
Lab Workbook  Configuration and Booting 

 

 www.xilinx.com/university Zynq 5-1 
 xup@xilinx.com 
 © copyright 2014 Xilinx 

Configuration and Booting 

Introduction 

This lab guides you through creating a bootable system capable of booting from the SD card or the QSPI 
flash memory located on the board. It also demonstrates how different bitstreams can be loaded in the PL 
section after the board is booted up and the corresponding application can be executed. 

Objectives  

After completing this lab, you will be able to: 

• Create a bootable system capable of booting from the SD card 
• Create a bootable system capable of booting from the QSPI flash 

• Load the bitstream stored on the SD card or in the QSPI flash memory 

• Configure the PL section using the stored bitstream through the PCAP resource 

• Execute the corresponding application 

Procedure  

This lab is separated into steps that consist of general overview statements that provide information on 
the detailed instructions that follow. Follow these detailed instructions to progress through the lab. 

Design Description 

In this lab, you will design just the PS based embedded system consists of ARM Cortex-A9 processor 
SoC. The SDIO and QSPI interfaces are included in the base design. The base design will then load the 
user selected design, consisting of both different hardware and software, and execute it. The following 
diagram represents the completed design (Figure 1). 

 
Figure 1 Completed Design 

 

 

 

 



Configuration and Booting Lab Workbook 

 

Zynq 5-2 www.xilinx.com/university  
 xup@xilinx.com 
 © copyright 2014 Xilinx 

General Flow for this Lab  

 

 

 

 

 

 

 

Create a Vivado Project Step 1 

1-1. Launch Vivado and create an empty project, called lab5, and using the 
VHDL language. 

1-1-1. Open Vivado and click Create New Project and click Next. 

1-1-2. Click the Browse button of the Project Location field of the New Project form, browse to 
c:\xup\adv_embedded\labs, and click Select. 

1-1-3. Enter lab5 in the Project Name field.  Make sure that the Create Project Subdirectory box is 
checked.  Click Next. 

1-1-4. Select the RTL Project option in the Project Type form, and click Next. 

1-1-5. Select Verilog as the Target Language in the Add Sources form, and click Next. 

1-1-6. Click Next two times. 

1-1-7. Click Boards, and select the Zybo or ZedBoard (choose your revision) and click Next. 

1-1-8. Click Finish to create an empty Vivado project.   

Creating the Hardware System Using IP Integrator Step 2 

2-1. Create a block design in the Vivado project using IP Integrator to generate 
the ARM Cortex-A9 processor based hardware system. 

2-1-1. In the Flow Navigator, click Create Block Design under IP Integrator. 

Step 1: 

Create a  
Vivado 
Project 

Step 2:  

Create the 
Hardware 

System using 
IP Integrator 

Step 3:  

Export the 
Design to the 

SDK 

 

Step 4:  

Create the 
Boot Images 

and Test 

 

Step 5:  

Prepare for 
the Multi-

Applications 
Boot 

 

Step 6:  

Create the SD 
Card Image 

and Test 

 

Step 7:  

Create the 
QSPI 

Application 
and Image 

 

Step 8: 
Test the 

QSPI Multi-
Applications 

 



Lab Workbook  Configuration and Booting 

 

 www.xilinx.com/university Zynq 5-3 
 xup@xilinx.com 
 © copyright 2014 Xilinx 

2-1-2. Name the block system and click OK. 

2-1-3. Click on Add IP in the message at the top of the Diagram panel. 

2-1-4. Once the IP Catalog is open, type zy into the Search bar, and double click on ZYNQ7 
Processing System entry to add it to the design. 

2-1-5. Click on Run Block Automation in the message at the top of the Diagram panel. Leave the default 
option of Apply Board Preset checked, and click OK. 

2-1-6. Double click on the Zynq block to open the Customization window.  

2-1-7. A block diagram of the Zynq should now be open, showing various configurable blocks of the 
Processing System. 

2-2. Configure the I/O Peripherals block to only have QSPI, UART 1 and SD 0 
support.   

2-2-1. Click on the MIO Configuration panel to open its configuration form. 

2-2-2. Expand the IO Peripherals on the right. 

