
Lab Workbook Extending Memory Space with Block RAM

 www.xilinx.com/university Zynq 3-1
 xup@xilinx.com
 © copyright 2016 Xilinx

Extending Memory Space with Block RAM

Introduction

The Zynq device supports different types of memory including volatile (e.g. DDR3) and non-volatile (e.g.
QSPI Flash). There are volatile and non-volatile hard memory controllers on the Zynq PS. The PL portion
of the Zynq device has plenty of Block RAM (BRAM) which can be used by an IP without contending for
external resources and creating performance bottleneck. This lab guides you through the process of
extending the memory space in Zynq-based platform using available PL based BRAM resource.

Objectives

After completing this lab, you will be able to:
 Add BRAM and connect it to the processing system’s AXI master port
 Execute the software application having data section in the BRAM

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

Design Description

In this lab, you will add an AXI BRAM memory controller and associated 64 Kb BRAM memory to the
system you created in the first lab. The following block diagram represents the completed design (Figure
1).

Figure 1. Completed Design

Extending Memory Space with Block RAM Lab Workbook

Zynq 3-2 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

General Flow for this Lab

In the instructions below;
{sources} refers to: C:\xup\adv_embedded\2016_1_zynq_sources
{labs} refers to : C:\xup\ adv_embedded \2016_1_zynq_labs

Board support for the Zybo is not included in Vivado 2016.1 by default. The relevant zip file need to be
extracted and saved to: {Vivado installation}\data\boards\board_files\.

These files can be downloaded either from the Digilent, Inc. webpage
(https://reference.digilentinc.com/vivado/boardfiles2015) or the XUP webpage
(http://www.xilinx.com/support/university/vivado/vivado-workshops/Vivado-adv-embedded-design-
zynq.html) where this material is also hosted.

Open the Project Step 1

1-1. Open the Vivado program. Open the lab1 project you created earlier or use
the lab1 project from the labsolution directory, and save the project as lab3.

1-1-1. Start Vivado if necessary and open either the lab1 project (lab1.xpr) you created earlier or the
lab1 project in the labsolutions directory using the Open Project link in the Getting Started page.

1-1-2. Select File > Save Project As … to open the Save Project As dialog box. Enter lab3 as the
project name. Make sure that the Create Project Subdirectory and Import All Files to the New
Project options are checked, the project directory path is {labs} and click OK.

This will create the lab3 directory and save the project and associated directory with lab3 name.

Configure the Processor to Enable M_AXI_GP1 Step 2

2-1. Open the Block Design and enable the M_AXI_GP1 interface.

2-1-1. Click Open Block Design in the Flow Navigator pane

Step 1:

Open the
Project

Step 2:

Configure the
Processor to

Enable
M_AXI_GP1

Interface

Step 3:

Extend with
BRAM

Step 4:

Create
Wrapper and
Generate the

Bitstream

Step 5:

Generate
Applications

in SDK

Step 6:

Test in
Hardware

Lab Workbook Extending Memory Space with Block RAM

 www.xilinx.com/university Zynq 3-3
 xup@xilinx.com
 © copyright 2016 Xilinx

2-1-2. Double-click on the Zynq processing system instance to open its configuration form.

2-1-3. Select PS-PL Configuration in the Page Navigator window in the left pane, expand AXI Non
Secure Enablement>GP Master AXI Interface, and click on the check-box of the M_AXI GP1
Interface to enable it.

2-1-4. Select Clock Configuration in the Page Navigator window in the left pane, expand PL Fabric
Clocks on the right, and click on the check-box of the FCLK_CLK1 to enable it.

2-1-5. Enter the Requested Frequency for the FCLK_CLK1 as 140.00000 MHz.

2-1-6. Click OK to accept the settings and close the configuration form.

Figure 2. M_AXI_GP1 interface enabled

Extend with BRAM Step 3

3-1. Add an AXI BRAM Controller instance with BRAM.

3-1-1. Click the Add IP icon and search for BRAM in the catalog.

3-1-2. Double-click the AXI BRAM Controller to add an instance to the design.

3-1-3. Click on Run Connection Automation, and select axi_bram_ctrl_0

3-1-4. Click on BRAM_PORTA and BRAM_PORTB check boxes.

3-1-5. Click S_AXI, and change the Master option to /processing_system7_0/M_AXI_GP1, change the
Clock Connection to /processing_system7_0/FCLK_CLK1 and click OK

Extending Memory Space with Block RAM Lab Workbook

Zynq 3-4 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 3. Connecting AXI BRAM Controller to M_AXI_GP1 to run at faster clock speed

Notice that an instance of AXI Interconnect is added, and the M_AXI_GP1_ ACLK is connected to
FCLK_CLK1.

Figure 4. Clocking network connections

3-1-6. Double-click on the axi_bram_ctrl_0 instance to open the configuration form.

3-1-7. Set the width to 64.

Figure 5. Setting the BRAM controller data width to 64

3-1-8. Click OK.

Lab Workbook Extending Memory Space with Block RAM

 www.xilinx.com/university Zynq 3-5
 xup@xilinx.com
 © copyright 2016 Xilinx

3-2. Using the Address Editor tab, set the BRAM controller size to 64KB.
Validate the design.

3-2-1. Select the Address Editor tab and notice that the BRAM controller memory space is 8K.

3-2-2. Click in the Range column of the axi_bram_ctrl_1 instance and set the size as 64K.

Figure 6. AXI BRAM space assignment

Notice that the address range changed to 0x80000000-0x8000FFFF. This is in the M_GP1
addressing space.

