Lab Workbook

Building a Complete Embedded System

Building a Complete Embedded System

Introduction

This lab guides you through the process of using Vivado and IP Integrator to create a complete Zynq
ARM Cortex-A9 based processor system targeting either the Zybo or ZedBoard Zynqg development
boards. You will use the Block Design feature of IP Integrator to configure the Zyng PS and add IP to
create the hardware system, and SDK to create an application to verify the design functionality.

Objectives

After completing this lab, you will be able to:
Create an embedded system design using Vivado and SDK flow

e Configure the Processing System (PS)

e Add Xilinx standard IP in the Programmable Logic (PL) section

e Use and route the GPIO signal of the PS into the PL using EMIO

e Use SDK to build a software project and verify the design functionality in hardware.
Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises eight primary steps: You will create a top-level project using Vivado, create the
processor system using the IP Integrator, add two instances of the GPIO IP, validate the design, generate
the bitstream, export to the SDK, create an application in the SDK, and, test the design in hardware.

Design Description

In this lab, you will design a complete embedded system consisting of the ARM Cortex-A9 PS, and two
standard GPIO IPs to connect to on-board LEDs and their corresponding switches. The following block
diagram represents the completed design (Figure 1).

LED

AXI
Interconnect
Block

PL

AXl4-Lite

AX4-Lite

GPIO

GPI10

Figure 1. Completed Design

& XILINX.

www.xilinx.com/university
Xup@xilinx.com
© copyright 2016 Xilinx

Zyng 1-1

Building a Complete Embedded System Lab Workbook

General Flow for this Lab

Step 1: Step 2: Step 3: Step 4:
Create a Create the Add Two Validate the

Vivado System using Instances of |:> Design |:>
Project IP Integrator GPIO

Step 5: Step 6: Step 7: Step 8:
Generate the Export the Create an Testin

Bitstream Design to Application in Hardware
SDK SDK

In the instructions below;
{sources} refers to: C:\xup\adv_embedded\2016_1 zynqg_sources
{labs} refers to : C:\xup\ adv_embedded \2016_1_zynq_labs

Board support for the Zybo is not included in Vivado 2016.1 by default. The relevant zip file need to be
extracted and saved to: {Vivado installationf\data\boards\board_files\.

These files can be downloaded either from the Digilent, Inc. webpage
(https://reference.digilentinc.com/vivado/boardfiles2015) or the XUP webpage
(http://www.xilinx.com/support/university/vivado/vivado-workshops/Vivado-adv-embedded-design-
zyng.html) where this material is also hosted.

Create a Vivado Project Step 1

1-1. Launch Vivado and create an empty project targeting the Zybo or ZedBoard
Zynq Evaluation and Development Kit, selecting Verilog language.

1-1-1. Open Vivado by selecting Start > All Programs > Xilinx Design Tools > Vivado 2016.1 >
Vivado 2016.1

1-1-2. Click Create New Project to start the wizard. You will see the Create A New Vivado Project
dialog box. Click Next.

1-1-3. Click the Browse button of the Project Location field of the New Project form, browse to {labs},
and click Select.

1-1-4. Enterlabl in the Project Name field. Make sure that the Create Project Subdirectory box is
checked. Click Next.

Zyng 1-2 www.xilinx.com/university i
Xup@xilinx.com i; Xl LINX;

© copyright 2016 Xilinx

Lab Workbook

Building a Complete Embedded System

1-1-5.

1-1-6.

1-1-7.

1-1-8.

1-1-9.

-

¢ New Project

=)

Project Name

Enter @ name for your project and specify a directory where the project
data files will be stored.

Project name:

Project location: |C:,"xup,-'adv_embeddedfzﬂlﬁ_l_zynq_lahs |

Create project subdirectory

Project will be created at: C:fxup/adv_embedded,/2016_1_zynqg_labs/labl

l < Back ” Next > Finish

/

[

Cancel

h

Figure 2. Project Name Entry

Select the RTL Project option in the Project Type form, and click Next.