2-2-3. Uncheck ENET 0, USB 0, and GPIO (GPIO MIO), leaving UART 1 and SD 0 selected. 

2-3. Deselect TTC device and M_AXI_GP0 interface. Also de-select 
FCLK_RESET0_N port and FCLK_CLK0. 

2-3-1. In the MIO Configuration panel, expand the Application Processing Unit and uncheck the 
Timer 0. 

2-3-2. In the PS-PL Configuration, expand the GP Master AXI Interface, and uncheck the M AXI GP0 
Interface. 

2-3-3. In the PS-PL Configuration, expand the General > Enable Clock Resets, and uncheck the 
FCLK_RESET0_N. 

2-3-4. In the Clock Configuration, expand the PL Fabric Clocks, and uncheck the FCLK_CLK0.  

2-3-5. Click OK. 

The configuration form will close and the block diagram will be updated as shown below. 

 

(a) ZedBoard     (b) Zybo 

Figure 2 ZYNQ7 Processing System configured block 



Configuration and Booting Lab Workbook 

 

Zynq 5-4 www.xilinx.com/university  
 xup@xilinx.com 
 © copyright 2014 Xilinx 

2-3-6. Select Tools > Validate Design to run the design rule checker and to make sure that there are 
no design errors. 

2-3-7. Select File > Save Block Design to save the design. 

Export the Design to the SDK and create the software projects Step 3 

3-1. Create the top-level HDL of the embedded system, and generate the 
bitstream. 

3-1-1. In Vivado, select the Sources tab, expand the Design Sources, right-click the system.bd and 
select Create HDL Wrapper and click OK. 

3-1-2. Right-click on the system.bd, and select Generate Output Product and click Generate. Click OK 
again when the generation completes. 

3-2. Export the design to the SDK and create the Hello World application. 

3-2-1. Export the hardware configuration by clicking File > Export > Export Hardware… 

3-2-2. Do not click the box to Include Bitstream, (because only the PS has been configured), then click 
OK  

3-2-3. Launch SDK by clicking File > Launch SDK and click OK 

3-2-4. In SDK, select File > New > Application Project. 

3-2-5. Enter hello_world in the project name field, and leave all other settings as default. 

3-2-6. Click Next and make sure that the Hello World application template is selected, and click Finish 
to generate the application. 

3-2-7. Right click on hello_world_bsp and click Board Support Package Settings 

3-2-8. Tick to include xilffs and xilrsa click OK (This is required for the next step to create the FSBL). 

3-3. Create a first stage bootloader (FSBL). 

3-3-1. Select File > New > Application Project.  

3-3-2. Enter zynq_fsbl as the project name, select the Use existing standalone Board Support Package 
option with hello_world_bsp, and click Next. 



Lab Workbook  Configuration and Booting 

 

 www.xilinx.com/university Zynq 5-5 
 xup@xilinx.com 
 © copyright 2014 Xilinx 

 

Figure 3 Creating the FSBL Application 

3-3-3. Select Zynq FSBL in the Available Templates pane and click Finish. 

A zynq_fsbl project will be created which will be used in creating the BOOT.bin file.  The 
BOOT.bin file will be stored on the SD card which will be used to boot the board. 

Create the Boot Images and Test Step 4 

4-1. Using the Windows Explorer, create a directory called image under the lab5 
directory. You will create the BOOT.bin file using the FSBL and 
hello_world.elf files. 

4-1-1. Using the Windows Explorer, create a directory under the lab5 directory and call it image. 

4-1-2. In the SDK, select Xilinx Tools > Create Zynq Boot Image. 



Configuration and Booting Lab Workbook 

 

Zynq 5-6 www.xilinx.com/university  
 xup@xilinx.com 
 © copyright 2014 Xilinx 

Click on the Browse button of the Output BIF field, browse to 
c:\xup\adv_embedded\labs\lab5\image and click Save (leaving the default name of output.bif) 

4-1-3. Click on the Add button of the Boot image partitions, click the Browse button in the Add Partition 
form, browse to C:\xup\adv_embedded\labs\lab5\lab5.sdk\zynq_fsbl\Debug directory (this is 
where the FSBL was created), select zynq_fsbl.elf and click Open. 

