Lab Workbook Profiling and Performance Tuning

Profiling and Performance Tuning

Introduction

This lab guides you through the process of profiling an application and analyzing the output. The
application is then accelerated in hardware and profiled again to analyze the performance improvement.

Objectives

After completing this lab, you will be able to:

e Setup the board support package (BSP) for profiling an application

e Set the necessary compiler directive on an application to enable profiling
e Setup the profiling parameters

o Profile an application and analyze the output

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

Design Description

In this lab, you will design an embedded system consists of ARM Cortex-A9 processor SoC and two
instances of the provided FIR filter IP. The following diagram represents the completed design (Figure
1).

AXI
ad - FIR
Interconnect

Block AXI4-Lite
] ; FIR ‘

PS

Figure 1. Completed Design

i www.xilinx.com/university Zynq 6-1
i‘ XI LINX“’ xup@xilinx.com

© copyright 2016 Xilinx

Profiling and Performance Tuning Lab Workbook

General Flow for this Lab

Step 1. Step 2: Step 3: Step 4.
Create a Create the IAdd FIR Core| Generate the

Vivado Hardware to the System |:> Bitstream |:>
Project System using

IP Integrator

Step 5: Step 6: Step 7:
Export the Create the Run the

Design to the Application Application
SDK and Profile

In the instructions below;
{sources} refers to: C:\xup\adv_embedded\2016_1 zyng_sources
{labs} refers to : C:\xup\ adv_embedded \2016_1_zynq_labs

Board support for the Zybo is not included in Vivado 2016.1 by default. The relevant zip file need to be
extracted and saved to: {Vivado installationf\data\boards\board_files\.

These files can be downloaded either from the Digilent, Inc. webpage
(https://reference.digilentinc.com/vivado/boardfiles2015) or the XUP webpage
(http://www.xilinx.com/support/university/vivado/vivado-workshops/Vivado-adv-embedded-design-
zyng.html) where this material is also hosted.

Create a Vivado Project Step 1

1-1. Launch Vivado and create an empty project, called lab6, targeting the Zybo
or ZedBoard Zynq Evaluation and Development Kit and using the Verilog
language.

1-1-1. Open Vivado and create a new project new project call lab6 in the {labs} directory.

1-1-2. Select the RTL Project option in the Project Type form, and click Next.

1-1-3. Select Verilog as the Target Language in the Add Sources form, and click Next.

1-1-4. Click Next two times.

1-1-5. In the Default Part form, click on Boards and select either the Zybo or Zedboard and click Next.

1-1-6. Click Finish to create an empty Vivado project.

Zyng 6-2 www.xilinx.com/university i
Xup@xilinx.com i; Xl LINX;

© copyright 2016 Xilinx

Lab Workbook Profiling and Performance Tuning

1-2. Set the project settings to include provided fir_top IP

1-2-1. Click Project Settings in the Flow Navigator pane.

1-2-2. Select IP in the left pane of the Project Settings form.

1-2-3. Click on the Green Plus button, browse to {sources}\lab6\ and click Select.

1-2-4. Click OK.
The directory will be scanned and it will report one IP was detected.

Creating the Hardware System Using IP Integrator Step 2

2-1. Create a block design in the Vivado project using IP Integrator to generate
the Zyng ARM Cortex-A9 processor based hardware system.

2-1-1. Inthe Flow Navigator, click Create Block Design under IP Integrator.

2-1-2. Name the block system and click OK.

2-1-3. Click on Add IP in the message at the top of the Diagram panel.

2-1-4. Once the IP Catalog is open, type zy into the Search bar, and double click on ZYNQ7
Processing System entry to add it to the design.

2-1-5. Click Run Block Automation, and click OK to accept the default settings.

2-1-6. Double click on the Zynqg block to open the Customization window for the Zynq processing
system.
A block diagram of the Zynqg should now be open, showing various configurable blocks of the
Processing System.

2-2. Configure the I/O Peripherals block to only have UART 1 support. Deselect
the TTC device.

2-2-1. Click on the MIO Configuration panel to open its configuration form.

2-2-2. Expand the I/O Peripherals on the right.

2-2-3. Uncheck ENET 0, USB 0, and SD 0, GPIO (GPIO MIO), leaving UART 1 selected.

2-2-4. Inthe MIO Configuration panel, expand the Application Processing Unit and uncheck the
Timer O.

2-2-5. Click OK.

£ XILINX www.xilinx.com/university Zynq 6-3

Xup@xilinx.com
© copyright 2016 Xilinx

Profiling and Performance Tuning Lab Workbook
processing_system?7_0
DDRom "—D DDR
FIXED_IO R "—D FIXED_IO
M_AXI_GPO_ACLK ZYNQ M_AXI_GPO lk '
FCLK_CLKO =
FCLK_RESETO_N ==
ZYNQY? Processing System
Figure 2. ZYNQ Processing System configured block

Add FIR Core to the System Step 3

3-1. Instantiate the provided FIR core twice naming the instances as fir_left and
fir_right. Validate the design.