Select Verilog as the Target Language and Simulation Language in the Add Sources form, and

click Next.

Click Next two more times to skip adding IP or constraints.

In the Default Part form, click Boards filter button.

Select either the Zybo or the ZedBoard Zynq Evaluation and Development Kit of the

appropriate Board Version based on the board you have and click Next.

It is important to select the correct revision of the board, as the FSBL created later will generate

different code depending on the board revision (i.e. silicon version) you are using. For the

Zedboard the revision is likely to be “C” or “D".

iv XILINX www.xilinx.com/university

Xup@xilinx.com
© copyright 2016 Xilinx

Zyng 1-3

Building a Complete Embedded System

Lab Workbook

r 5
¢ New Project \ ﬁ
1
Default Part
Choose a default Xilinx part or board for your project. This can be changed later. ‘
Select: & Parts |@ Boards
4 Filter/ Preview
Vendor: All -
Display Name: | All -
]
Board Rev: Latest -
Reset All Filters
Search: -
] "]) Block
Display Name Vendor Board Rev Part I/O Pin Count File Version RAMS
@ zybo digilentinc.com B.3 § xc72010cig400-1 400 1.0 60
B ZedBoard Zyng Evaluation and Development Kit|em.avnet.com d @ xc7z020clg484-1 484 1.3 140
Artee-7 AC/01 Bvaluation Platrorm xilinx.com 11 @ xc7a200ttbg676-2 676 1.3 365
| E Kintex-7 KC705 Evaluation Platform xilinx.com 11 § xc7k325tffgo00-2 900 1.3 445
@ Virtex-7 VC707 Evaluation Flatform ilinx.com 1.1 @ xcTvx485tffg1761-2 1,761 1.3 1030
E Virtex-7 VC709 Evaluation Platform xilinx.com 1.0 § xc7vx690tffg1761-2 1,761 1.8 1470
@ 7vYNQ-7 ZC702 Evaluation Board wilinx.com 1.0 G %c72020cig484-1 484 1.2 140
@ 7vYNQ-7 ZC706 Evaluation Board ilinx.com 1.1 xc7z045ffgo00-2 900 1.3 545
4 I 3

Figure 3. Board Selection

1-1-10. Click Finish to create an empty Vivado project.

Creating the Hardware System Using IP Integrator

Step 2

2-1. Create a block design in the Vivado project using IP Integrator to generate

the ARM Cortex-A9 processor based hardware system.
2-1-1. Inthe Flow Navigator, click Create Block Design under IP Integrator.
2-1-2. Name the block system and click OK.

2-1-3. Click on Add IP in the message at the top of the Diagram panel.

2-1-4. Once the IP Catalog is open, type zy into the Search bar, and double click on the ZYNQ7

Processing System entry to add it to the design.

2-1-5. Click on Run Block Automation and click OK to automatically configure the board presets.

Zyng 1-4 www.xilinx.com/university
Xup@xilinx.com
© copyright 2016 Xilinx

& XILINX.

Lab Workbook

Building a Complete Embedded System

-

¢ Run Block Automation

——

-

the right.

@ =] All Automation (1 out of 1 selected)

= BTk Aprocessing system7_0

e
=

L

Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the left to display its configuration options on

[

Description

This option sets the board preset on the Processing System. All current properties will be
overwritten by the board preset. This action cannot be undone. Zyng7 block automation

applies current board preset and generates external connections for FIXED_IO, Trigger and
DDR interfaces.

NOTE: Apply Board Preset will discard existing IP configuration - please uncheck this box, if
you wish to retain previous configuration.

Instance: /processing_system7_0
Options
Make Interface External: FIXED_IO, DDR

Apply Board Preset:
Cross Trigger In: Disable -
Cross Trigger Out: Disable ~

Figure 4. Zyng Block Automation View

2-1-6.
system.

Double click on the Zynq block to open the Customization window for the Zyng processing

A block diagram of the Zyng PS should now be open, showing various configurable blocks of the

Processing System.

At this stage, designer can click on various configurable blocks (highlighted in green) and change

the system configuration.