Note the partition type is bootloader, then click OK. 

 

Figure 4 Adding FSBL partition 

4-1-4. Click on the Add button of the Boot image partitions and add the software application, 
hello_world.elf, from the C:\xup\adv_embedded\labs\lab5\lab5.sdk\hello_world\Debug 
directory and click OK. 

Since there is no hardware in the PL section, there is no bit file for the design.  If a .bit file was 
required, it would be added before adding the application. 

4-1-5. Click the Create Image button. 

The BOOT.bin and the output.bif files will be created in the lab5\image directory.  We will use the 
BOOT.bin for the SD card boot up. 

4-1-6. Insert a blank SD/MicroSD card (FAT32 formatted) in a Card reader, and using the Windows 
Explorer, copy the BOOT.bin file from the image folder in to the SD/MicroSD card.  

4-2. Set the board in SD card boot mode. Test the functionality by starting a 
Terminal emulator program and powering ON the board. 

4-2-1. Set the board in the SD card boot mode (For Zedboard, set the mode pins JP7-JP11 as GND-
SIG, GND-SIG, SIG-3V3, SIG-3V3, GND-SIG ([right-to-left), and for Zybo set the JP5 jumper to 
SD). 

4-2-2. Insert the SD/MicroSD card into the board. 

4-2-3. Power ON the board. 

4-2-4. Connect your PC to the UART port with the provided micro-USB cable, and start a Terminal 
emulator program setting it to the current COM port and 115200 baud rate. 



Lab Workbook  Configuration and Booting 

 

 www.xilinx.com/university Zynq 5-7 
 xup@xilinx.com 
 © copyright 2014 Xilinx 

4-2-5. You should see the Hello World message in the terminal emulator window.  If you don’t see it, 
then press the PS_RST/PS_SRST (Red button) button on the board. 

4-2-6. Once satisfied power OFF the board and remove the SD card. 

4-3. Make sure that the board is in the JTAG boot mode.  Power ON the board, 
Program the QSPI using the Flash Writer utility. 

4-3-1. Power ON the board.   

4-3-2. Select Xilinx Tools > Program Flash. 

4-3-3. In the Program Flash Memory form, click the Browse button, and browse to the 
c:\xup\adv_embedded\labs\lab5\image directory, select BOOT.bin file, and click Open. 

4-3-4. In the Offset field enter 0 as the offset and click the Program button. 

The QSPI flash will be programmed. 

 

Figure 5 The Program Flash Memory Form 

4-4. Power OFF the board and set the board in the QSPI boot mode. Test the 
functionality by starting a Terminal emulator program and powering ON the 
board. 

4-4-1. Power OFF the board. 

4-4-2. Set the board in the QSPI mode (For Zedboard set the mode pins JP7-JP11 as GND-SIG, GND-
SIG, GND-SIG, SIG-3V3, GND-SIG ([right-to-left) and for Zybo set JP5 to QSPI). 

4-4-3. Power ON the board. 

4-4-4. Connect your PC to the UART port with the provided micro-USB cable, and start a Terminal 
emulator program setting it to the current COM port and a 115200 baud rate. 



Configuration and Booting Lab Workbook 

 

Zynq 5-8 www.xilinx.com/university  
 xup@xilinx.com 
 © copyright 2014 Xilinx 

4-4-5. Press the PS_RST (Red button) button on the board to see the Hello World message in the 
terminal emulator window. 

4-4-6. Once satisfied, power OFF the board. 

Prepare for the Multi-Applications Boot Step 5 

5-1. Create the lab5_sd application using the provided lab5_sd.c and devcfg.c, 
devcgf.h, load_elf.s files. 

5-1-1. Select File > New > Application Project.  

5-1-2. Enter lab5_sd as the project name, click the Use existing option in the Board Support Package 
(BSP) field and select hello_world_bsp, and then click Next.  

5-1-3. Select Empty Application in the Available Templates pane and click Finish. 

5-1-4. Select lab5_sd > src in the project view, right-click, and select Import.  

5-1-5. Expand the General folder and double-click on File system, and browse to the 
c:\xup\adv_embedded\sources\lab5 directory. 