3-1-1. Click the Add IP icon ﬁ and search for fir in the catalog.

3-1-2. Double-click on the fir_top_v1 0 to add the IP instance to the system

3-1-3. Select the fir_top_1 instance and change its name to fir_left in its property form.

3-1-4. Click the Add IP icon ﬁ and search for fir in the catalog.

3-1-5. Double-click on the fir_top_v1 0 to add the IP instance to the system

3-1-6. Select the fir_top_1 instance and change its name to fir_right in its property form.

3-1-7. Click on Run Connection Automation, and select All Automation to select fir_left and fir_right.

3-1-8. Click on s_axi_fir_io for both fir_left and fir_right and confirm that they will be automatically
connected to the Zynq M_AXI_GPO port

3-1-9. Click OK to connect the two blocks to the M_AXI_GPO interface.

The design should look similar to shown below:

Zyng 6-4

www.xilinx.com/university
Xup@xilinx.com
© copyright 2016 Xilinx

& XILINX.

Lab Workbook Profiling and Performance Tuning

processing_system?7_0

DR ||} {_> DDR

FIXED_104 |} [FIXED_IO
N = 2 : N
M_AXI_GPD_ACLK ZYNQ M_AXI_GPO < [processing_system?_0_axi_periph
) FCLKC_CLKD b
FCLK_RESETO_N b | 1 500_AXI
- ACLK
ZYNQ7 Processing System RESETN fir_right
so0_Aclk HE | % J
MOO_AXT ol | : e .| L5, 2] fir [0
rst_processing_system7_0_100M —S00_ARESETN [1] DMal AT i 5 e SR
; -
MOOLACLK mim i H
slowest_sync_clk mb_reset s e —=aclk
ext_reset in bus_struct_reset[0:0] s "“‘Jl_ACLK i _r—" .
M op vl 0 (Pre-Productic
=alx_reset_in peripheral_reset[0:0] s = fir_top_v1_0 (Pre-Production)
MO1_ARESETN fir_left
—mb_debug sys_rst interconnect_aresetn[0:0] =
=dcm_locked peripheral_aresetn[0:0]m AT ak5 axi fir io
y L nterconnec et Imerrupt-
Processor System Reset acik

——
fir_top_v1 0 (Pre-Production)

Figure 3. The completed design

It is not necessary to connect the interrupt signals of the fir blocks.

3-1-10. Select Tools > Validate Design to run the design rule checker and to make sure that there are
no design errors.

Generate the Bitstream Step 4

4-1. Create the top-level HDL of the embedded system, and generate the
bitstream..

4-1-1. In Vivado, select the Sources tab, expand the Design Sources, right-click the system.bd and
select Create HDL Wrapper and click OK.

4-1-2. Click on the Generate Bitstream in the Flow Navigator pane to synthesize and implement the
design, and generate the bitstream.

4-1-3. Click Save to save the design and Yes to run the necessary processes.

4-1-4. When the bitstream generation process has completed click Cancel.

Export the Design to the SDK Step 5

5-1. Export the design to the SDK, create the software BSP using the
standalone operating system and enable the profiling options.

5-1-1. Export the hardware configuration by clicking File > Export > Export Hardware...
5-1-2. Tick the box to Include Bitstream, and click OK

5-1-3. Launch SDK by clicking File > Launch SDK and click OK

i www.xilinx.com/university Zynq 6-5
f‘ XI LINX Xup@xilinx.com

© copyright 2016 Xilinx

Profiling and Performance Tuning Lab Workbook

5-1-4. In SDK, select File > New > Board Support Package.

5-1-5. Notice Standalone_bsp_0 in the Project name field and click Finish with default settings.

A Board Support Package Settings window will appear.

5-1-6. Select the Overview > standalone entry in the left pane, click on the drop-down arrow of the
enable_sw_intrusive_profiling Value field and select true.

m Board Support Package Settings

-
Board Support Package Settings
3

Control various settings of your Board Support Package.

4 Qverview i 3
Configuration for OS: standalone
standalone
4 drivers MName Value Default Type Description
ps7_cortexa9_0 stdin ps7_uart_1 none peripheral stdin peripheral
stdout ps/_uart 1 none peripheral stdout peripheral
false false boolean Enable MicroBlaze Exce}
» enable_sw_intrusive_profiling m - false boolean Enable S/W Intrusive Prc

Figure 4. Enable profiling in the board support package

5-1-7. Select the Overview > drivers > cpu_cortexa9 and add —pg in the extra_compiler_flags Value

field.
4 Qverview 5 i
Configuration for OS: ps7_cortexa9_0
standalone
4 drivers Name Value Default
ps7_cortexad 0 archiver arm-none-eabi-ar arm-none-eabi-ar
compiler arm-none-eabi-gcc arm-none-eabi-gcc
compiler_flags -02 ¢

extra_compiler_flags -mcpu=cortex-a9 -mfpu=vfpv3 -mfloat-abi=hard —nos‘[ar‘tfiles -mcpu=cortex-a9 -..