& XILINX.

www.xilinx.com/university

Zyng 1-5
Xup@xilinx.com

© copyright 2016 Xilinx

Building a Complete Embedded System Lab Workbook

T
{F Re-customize IP P
ZYNQ7 Processing System (5.5) '
[l Documentation &% Presets [IP Location &% Import XPS Settings
Page Navigator < || Zyng Block Design Summary Report
Zynq Block Design
—7ill 10 Pariphe. o
fi tion I = gel]
PS-PL Configura) ings icati
Application Procassor Unit (APLU)
Bankd SPI1 m
Peripheral /O Pins Wi zCo
(150) B ARM Cortex Ko ARM Cortex A8
MIO Configuration CARS System Level cPy gl
CAN 1 -+ Control Regs
TART 0 &ip
Clock Configuration - AT N o AxXI
MUK GPIO Y ; | e Snecop Contral unit A
DDR Configuration Mo} s00 v omAs S
N . Pt l 512 KB L2 Cache and Contoller Ports
L . [E) K
SMC Timing Calculation e _— 256 KB
ENETO W CoreSight Interconnect SRAM
Interrupts [_eners Central ConpRiss
Bankl + .
Mo FLASH Mamary T ‘L
(5318} Interfaces he—1 | Dap |
1 o neeces | |
| cusosel V| pEVE | Programmabie DDR2LPODR2
T~ | Logic o Mamarny Controlier
SME Timing Infer connect
Calculation
: DMA Eyne ZE[H]1E]
e o [ofin]
Regeln | \ o.ﬁ::m ; :’ 2 ; I Processing System(PS)
ETETIETET [of 172 e . clis cong | @ | Hign Perdormamece XADD
MIO (EMIO) PEFL AX| AXI AES/ AXl 4
Ciock Pons Master Stave SHA L
Porta Porl
Programmable Logic(PL)
oK] I Cancel]

Figure 5. Zynqg Processing System Configuration View (ZedBoard)

2-2. Configure the I/O Peripherals block to have UART 1 and GPIO support.
Route 1-bit wide GPIO_| port to the EMIO so it can be connected to a user
10 pin.

2-2-1. Click on the MIO Configuration panel to open its configuration form.

2-2-2. Expand the I/O Peripherals (and GPIO).

2-2-3. Deselect all the peripherals except UART 1 and GPIO (Deselect ENET 0, USB 0, SD 0, and
expand GPIO and deselect USB Reset and 12C Reset).

Zynq 1-6 www.xilinx.com/university v
xup@xilinx.com $4 XI LINX@

© copyright 2016 Xilinx

Lab Workbook Building a Complete Embedded System

2-2-4.

2-3.

2-3-1.

MIO Configuration Summary Report
4= Bank 0 /O Voltagel LvCMOS 3.3y ~ Bank 1 /O Voltage | LvCMOS 1.8V ~ | |
& '

[k o

=1 Search: | Q-

= Peripheral e} Signal ID Type Speed Pullup Direction
= [Memory Interfaces
@ = IO Peripherals

] EnET O
&[] EneT1
-] useao
- [C] usB1
i [] spo
i [C] sp1

i [] uART 0

| m WG] i O i

[+ UART 1 MIO 48 .. 49 v

- [F mco

- [mc1

B [C] sPio

=[] spr1

O] cano

&[] cani

Ef GPIO _
& GPIO MIO MIO -

- [[] EMIO GPIO (Width)
B || ENET Reset
@[] USB Reset

Figure 6. Selecting UART 1 and GPIO Peripherals of PS

Route the PS section GPIO of a 1-bit width to the PL side pad using the EMIO interface by
doing the following:

0 Under GPIO, select the check-box for the EMIO GPIO (Width) to use the EMIO GPIO. Then
click in the right-column and select 1 as the width. The EMIO will be connected to the first
user GPIO available which will be channel number 54 (Channels O to 53 are available to PS).

- GPIO
- [+] GPIOMIO -

e v | gl

Figure 7. Routing GPIO to PL

Deselect TTC device.