5-1-6. Select devcfg.c, devcfg.h, load_elf.s, and lab5_sd.c, and click Finish. 

The program won’t compile successfully indicating LAB1_BITFILE_LEN and LAB3_BITFILE_LEN 
are not defined.  

5-1-7. Select lab5 _sd > C/C++ Build Settings. Click on Symbols under the ARM gcc compiler group, 
click the + button and enter either ZED or ZYBO depending on the board. Click OK twice. 

The program should compile successfully and generate the lab5_sd.elf file. 

The next two steps 5-2 to 5-5 are optional. They convert the lab1 and lab3 executable files to the required 
(.bin) format for copying to the SD card later in step 6. The area in memory allocated for each application 
will be modified so that they do not overlap each other, or the main application. One or both of these 
steps, (5-2 and 5-3, and 5-4 and 5-5), can be skipped, and the prepared bin files provided in the directory: 
c:\xup\adv_embedded\sources\lab5\ [zybo | zedboard]\SDCard can be used for copying to the SD card. If 
the two steps are skipped, proceed to 6-1. 

5-2. (OPTIONAL) Start another instance of the SDK program. Open the lab1 
project, change the ps7_ddr_0_S_AXI_BASEADDR to 0x00200000 and the 
Size to 0x1FE00000 in the lscript.ld (linker script) file.  Recompile the lab1.c 
file.  Use objcopy command to convert the elf file into the binary file and 
note the size of the binary file as well as the program entry point (main()).  

5-2-1. Start the SDK program and browse to the workspace pointing to 
c:\xup\adv_embedded\labs\lab1\lab1.sdk\ and click OK. 



Lab Workbook  Configuration and Booting 

 

 www.xilinx.com/university Zynq 5-9 
 xup@xilinx.com 
 © copyright 2014 Xilinx 

5-2-2. Right-click on the lab1 project, select the Generate Linker Script option, change the code, data, 
heap, and stack sections to use the ps7_ddr_0_AXI_BASEADDR, and click Generate. Click Yes 
to overwrite the linker script. 

5-2-3. Expand the lab1 > src entry in the Project Explorer, and double-click on the lscript.ld to open it. 

 

Figure 6 Accessing the linker script to change the base address and the size 

5-2-4. In the lscript editor view, change the Base Address of the ps7_ddr_0_AXI_BASEADDR from 
0x00100000 to 0x00200000, and the Size from 0x1FF00000 to 0x1FE00000. 

 

Figure 7 Changing the Base address and the size 

5-2-5. Press Ctrl-S to save the change. 

The program should compile. 

5-2-6. In the SDK of the lab1 project, select Xilinx Tools > Launch Shell to open the shell session. 

5-2-7. In the shell window, change the directory to lab1\Debug using the cd command. 

5-2-8. Convert the lab1.elf file to lab1elf.bin file by typing the following command. 

arm-xilinx-eabi-objcopy -O binary lab1.elf lab1elf.bin 

5-2-9. Type ls –l in the shell window and note the size of the file.  In this case, it is 32780, which is 
equivalent to 0x800c bytes. 

5-2-10. Determine the entry point “main()” of the program using the following command in the shell 
window. 

arm-xilinx-eabi-objdump -S lab1.elf | grep main 

It should be in the 0x00200558. 

5-2-11. Close the Shell window. 



Configuration and Booting Lab Workbook 

 

Zynq 5-10 www.xilinx.com/university  
 xup@xilinx.com 
 © copyright 2014 Xilinx 

5-3. Define MULTIBOOT symbol, create Zynq_fsbl application, and change the 
lab1 BSP reference to zynq_fsbl_bsp. Create the image using the 
zynq_fsbl.elf, system_wrapper.bit, and lab1.elf files and naming it as 
lab1.bin in the lab1 directory. 

5-3-1. Right-click on the lab1 entry, select the C/C++ Build Settings option. 

5-3-2. Select Symbols in the left pane under the ARM gcc compiler group, click the + button on the right, 
enter MULTIBOOT in open form, click OK and click OK again. 

The application will re-compile as the MULTIBOOT related code is now included. 