Figure 5. Adding profiling switch

5-1-8. Click OK to accept the settings and create the BSP.

Create the Application Step 6

6-1. Create the lab6 application using the provided lab6.c, fir.c, fir.h,
fir_coef.dat, and xfir_fir_io.h files.

6-1-1. Select File > New > Application Project.

6-1-2. Enter lab6 as the project name, select the Use existing standalone_bsp_0 option, and click
Next.

6-1-3. Select Empty Application in the Available Templates pane and click Finish.

6-1-4. In the lab6 project, right click on the src directory and select Import.

Zyng 6-6 www.xilinx.com/university i
Xup@xilinx.com i‘. XI LINX;

© copyright 2016 Xilinx

Lab Workbook Profiling and Performance Tuning

6-1-5. Expand the General folder and double-click on File system, and browse to the {sources}\lab6
directory.
6-1-6. Select fir_coef.dat, fir.c, fir.h, lab6.c, and xfir_fir_io.h, and click Finish.
The program should compile successfully and generate the lab6.elf file.
6-1-7. Open the lab6.c file and scroll to the main function at the bottom. Notice the following code:
#ifdef SW PROFILE
fir_software(&output,signal);
#else
filter hw_accel input{&output,signal);
#endif
The function fir_software() function is a software implementation of the FIR function. The
filter_hw_accel_input() function offloads the FIR function to the two FIR blocks that have been
implemented in the PL.
Run the Application and Profile Step 7
7-1. Place the board into the JTAG boot up mode. Program the PL section and
run the application using the user defined SW_PROFILE symbol.
7-1-1. Place the board in the JTAG boot up mode.
7-1-2. Power ON the board.
7-1-3. Select Xilinx Tools > Program FPGA and click on Program.
7-1-4. Right click on the lab6 directory, and select C/C++ Build Settings.
7-1-5. Under the ARM v7 gcc compiler group, select the Symbols sub-group, click on the] button to
open the value entry form, enter SW_PROFILE, and click OK.
This will allow us to profile the software loop of the FIR application.
B Tool Settings |.3" Build Stepsl Build Artifactl Binary Parsersl @ Error Parsers|
4 B ARM v7 gcc assembler Defined symbols (-D) HD &
(2 General SW_PROFILE
4 % ARM v7 gcc compiler
Warnings
Figure 6. Add user-defined symbol
7-1-6. Under the ARM v7 gcc compiler group, select the Profiling sub-group, then check the Enable

Profiling box, and click OK.

i' XI LINX www.xilinx.com/university Zynq 6-7

Xup@xilinx.com
© copyright 2016 Xilinx

Profiling and Performance Tuning

Lab Workbook

7-1-7.

7-1-8.

7-1-9.

7-1-10.

7-2.

7-2-1.

7-2-2.

7-2-3.

¥ Tool Settings |.3°‘ Build Stepsl Build Artifactl Binary Parsers | @ Error Parsers

4 By ARM v7 gce assembler [Z)Enable Profiling (-pg)
General

4 &% ARM v7 gcc compiler
% Symbols
(2 Warnings
(& Optimization
(% Debugging

& Directories

Figure 7. Compiler setting for enabling profiling

From the menu bar, Select Run > Run Configurations... and double click on Xilinx C/C++
application (System Debugger) to create a new configuration.

Click on the newly created lab6 Debug configuration, and select the Application tab.

Click on the Enable Profiling (gprof) check box, enter 100000 (100 kHz) in the Sampling
Frequency field, enter 0x10000000 in the scratch memory address field, and click Apply.

- =
EIEE Name: lab6 Debug

type filter text @ Target Setup & Arguments| B8 Environment| 5 Symbol Files| B~ Source| & Path Map|] Common

A Performance Analysis e Download application

|15 Target Communication Framework ps7_cortexa9_0

. Xilink C/C++ application (GDB) ps7_cortexad 1 T P -
& Xilinx C/C++ application (System Debugg roject Mame: 12 __rowse.”

4 & Xilinx C/C++ application (System Debugg

Browse...

I

106 Deb Application: Debug\labé.elf Search... ”
% lab6 Debug

[] This is a self-relocating application

Reset processor
D Stop at program entry

Profiling Options
Enable Profiling {(gprof)

Sampling Frequency (Hz): 100000

Scratch memory address to collect profile data: | 0x10000000

Figure 8. Profiling options

Click the Run button to download the application and execute it.