Expand the Application Processing Unit and uncheck the Timer 0.

Reset .} (| | [| | 1

i' XI LINX www.xilinx.c_qm/university Zynq 1-7

xup@xilinx.com
© copyright 2016 Xilinx

|

m

Building a Complete Embedded System Lab Workbook

MIO Configuration Bk, | [F+ Memory Interfaces
o= .
- 1/0 Peripherals

Clock Configuration 0 - Application Processor Unit
DOR Configuration | - [] Timer 0

- [] Timer 1
SMC Timing Calculation

- [[] Watchdog
Interrupts +~ Programmable Logic Test and Debug

Figure 8. Deselecting Timer

2-3-2. Click OK.

The configuration form will close and the block diagram will be updated as shown below.

processing_system?7_0

L 'l

GrIo_0 |||

DDR & || ™> DDR
- FIXED_10 4 ||| ™ FIXED IO
M_AXI_GPO_ACLK ZYNQ M_AXI_GPO (£

FCLK_CLKOD =
FCLK_RESETO_M =

L% i
ZYNQ)7 Processing System

Figure 9. ZYNQ7 Processing System configured block

2-4. Add oneinstance of GPIO and name it switches. Connect the block to the
Zynqg.

2-4-1. Click the Add IP icon ﬁ and search for AXI GPIO in the catalog.
2-4-2. Double-click the AXI GPIO to add an instance of the core to the design.

2-4-3. Click on the AXI GPIO block to select it, and in the Block properties tab, change the name to
switches.

2-4-4. Double click on the AXI GPIO block to open the customization window. Under Board Interface, for
GPIO, click on Custom to view the dropdown menu options, and select sws 8Bits for the
Zedboard or sws 4bits for the Zybo.

As the Zybo/Zedboard was selected during the project creation, and a board support package is
available for these boards, Vivado has knowledge of available resources on the board.

2-4-5. Click the IP Configuration tab. Notice the GPIO Width is set to 4 (Zybo) or 8 (Zedboard) and is
greyed out. If a board support package was not available, the width of the IP could be configured
here.

2-4-6. Click OK to finish configuring the GPIO and to close the Re-Customize IP window.

2-4-7. Click on Run Connection Automation, and select switches (which will include GPIO and
S_AXI)

Zyng 1-8 www.xilinx.com/university i
Xup@xilinx.com i‘. Xl LINX;

© copyright 2016 Xilinx

Lab Workbook Building a Complete Embedded System

Click on GPIO and S_AXI to check the default connections for these interfaces.

- e ~
¢ Run Connection Automation - S
Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the left to
display its configuration options on the right.
Q, EH] All Automation (2 out of 2 selected) Description
pe ;""fﬁswimhes Ci ct Board Part Interface to IP interf;
s - m}m onnect Board Part Interface to IP interface.
""" | S_AXT Interface: [switches/GPID
Options
Select Board Part Interface: | sws_8bits [DIF switches) -
\i| oK ‘ | Cancel
h

Figure 10. Connection Automation for the GPIO (ZedBoard)

2-4-8. Click OK to automatically connect the S_AXI interface to the Zynq GPO port (through the AXI
interconnect block), and the GPIO port to an external interface.

Notice that after block automation has been run, two additional blocks that are required to
connect the blocks, Processor System Reset, and AXI Interconnect have automatically been
added to the design.

2-5. Add another instance of GPIO, name the instance leds and connect it to the
Zynq. Configure its GPIO port.

2-5-1. Add another instance of the GPIO peripheral.
2-5-2. Change the name of the block to leds.

2-5-3. Double click on the leds block, and select leds 4bits (Zybo) or leds 8bits (Zedboard) for the
GPIO interface

2-5-4. Click on Run Connection Automation
2-5-5. Click leds, and check the connections for GPIO and S_AXI as before

2-5-6. Click OK to automatically connect the interfaces as before.

Notice that the AXI Interconnect block has the second master AXI (M01_AXI) port added and
connected to the S_AXI of the leds.