3-2-3. Select Tools > Validate Design and fix any errors if necessary.

Generate the Bitstream Step 4

4-1-1. Click on the Generate Bitstream to run the synthesis, implementation, and bit generation
processes.

4-1-2. Click Save if prompted to save the project, and Yes to run the processes.

4-1-3. When the bitstream generation process has completed successfully, click Cancel.

Generate Applications in the SDK Step 5

5-1. Export the implemented design, and start SDK

5-1-1. Export the hardware configuration by clicking File > Export > Export Hardware…

5-1-2. Click the box to Include Bitstream and click OK (Click Yes if prompted to overwrite the previous
module)

5-1-3. Launch SDK by clicking File > Launch SDK and click OK

5-1-4. Right-click on the lab1 and standalone_bsp_0 and system_wrapper_hw_platfrom_0 projects
in the Project Explorer view and select close project.

Extending Memory Space with Block RAM Lab Workbook

Zynq 3-6 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

5-2. Create a hello_world application project using the standard template.

5-2-1. Select File > New > Application Project.

5-2-2. In the Project Name field, enter hello_world as the project name.

5-2-3. Use the default settings to create a new BSP and click Next.

5-2-4. Select the Hello World template and click Finish.

The hello_world and hello_world_bsp projects will be created in the Project Explorer window of
SDK

5-3. Create an empty application project, named lab3, and import the provided
lab3.c file.

5-3-1. Select File > New > Application Project.

5-3-2. In the Project Name field, enter lab3 as the project name.

5-3-3. Use the default settings to create a new BSP and click Next.

5-3-4. Select the Empty Application template and click Finish.

The lab3 and lab3_bsp projects will be created in the Project Explorer window of SDK.

5-3-5. Select lab3 > src directory in the project view, right-click, and select Import.

5-3-6. Expand the General category and double-click on File System.

5-3-7. Browse to {sources}\lab3 folder.

5-3-8. Select lab3.c and click Finish.

A snippet of the source code is shown in the following figure. It shows that we write a pattern to
the LED port, execute a software delay loop, and repeat for 256 times and repeat the process
again. It also shows the code (greyed) which will be used in Lab5 which will execute the loop only
sixteen times.

Lab Workbook Extending Memory Space with Block RAM

 www.xilinx.com/university Zynq 3-7
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 7. Source Code

Test in Hardware Step 6

6-1. Connect and power up the board. Establish the serial communication using
the SDK Terminal tab. Program the FPGA. Run the hello_world.elf
application.

6-1-1. Connect and power up the board.

6-1-2. In SDK, select Xilinx Tools > Program FPGA and click the Program button to program the
FPGA.

6-1-3. Select the tab. If it is not visible then select Window > Show view > Terminal.

6-1-4. Click on to initiate the serial connection and select the appropriate COM port (depending on
your computer). Configure it with 115200 baud rate.

Extending Memory Space with Block RAM Lab Workbook

Zynq 3-8 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

6-1-5. Select hello_world in Project Explorer, right-click and select Run As > Launch on Hardware to
download the application, execute ps7_init, and execute hello_world.elf

You should see “Hello World” displayed in the Terminal window.

6-2. Modify the linker script to use the BRAM for the data section and run it.

6-2-1. Select the hello_world application in the Project Explorer view.

6-2-2. Right-click and select Generate Linker Script.

6-2-3. Change the code and heap and stack segment are set to ps7_ram_0_S_AXI_BASEADDR and
make sure that the data segment memory to axi_bram_ctrl_0_S_AXI_BASEADDR.

Figure 8. Assigning Data Segments to AXI BRAM

6-2-4. Click the Generate button.

6-2-5. Click the Yes button to overwrite.

6-2-6. Select the hello_world application, right-click, and run it. Click OK to relaunch.

You should see “Hello World” displayed in the Terminal window again, this time the data section
is running from BRAM.

6-3. Run the lab3 application from the RAM memory.

6-3-1. Select the lab3 project in Project Explorer, right-click and select Run As > Launch on Hardware
(System Debugger). Click Yes to terminate the previous run.

The application (lab3.elf) will be downloaded into the target device, execute ps7_init, and execute.

6-3-2. You should see the on-board LEDs changing patterns at roughly a one second delay rate.

6-4. Modify the linker scipt to use the BRAM for the data section and execute.

6-4-1. Select the lab3 application in the Project Explorer view.

6-4-2. Right-click and select Generate Linker Script.

6-4-3. Change the code and heap and stack segments set to ps7_ram_0_S_AXI_BASEADDR and
make sure that the data segment memory to axi_bram_ctrl_0_S_AXI_BASEADDR.

Lab Workbook Extending Memory Space with Block RAM

 www.xilinx.com/university Zynq 3-9
 xup@xilinx.com
 © copyright 2016 Xilinx

6-4-4. Click the Generate button.

6-4-5. Click the Yes button to overwrite.

6-4-6. Select the lab3 project in Project Explorer, right-click and select Run As > Launch on Hardware
(System Debugger).

Click Yes to terminate the exisiting run.

The application (lab3.elf) will be downloaded into the target device, execute ps7_init, and will be
executed.

6-4-7. You should see the on-board LEDs changing patterns at roughly a one second delay rate.

6-4-8. Close the SDK program by selecting File > Exit.

6-4-9. Close the Vivado program by selecting File > Exit.

6-4-10. Turn OFF the power on the board.

Conclusion

This lab led you through adding BRAM memory in the PL section thereby extending the total memory
space available to the PS. You have verified the functionality by creating an application, targeting the data
section to the added BRAM, and executing the application.

