program by selecting File > Exit.

6-4-9. Close the Vivado program by selecting File > EXxit.

6-4-10. Turn OFF the power on the board.

Conclusion

This lab led you through adding BRAM memory in the PL section thereby extending the total memory
space available to the PS. You have verified the functionality by creating an application, targeting the data
section to the added BRAM, and executing the application.

v www.xilinx.com/university Zynq 3-9
i‘ XI I—I NX® xup@xilinx.com

© copyright 2014 Xilinx