2-6. Connect the EMIO to the BTN

2-6-1. Right-click on the GPIO_0 pin of the Zynq instance, and select Make External to create an
external port.

2-6-2. Select the newly created GPIO_0 port, and change the name to btn in its properties form.

i www.xilinx.com/university Zyng 1-9
t‘ Xl LINX Xup@xilinx.com

© copyright 2016 Xilinx

Building a Complete Embedded System

Lab Workbook

At this stage the design should look like as shown below.

processing_system?7_0_axi_periph

rst_processing_system?7_0_100M

ACLK

1| S00_AXI

RESETN

switches

“|dhs_ax

is_axi_aclk

_axi_aresetn

GPIO | e sW5_8boits

Ik b_reset oAk Eo M AXITh [
nc_cl mb_reset =
79’\ B N SOO_ARESETN E€[B o
ext_reset_in bus_struct_reset[0:0] M00_ACLK [y MO1_AXIdh Homn AXI GPIO
Qaux_reset_in peripheral_reset[0:0] I“IW_ARESEI‘N leds
=—mb_debug_sys_rst interconnect_aresetn[0:0] — . as
MO1_ACLK “|dhs_ax

dem_locked

periphera_aresetn[ﬂ:mr

GPLO s | ") led5_8bits

MO1_ARESETN

is_axi_aclk

Processor System Reset _axi_aresetn

AXI Interconnect
AXI GPIO

processing_system7_0

M_AXI_GPO_ACLK ZYNQ‘

Gr1o_ods || [btn
DR ||} { DDR
Fixep_to < || { > FIXED_IO

M_AXI_GPO fa [2 et

FCLK_CLKO
FCLK_RESET0_N

ZYNQ7 Processing System

Figure 11. Completed design

2-7. Verify that the addresses are assigned to the two GPIO instances and
validate the design for no errors.
2-7-1. Select the Address Editor tab and see that the addresses are assigned to the two GPIO
instances. They should look like as follows.
Z= Diagram X | @ Address Editor X
A cell Slave Interface Base Mame Offset Address Range High Address
= =+{F processing_system?7_0
B2 BB Data (32 address bits : 0x40000000 [1G J)
= switches S_AxI Reg 0x4120_0000 64K v 0x4120 FFFF
- “mm |ads 5 _AXI Reg 0x4121_0000 64K - 0x4121 FFFF
Figure 12. Assigned addresses
The addresses should be in the 0x40000000 to Oxbfffffff range as the instances are connected to
M_AXI_GPO port of the processing system instance.
2-7-2. Select Tools > Validate Design to run the design rule checker and to make sure that there are
no design errors.
2-7-3. Select File > Save Block Design to save the design.
2-8. Add the provided Xilinx Design Constraints file (lab1l_<board>.xdc), which
contains the BTN’s location constraint, to the project.
2-8-1. Board awareness is not being used for the EMIO button, so the pin constraints need to be
provided for this interface. Click the Add Sources button in the Flow Navigator.
2-8-2. Select Add or create constraints, and click Next.
2-8-3. The Add or Create constraints window will appear. Click the Green Plus then Add Files...
and browse to the {sources}\lab1l directory.
: — . . -
Zyng 1-10 www.xilinx.com/university $‘ XILINX;

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Building a Complete Embedded System

2-8-4.

2-8-5.

Select the labl_zedboard.xdc or labl Zybo.xdc file, and click OK.

Click Copy constraints files into project, and click Finish to add the constraint file to the
project.

Generate the Bitstream Step 3

3-1.

3-1-1.

3-1-2.

3-1-3.

3-1-4.

Create the top-level HDL of the embedded system. Add the provided
constraints file and generate the bitstream.

In Vivado, select the Sources tab, expand the Design Sources, right-click the system.bd and
select Create HDL Wrapper...

Block Design - system

I
=

Sources — O

L\E{_ﬁ aO#II =E

=I-{= Design Sources (1]

;i om0)
+ | Constraints (1]
== Simulation Sources (1)

- sim_1 (1]

Figure 13. Selecting the system design to create the wrapper file

Click OK when prompted to allow Vivado to automatically manage this file.