The program will run.

Analyze the results.

When execution is completed, the Gmon File Viewer dialog box will appear showing lab6.elf as
the corresponding binary file. Click OK.

Click on the Sort samples per function button (|) 33 | P).

Click in the %Time column to sort in the descending order.

Note that the fir_software routine is called 60 times, 23 samples were taken during the profiling,
and on an average of 3.833 (ZedBoard) or 4.000 (Zybo) microseconds were spent per call.

Zyng 6-8 www.xilinx.com/university i' XI LINX

Xup@xilinx.com
© copyright 2016 Xilinx

1

Lab Workbook Profiling and Performance Tuning

] SDK Log & gprof & AERSadE|«wBEa @ &= o0

gmon file: Chxuphadv_embedded\2016_1_zyng_labs\labb\lab6.sdk\lab6\Debugigmon.out
program file: C/xup/adv_embedded/2016_1_zyng_labs/lab6/labb.sdk/labb/Debug/labb.elf
16 bytes per bucket, each sample counts as 10.000us

type filter text

Mame (location) Samples Calls Time/Call %T

4 Summary 24 100.0%
|- fir_software 23 60 3.833us 9583% |
> mcount 1 4.17%
XScuGic_Devicelnitialize 0 1 Ons 0.0%
XScuGic_RegisterHandler] 1 Ons 0.0%
cortexad init 0 0 0.0%
main 0 0 0.0%

Figure 9. Sorting results

7-2-4. Go back to the Run Configuration, and change the sampling frequency to 1000000 (1 MHz) and
profile the application again.

7-2-5. When execution is completed, click OK and the gprof viewer will be updated.

7-2-6. Invoke gprof, select the Sorts samples per function output, and sort the %Time column.

Notice that the output has better resolution and reports more functions and more samples per
function calls. Note that the number of calls to the fir_software function has not changed but the
number of samples taken increased, and the average time spent per call is 6.000 (5.716 on Zybo)
microseconds in the figure below.

.
D |

E]lSDK Log & gprof 2 B @ ud B | 2B o2

gmon file: Ch\xup\adv_embedded\2016_1_zed_labs\lab6\labt.sdk\lab6\Debugigmon.out
program file: C/xup/adv_embedded/2016_1_zed_labs/lab6/labb.sdk/labb/Debug/labb.elf
16 bytes per bucket, each sample counts as 1.000us

type filter text

MName (location) Samples Calls Time/Call I3‘£+Tin’1‘e
4 Summary 365 100.0%

| fir_software 360 60 6.000us 98.63% |

> Mmemcpy 2 0.55%

» register_tm_clones 2 0.55%

» __do_global_dtors_aux 1 0.27%
XScuGic_Devicelnitialize] Ons 0.0%
XScuGic_RegisterHandler 0 Ons 0.0%
cortexa%_init] 0.0%

» filter_hw_accel_input 0 0.0%

> main 0 0 0.0%

Figure 10. Profiled results with 1 MHz sampling frequency

At this stage, the designer of the system would decide if the FIR function should be ported to
hardware.

i www.xilinx.com/university Zynq 6-9
i‘ XI LINX“‘ Xup@xilinx.com

© copyright 2016 Xilinx

Profiling and Performance Tuning Lab Workbook

7-3. Profile the application using the hardware FIR filter IP by removing the user
defined SW_PROFILE symbol.

7-3-1. Select the lab6 application, right-click, and select C/C++ Build Settings.

7-3-2. Under the ARM v7 gcc compiler group, select the Symbols sub-group, select SW_PROFILE,
and delete it by clicking on the delete button.

This will allow us to profile the hardware IP of the FIR application.

¥ Tool Settings |.3°‘ Build Stepsl Build Artifat:tl Binary Parsersl @ Errar Parser5|

4 B ARM v7 gcc assembler Defined symbols (-D) @ =]

(2 General SW_PROFILE

4 &% ARM v7 gcc compiler

& Warnings

Figure 11. Deleting the user-defined symbol
7-3-3. Click Apply, and then click OK

7-3-4. Select Run > Run Configurations and click the Run button to profile the application again and
click OK when profiling completes.

Notice that the output now shows filter_hw_accel_input function call instead of the fir_software
function call. Note that the average time spent per call is much less as the filtering is done in the
hardware instead of the software.

7-3-5. Close the SDK and Vivado programs by selecting File > Exit in each program.

7-3-6. Turn OFF the power on the board.

Conclusion

This lab led you through enabling the software BSP and the application settings for the profiling. You
went through creating the hardware which included the hardware IP and was later profiled in the
application. You analyzed the profiled application output.

Zyng 6-10 www.xilinx.com/university i
Xup@xilinx.com iA XI LINX@

© copyright 2016 Xilinx