 

Figure 8 Setting user-defined symbol 

5-3-3. Select File > New > Application Project  

5-3-4. Enter zynq_fsbl as the project name, select the Create New option with zynq_fsbl_bsp, and 
click Next. 

5-3-5. Select Zynq FSBL in the Available Templates pane and click Finish. 

5-3-6. Select lab1 in the Project Explorer pane, right-click, and select Change Referenced BSP. 

5-3-7. In the displayed form, select zynq_fsbl_bsp and click OK. 

The lab1 will be re-compiled using the zynq_fsbl_bsp. 

5-3-8. In the SDK, select Xilinx Tools > Create Zynq Boot Image. 

5-3-9. Select Create new BIF file option, click the Browse button of the BIF file path field and browse to 
c:\xup\adv_embedded\labs\lab1 directory, set filename as lab1, and click Save. 

5-3-10. Make the window bigger (taller), if necessary, so that you can see the Output folder field, 

5-3-11. Add the three files, zynq_fsbl.elf, system_wrapper.bit, and lab1.elf with the correct path and order.   

5-3-12. Change the output filename to lab1.bin making sure that the output directory is lab1. 



Lab Workbook  Configuration and Booting 

 

 www.xilinx.com/university Zynq 5-11 
 xup@xilinx.com 
 © copyright 2014 Xilinx 

 

Figure 9 Creating the bin file of the lab1 project for the multiboot application 

5-3-13. Click the Create Image button. 

The lab1.bin will be created in the lab1 directory. 

 

5-4. (OPTIONAL) Switch the workspace to lab3’s SDK project. Assign all 
sections to ps7_ddr_0_S_AXI_BASEADDR and generate the linker script.  
Change the ps7_ddr_0_S_AXI_BASEADDR to 0x00600000 and the Size to 
0x1FA00000 in the lscript.ld (linker script) file as you did in the previous 
step.  Recompile the lab3.c file.  Use the objcopy command to convert the 
elf file into the binary file and note the size of the binary file as well as the 
program entry point “main()”. 

This step is optional. If this step is skipped, proceed to 6-1. 

5-4-1. In the SDK program switch the workspace by selecting File > Switch Workspace > Other… and 
browse to the workspace pointing to c:\xup\adv_embedded\labs\lab3\lab3.sdk\ and click OK. 

5-4-2. Right-click on the lab3 entry, select the Generate Linker Script option, change the code, data, 
heap, and stack sections to use the ps7_ddr_0_AXI_BASEADDR, and generate the linker script. 



Configuration and Booting Lab Workbook 

 

Zynq 5-12 www.xilinx.com/university  
 xup@xilinx.com 
 © copyright 2014 Xilinx 

5-4-3. Expand the lab3 > src entry in the Project Explorer, and double-click on the lscript.ld to open it. 

5-4-4. In the lscript editor view, change the Base Address of ps7_ddr_0_AXI_BASEADDR from 
0x00100000 to 0x00600000, and the Size from 0x1FF00000 to 0x1FA00000. 

5-4-5. Press Ctrl-S to save the change. 

The program should compile. 

5-4-6. In the SDK of the lab3 project, select Xilinx Tools > Launch Shell to open the shell session. 

5-4-7. In the shell window, change the directory to lab3\Debug using the cd command. 

5-4-8. Convert the lab3.elf file to lab3elf.bin file by typing the following command. 

arm-xilinx-eabi-objcopy -O binary lab3.elf lab3elf.bin 

5-4-9. Type ls –l in the shell window and note the size of the file.  In this case, it is 32780 again. 

5-4-10. Determine the entry point (main()) of the program using the following command in the shell 
window. 

arm-xilinx-eabi-objdump -S lab3.elf | grep main 

It should be in the 0x00600558.  

5-4-11. Close the shell window. 

5-5. Define MULTIBOOT symbol, create Zynq_fsbl application, and change the 
lab3 BSP reference to zynq_fsbl_bsp. Create the image using the 
zynq_fsbl.elf, system_wrapper.bit, and lab3.elf files and naming it as 
lab3.bin in the lab3 directory. 

5-5-1. Right-click on the lab3 entry, select the C/C++ Build Settings option. 