The wrapper file, system_wrapper.v, is generated and added to the hierarchy. The wrapper file will be
displayed in the Auxiliary pane.

Block Design - system

I
X

Sources — O
C’\ E {_3_3] y 04}7 f E

—H Design Sources (1
. |5-@a system_wrapper (system_wrapper.y) (1
=, system_i - system {system.bd) (1]
: +-@ system (system.v) (&)
+ | Constraints (1]
== Simulation Sources (1]
HEsim_l (1

Hierarchy | IP Sources | Libraries | Compile Order

£t Sources | H Design Signals | @ Board

Figure 14. Design Hierarchy View

Click on the Generate Bitstream in the Flow Navigator pane to synthesize and implement the
design, and generate the bitstream. (Click Save and Yes if prompted.)

When the bitstream generation is complete, click Cancel.

£ XILINX www.xilinx.com/university Zynq 1-11

Xup@xilinx.com
© copyright 2016 Xilinx

Building a Complete Embedded System Lab Workbook

Export the Design to the SDK Step 4

4-1.

4-1-1.

4-1-2.

Exporting the design and launch SDK

Export the hardware configuration by clicking File > Export > Export Hardware... Tick the box to
include the bitstream and click OK.

¢ Export Hardware S

Export hardware platform for software
development tools. ‘

Export to: | &0 <Local to Project=> -

[0K] | Cancel

b

Figure 15. Exporting the hardware

Launch SDK by clicking File > Launch SDK and click OK

(Launching SDK from Vivado will automatically load the SDK workspace associated with the
current project. If launching SDK standalone, the workspace will need to be selected.)

Generate an Application in SDK Step 5

5-1.

5-1-1.

Generate a board support package project with default settings and default
software project name.

SDK should open and automatically create a hardware platform project based on the

configuration exported from Vivado. A board support package and software application will be
created and associated with this hardware platform.

Select File > New > Board Support Package

Zyng 1-12 www.xilinx.com/university i' Xl LINX

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Building a Complete Embedded System

Mew Board Support Package Project BT
Xilinx Board Support Package Project %

Create a Board Support Package.

Project name: standalone_bsp_0

Use default location
Chxup\adv_embedded\2016_1_zyng_labs\labl\labl.sdk\standalone_bsp_0 Browse...

default ~

Target Hardware

Hardware Platform: lsystem_wrapper_hw _platform_0 vl lNewl
CPU: lps?_cortexag_[] T l
32-bit *

Board Support Package OS

Standalone is a simple, low-level software layer. It provides access to basic processor
freertos823_xilinx features such as caches, interrupts and exceptions as well as the basic features of a hosted

environment, such as standard input and output, profiling, abort and exit.

'f?)‘ Finish l ’ Cancel

Figure 16. Create BSP

5-1-2. Click Finish with the default settings selected (using the Standalone operating system).

This will open the Software Platform Settings form showing the OS and libraries selections.

5-1-3. Click OK to accept the default settings as we want to create a standalone_bsp_0 software
platform project without any additional libraries.

5-1-4. The library generator will run in the background and will create the xparameters.h file in the
labl.sdk\standalone_bsp O\ps7_cortexa9 O\include directory.

5-2. Create an empty application project, named labl, and import the provided
labl.c file.

5-2-1. Select File > New > Application Project.
5-2-2. In the Project Name field, enter lab1 as the project name.

5-2-3. Select the Use existing option in the Board Support Package field and then click Next.

i www.xilinx.com/university Zyng 1-13
i‘ XI LINXJ‘ Xup@xilinx.com

© copyright 2016 Xilinx

Building a Complete Embedded System Lab Workbook

B New Project [(Sl &I
Application Project ﬂ- ﬁ
Create a managed make application project.