5-5-2. Select Symbols in the left pane under the ARM gcc compiler group, click the + button on the right, 
enter MULTIBOOT in open form, click OK, and click OK again. 

The application will re-compile as the MULTIBOOT related code is now included. 

5-5-3. Select File > New > Application Project  

5-5-4. Enter zynq_fsbl as the project name, select the Create New option with zynq_fsbl_bsp, and 
click Next. 

5-5-5. Select Zynq FSBL in the Available Templates pane and click Finish. 

5-5-6. Select lab3 in the Project Explorer pane, right-click, and select Change Referenced BSP. 

5-5-7. In the displayed form, select zynq_fsbl_bsp and click OK. 



Lab Workbook  Configuration and Booting 

 

 www.xilinx.com/university Zynq 5-13 
 xup@xilinx.com 
 © copyright 2014 Xilinx 

The lab3 will be re-compiled using the zynq_fsbl_bsp. 

5-5-8. Select the lab3 application in the Project Explorer view. 

5-5-9. In the SDK, select Xilinx Tools > Create Zynq Boot Image. 

5-5-10. Select Create new BIF file option, click the Browse button of the BIF file path field and browse to 
c:\xup\adv_embedded\labs\lab3 directory, set filename as lab3, and click Save. 

5-5-11. Make the window bigger (taller), if necessary, so that you can see the Output folder field, 

5-5-12. Make sure that the three files, zynq_fsbl.elf, system_wrapper.bit, and lab3.elf file entries are 
added with the correct path.  Change if necessary. 

5-5-13. Change the output filename to lab3.bin making sure that the output directory is lab3. 

5-5-14. Click the Create Image button. 

The lab3.bin will be created in the lab3 directory. 

Create the SD Card Image and Test Step 6 

6-1. Using the Windows Explorer, create the SD_image directory under the lab5 
directory. You will first need to create the bin files from lab1 and lab3.  

6-1-1. Using the Windows Explorer, create directory called SD_image under the lab5 directory. 

6-1-2. In Windows Explorer, copy the system_wrapper.bit of the lab1 project into the SD_image 
directory and rename it lab1.bit, and do similar for lab3 

C:/xup/adv_embedded/labs/lab1/lab1.runs/impl_1/system_wrapper.bit -> SD_image /lab1.bit 
C:/xup/adv_embedded/labs/lab3/lab3.runs/impl_1/system_wrapper.bit -> SD_image /lab3.bit 

The XSDK bootgen command will be used to convert the bit files into the required binary format. bootgen 
requires a .bif file which has been provided in the sources/lab5 directory. The .bif file specifies the 
target .bit files.  

6-1-1. Open an XSDK command prompt by selecting Start > All Programs > Xilinx Design Tools > 
Vivado 2014.4 > Xilinx SDK 2014.4 Command Prompt 

6-1-2. In the XSDK command prompt window, change the directory to the bitstreams directory. 

cd c:/xup/adv_embedded/labs/lab5/SD_image 

6-1-3. Generate the partial bitstream files in the BIN format using the provided “.bif” file located in the 
sources directory. Use the following command: 



Configuration and Booting Lab Workbook 

 

Zynq 5-14 www.xilinx.com/university  
 xup@xilinx.com 
 © copyright 2014 Xilinx 

bootgen -image ..\..\..\sources\lab5\bit_files.bif -w -

process_bitstream bin 

6-1-4. Rename the files lab1.bit.bin and lab3.bit.bin to lab1.bin and lab3.bin 

6-1-5. The size of the file needs to match the size specified in the lab5_sd.c file. The size can be 
determined by checking the file’s properties. If the sizes do not match, then make the necessary 
change to the source code and save it (The values are defined as LAB1_BITFILE_LEN and 
LAB3_BITFILE_LEN).  

 

Figure 10 Checking the size of the generate bin file (sizes are for Zedboard) 

Note that the lab1.bin and lab3.bin files should be the same size. 

6-1-6. Exit the SDK of lab3. 

6-2. You will create the BOOT.bin file using the first stage bootloader and 
lab5_sd.elf files. Note that since there are no PL resources used, no bit file 
will be used. 