Project name: |labl

Use default location
Chxuphadv_embedded\2016_1 zyng_labs\labl\labl.sdk\labl Browse...

default =

0S Platform: [standalone vl

Target Hardware

Hardware Platform: lsystem_wrapper_hw_platform_[) v] [New...l
Processor: ’ps?_cortexaQ_D hd]
Target Software
Language: @C @C++

32-bit ~

Board Support Package: (C) Create New | labl_bsp

(@) Use existing |standalone_bsp_0 -

kel < Back Next = l l Finish l l Cancel

|

Figure 17. Create a Blank Application Project

5-2-4. Select the Empty Application template and click Finish.

The lab1l project will be created in the Project Explorer window of SDK.
5-2-5. Selectlabl > src directory in the project view, right-click, and select Import.
5-2-6. Expand the General category and double-click on File System.
5-2-7. Browse to the {sources}\lab1 folder.

5-2-8. Select the labl.c source file and click Finish.

A snippet of the source code is shown in the following figure. Note the greyed out code will be
used in Lab5. The code reads from the switches, and writes to the LEDs. The BTN is read, and
written to the LED.

Zyng 1-14 www.xilinx.com/university i
Xup@xilinx.com i‘ XILINX‘*‘
© copyright 2016 Xilinx

Lab Workbook Building a Complete Embedded System

#include "xparameters.h"
#include "xgpio.h"
#include "xgpiops.h"
#ifdef MULTIBOOT
#include "xdevcfg.h”
#endif

static XGpioPs psGpioInstancePtr;
static int iPinNumber = 7; /*Led LD9 on ZedBoard and LD4 on Zybo is connected to MIO pin 7%/

1

int main (void)

{

XGpio sw, led;

int i, pshb_check, sw_check;
XGpioPs_Config*GpioConfigPtr;
int xStatus;

int iPinNumberEMIO = 54;

u32 uPinDirectionEMIO = @x@;
u32 uPinDirection = @x1;

xil printf("-- Start of the Program --\r\n");

// BXI GPIO switches Intialization
XGpio Initialize(&sw, XPAR_SWITCHES DEVICE ID);

// BAXI GPIO leds Intialization
XGpio_Initialize(&led, XPAR_LEDS_DEVICE_ID);

/{ PS GPIO Intialization
GpioConfigPtr = XGpioPs_lLookupConfig(XPAR_PS7_GPIO_@_DEVICE_ID);
if(GpioConfigPtr == NULL)
return XST_FAILURE;
xStatus = XGpioPs_CfgInitialize(&psGpioInstancePtr,
GpioConfigPtr,
GpioConfigPtr->BaseAddr);
if(XST_SUCCESS != xStatus)
print(" PS GPIO INIT FAILED \n\r");
//PS GPIO pin setting to Output
XGpioPs_SetDirectionPin(&psGpiolnstancePtr, iPinNumber,uPinDirection);
XGpioPs_SetOutputEnablePin(&psGpiolnstancePtr, iPinNumber,1);
//EMIO PIN Setting to Input port
XGpioPs_SetDirectionPin(&psGpioInstancePtr,
iPinNumberEMIO, uPinDirectionEMIO);
XGpioPs_SetOutputEnablePin(&psGpioInstancePtr, iPinNumberEMIO,Q);

xil_printf("-- Press BTNR (Zedboard) or BTN3 (Zybo) to see the LED light --\r\n");
xil_printf("-- Change slide switches to see corresponding output on LEDs --\r\n");
xil_printf("-- Set slide switches to @x@F to exit the program --\r\n");

while (1}
{
sw_check = Xeplo DiscreteRead(Ssw, 1);
¥opio Discretedrite(fled, 1, sw check);
pshb_check - XGpicPs_ReadPin(&psGpicInstancePtr,iPinNumberEMIO);
XopioPs_WritePin(&psGpiolnstancePtr, iPinNumber,pshb_check);
if{{sw_check & @xBf)==0x0F)
break;
for (i=8; 1<¢9999999; iesd); [/ delay loop
}
xil_printf("-- End of Program --\r\n");
#ifdef MULTIBOOT
[/ Driver Instantiations
XDcfg XDcfg_@;
u32 MultiBootReg = @;
#define PS_RST_CTRL_REG (XPS_SYS _CTRL_BASEADDR + @x208)
#define PS_RST_MASK @xl /* PS5 software reset */
#define SLCR_UNLOCK_OFFSET 8xBE