6-2-1. In the SDK, select Xilinx Tools > Create Zynq Boot Image. 

6-2-2. For the Output BIF file path, click on the Browse button and browse to 
c:\xup\adv_embedded\labs\lab5\SD_image directory and click Save. 

6-2-3. Click on the Add button and browse to 
C:\xup\adv_embedded\labs\lab5\lab5.sdk\zynq_fsbl\Debug, select zynq_fsbl.elf, click Open, 
and click OK. 

6-2-4. Click on the Add button of the List of partitions in the boot image field and add the software 
application, lab5_sd.elf, from the c:\xup\adv_embedded\labs\lab5\lab5.sdk\lab5_sd\Debug 
directory and click OK 

6-2-5. Click the Create Image button. 

The BOOT.bin file will be created in the lab5\SD_image directory. 

 

 

1 



Lab Workbook  Configuration and Booting 

 

 www.xilinx.com/university Zynq 5-15 
 xup@xilinx.com 
 © copyright 2014 Xilinx 

6-3. Either copy the labxelf.bin files (two) from the sources directory or from the 
individual directories (if you did the optional part in the previous step and 
place them in the SD_image directory. Copy all the bin files to the SD card. 
Configure the board to boot from SD card. Power ON the board. Test the 
design functionality 

6-3-1. In Windows explorer, copy the lab1elf.bin and lab3elf.bin files either from the 
c:\xup\adv_embedded\sources\lab5\ [zybo | zedboard]\SDCard directory or from the 
individual directories (if you did the optional parts in the previous step) and place them in the 
SD_image directory.  

C:\xup\adv_embedded\labs\lab1\lab1.sdk\lab1\Debug\lab1elf.bin -> SD_image 
C:\xup\adv_embedded\labs\lab3\lab3.sdk\lab3\Debug\lab3elf.bin -> SD_image 

6-3-2. Insert a blank SD/MicroSD card (FAT32 formatted) in an SD Card reader, and using the Windows 
Explorer, copy the two bin files, the two elfbin files, and BOOT.bin from the SD_image folder in to 
the SD card.  

6-3-3. Place the SD/MicroSD card in the board, and set the mode pins to boot the board from the SD 
card (Zedboard: JP7-JP11 as GND-SIG, GND-SIG, SIG-3V3, SIG-3V3, GND-SIG([right-to-left). 
Zybo set JP5 to SD). Connect your PC to the UART port with the provided micro-USB cable.   

6-3-4. Power ON the board. 

6-3-5. Start the terminal emulator program and follow the menu.  Press the PS_RST/PS_SRST button 
(Red Button) if you don’t see the menu. 

6-3-6. When finished testing one application, either power cycle the board and verify the second 
application’s functionality, or press the PS_RST/PS_SRST button (Red Button) on the board to 
display the menu again. 

6-3-7. When done, power OFF the board. 

Create the QSPI application and image Step 7 

7-1. Create the lab5_qspi application using the provided lab5_qspi.c file. 

7-1-1. Select File > New > Application Project.  

7-1-2. Enter lab5_qspi as the project name, select the Use existing option for the Board Support 
Package, and using the drop-down button select hello_world_bsp, and click Next. 

7-1-3. Select Empty Application in the Available Templates pane and click Finish. 

7-1-4. Select lab5_qspi>src in the project view, right-click, and select Import.  

7-1-5. Expand General folder and double-click on File system, and browse to the 
c:\xup\adv_embedded\sources\lab5 directory. 



Configuration and Booting Lab Workbook 

 

Zynq 5-16 www.xilinx.com/university  
 xup@xilinx.com 
 © copyright 2014 Xilinx 

7-1-6. Select lab5_qspi.c and click Finish. 

The program should compile successfully and generate the lab5_qspi.elf file. 

7-2. Using the Windows Explorer, create the QSPI_image directory under the 
lab5 directory. Create the lab5.mcs file using the zynq_fsbl.elf and 
lab5_qspi.elf files from the lab5, lab1.bin (from the lab1 project) and 
lab3.bin (from the lab3 project). 

7-2-1. Using the Windows Explorer, create the QSPI_image directory under the lab5 directory. 

7-2-2. In the SDK, select Xilinx Tools > Create Zynq Boot Image. 

7-2-3. Select Create new BIF file option, click the Browse button of the BIF file path field and browse to 
c:\xup\adv_embedded\labs\lab5\QSPI_image directory, select output.bif, and click Save. 

7-2-4. Click on the Add button of the Boot image partitions window. 

7-2-5. Click on the Browse button of the File Path field, browse to 
c:\xup\adv_embedded\labs\lab5\lab5.sdk\zynq_fsbl\Debug, select zynq_fsbl.elf, click Open, and 
then click OK. 

7-2-6. Click on the Add button of the Boot image partition field again and add the software application, 
lab5_qspi.elf, from the c:\xup\adv_embedded\labs\lab5\lab5.sdk\lab5_qspi\Debug directory. 

7-2-7. Click on the Add button again of the Boot image partition field again and add the lab1.bin, either 
of created boot image of the lab1 project (in c:\xup\adv_embedded\labs\lab1) or from the 
provided c:\xup\adv_embedded\sources\lab5\zed (or zybo)\QSPI directory. Click Open. 

7-2-8. Enter 0x400000 in the Offset field and click OK. 



Lab Workbook  Configuration and Booting 

 

 www.xilinx.com/university Zynq 5-17 
 xup@xilinx.com 
 © copyright 2014 Xilinx 

 

Figure 11 Adding boot image at an offset 

7-2-9. Similarly, click on the Add button again of the Boot image partition field again and add the 
lab3.bin, either of the created boot image of the lab3 project (in c:\xup\adv_embedded\labs\lab3) 
or from the provided c:\xup\adv_embedded\sources\lab5\zed (or zybo)\QSPI directory. Click 
Open. 

7-2-10. Enter 0x800000 in the Offset field and click OK. 

7-2-11. Make the window bigger (taller), if necessary, so that you can see the Output path field, 

7-2-12. Change the output filename to lab5.mcs and the location to 
c:\xup\adv_embedded\labs\lab5\QSPI_image (if necessary). 

7-2-13. Click the Create Image button. 

The lab5.mcs file will be created in the lab5\QSPI_image directory. 

7-3. Make sure that the board is in the JTAG boot mode. Power ON the board.  
Program the QSPI using the Flash Writer utility. 



Configuration and Booting Lab Workbook 

 

Zynq 5-18 www.xilinx.com/university  
 xup@xilinx.com 
 © copyright 2014 Xilinx 

7-3-1. Make sure that the board is in the JTAG boot mode. Power ON the board.  

7-3-2. Select Xilinx Tools > Program Flash. 

7-3-3. In the Program Flash Memory form, click the Browse button, and browse to the 
c:\xup\adv_embedded\labs\lab5\QSPI_image directory, select lab5.mcs file, and click Open. 

7-3-4. In the Offset field enter 0 as the offset and click the Program button. 

The QSPI flash will be programmed. It may take up to 4 minutes. 

7-3-5. Power off the board. 

Test the QSPI Multi-Applications Step 8 

8-1. Set the board in the QSPI boot mode. Power ON the board. Connect to the 
serial port. Press the PS-SRST button and test the functionality. 

8-1-1. Set the board in the QSPI mode. 

8-1-2. Power ON the board. 

8-1-3. Start the terminal emulator session and press PS-SRST button to see the menu. 

8-1-4. Follow the menu and test the functionality of each lab.  

Press 1 to load and execute lab1 or 2 to load and execute lab3.  After each lab is executed, the 
lab5 gets loaded displaying the menu. Note that lab1 execution terminates when all slide switches 
are ON (i.e. 0xF) and lab3 execution terminates after it counts from 0 to 15. 

8-1-5. Once satisfied, power OFF the board.  

8-1-6. Close SDK and Vivado programs by selecting File > Exit in each program. 

8-1-7. Turn OFF the power on the board. 

Conclusion  

This lab led you through creating the boot images which were capable of booting standalone applications 
from either the SD card or the QSPI flash memory.  You then created the design capable of booting 
multiple applications and configurations which you developed in the previous labs. 

 