// Initialize Device Configuration Interface
¥Dcfp Confip *Confip = XDcfp LookupConfig(XPAR XDCFG @ DEVICE 1D);
XDcfg_CfgInitialize(&XDcfg @, Config, Config->BaseAddr);

MultiBootReg = @; // Once done, boot the master imape stored at Gxfcdd Boo0
Xil Out32(@xFBOORG02 + SLCR_UNLOCK_OFFSET, @xDF@DDF@D); // unlock SLCR
XDcfg_WriteReg(XDcfg_8.Config.BaseAddr, XDCFG_MULTIBOOT_ADDR_OFFSET, MultiBootReg); // write to multiboot reg
// synchronize
—asm__(
"dsbinit™
"ish"

)i
Xil_Out32(PS_RST_CTRL_REG, PS_RST_MASK);
#endif
return @;

}

Figure 18. Snippet of Source Code

iv XI LINX www.xilinx.com/university

Xup@xilinx.com
© copyright 2016 Xilinx

Zyng 1-15

Building a Complete Embedded System Lab Workbook

Test in Hardware Step 8

6-1.

Connect and power up the board. Establish serial communications using
the SDK’s Terminal tab. Verify the design functionality.

6-1-1. Connect and power up the board.

6-1-2. Selectthe & Terminal {3 |f it is not visible then select Window > Show view > Other >
Terminal > Terminal.

6-1-3. Clickon *' and select appropriate COM port (depending on your computer), and configure the
terminal with the parameters as shown below.

m Terminal Settings &J
View Settings:
View Title: Terminal 1
Encoding: [S0-8859-1 -
Connection Type:
Serial vI
Settings:
Port: lcomg -
Baud Rate: |115200 -
Data Bits: lS v]
Stop Bits: ll ']
Parity: lNone v]
Flow Control: lNDne ']
Timeout (sec): 5
OK] l Cancel

Figure 19. SDK Terminal Settings

6-1-4. Select Xilinx Tools > Program FPGA and then click the Program button.

6-1-5. Select the lab1l project in the Project Explorer, right-click and select Run As > Launch on
Hardware(System Debugger) to download the application, execute ps7_init, and execute
labl.elf.

6-1-6. You should see the following output on the Terminal console.

: — . . -

Zyng 1-16 www.xilinx.com/university iA XILINX;;

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Building a Complete Embedded System

-- Start of the Program --

-- Press BTMNR (Zedboard) or BTN3 (Zybo) to see the LED light --
-- Change slide switches to see corresponding output on LEDs --
-- Set slide switches to BxBF to exit the program --

Figure 20 SDK Terminal Output
6-1-7. Press the BTNR (Zedboard) or BTN3 (Zybo) and see the LED light up.
6-1-8. Change the slide switches and see the corresponding LED turning ON and OFF.

6-1-9. Set the four (right-most for ZedBoard, all for Zybo) slide switches to the ON position to exit the
program.

6-1-10. Close SDK and Vivado programs by selecting File > Exit in each program.

6-1-11. Turn OFF the power to the board.

Conclusion

In this lab, you created an ARM Cortex-A9 processor based embedded system using the Zyng device for
the Zybo/ZedBoard. You learned how to route the GPIO connected to the PS section to the FPGA (PL)
pin using the EMIO. You instantiated the Xilinx standard GPIO IP to provide input and output functionality.
You also saw that whenever the dedicated pins are not used, you need to provide pin constraints through
the user constraints file (xdc).

You created the project in Vivado, created the hardware system using IPI, implemented the design in
Vivado, exported the generated bitstream to the SDK, created a software application in the SDK, and
verified the functionality in hardware after programming the PL section and running the application from
the DDR memory.

i www.xilinx.com/university Zyng 1-17
t‘ Xl LINX Xup@xilinx.com

© copyright 2016 Xilinx

