
Lab Workbook Debugging Using Hardware Analyzer

 www.xilinx.com/university Zynq 2-1
 xup@xilinx.com
 © copyright 2016 Xilinx

Debugging Using Hardware Analyzer

Introduction

Software and hardware interact with each other in an embedded system. The Xilinx SDK includes both
GNU and the Xilinx Microprocessor Debugger (XMD) as software debugging tools. The hardware
analyzer tool has different types of cores that allow hardware debugging by providing access to internal
signals without requiring the signals to be connected to package pins. These hardware debug cores may
reside in the programmable logic (PL) portion of the device and can be configured with several modes
that can monitor signals within the design. In this lab you will be introduced to the various debugging
cores.

Objectives

After completing this lab, you will be able to:
 Add a VIO core in the design
 Use a VIO core to inject stimulus to the design and monitor the response
 Mark nets as debug so AXI transactions can be monitored
 Add an ILA core in Vivado
 Perform hardware debugging using the hardware analyzer
 Perform software debugging using the SDK

Procedure

This lab is separated into steps that consist of general overview statements providing information on the
subsequent detailed instructions. Follow the (step-by-step) detailed instructions to progress through the
lab.

Design Description

In this lab, you will add a custom IP core that performs a simple addition function. The IP has been
developed using the IP Packager capability of Vivado and is provided as part of the lab source files. The
core has additional ports so that stimuli can be brought in and the response can be monitored. This way
the core can be tested independently without using the PS or software application. The following block
diagram represents the completed design (Figure 1).

Figure 1. Completed Design

Debugging Using Hardware Analyzer Lab Workbook

Zynq 2-2 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

General Flow for this Lab

In the instructions below;
{sources} refers to: C:\xup\adv_embedded\2016_1_zynq_sources
{labs} refers to : C:\xup\ adv_embedded \2016_1_zynq_labs

Board support for the Zybo is not included in Vivado 2016.1 by default. The relevant zip file need to be
extracted and saved to: {Vivado installation}\data\boards\board_files\.

These files can be downloaded either from the Digilent, Inc. webpage
(https://reference.digilentinc.com/vivado/boardfiles2015) or the XUP webpage
(http://www.xilinx.com/support/university/vivado/vivado-workshops/Vivado-adv-embedded-design-
zynq.html) where this material is also hosted.

Open the Project Step 1

1-1. Open the Vivado program. Open the lab1 project you created in the
previous lab or use the lab1 project from the labsolution directory, and
save the project as lab2. Set Project Settings to point to the IP repository
provided in the sources directory.

1-1-1. Start Vivado if necessary and open either the lab1 project (lab1.xpr) you created in the previous
lab or the lab1 project in the labsolutions directory using the Open Project link in the Getting
Started page.

1-1-2. Select File > Save Project As … to open the Save Project As dialog box. Enter lab2 as the
project name. Make sure that the Create Project Subdirectory option is checked, the project
directory path is {labs} and click OK.

This will create the lab2 directory and save the project and associated directory with lab2 name.

1-1-3. Click Project Settings in the Flow Navigator pane.

1-1-4. Select IP in the left pane of the Project Settings form.

Step 1:

Open the
Vivado
Project

Step 2:

Add the
Custom IP

Step 3:

Add the
Hardware

Cores

Step 4:

Add Design
Constraints
and Mark

Debug

Step 5:

Generate
Bitstream

Step 6:

Generate an
Application in

SDK

Step 7:
Test and
Debug in
Hardware

Lab Workbook Debugging Using Hardware Analyzer

 www.xilinx.com/university Zynq 2-3
 xup@xilinx.com
 © copyright 2016 Xilinx

1-1-5. Click on the Green Plus button, browse to {sources}\lab2\math_ip and click Select.

The directory will be scanned and one IP will be detected and reported.

Figure 2. Specify IP Repository

1-1-6. Click OK twice to close the windows.

Add the Custom IP Step 2

2-1. Open the Block Design and add the custom IP to the system.

2-1-1. Click Open Block Design in the Flow Navigator pane, and select system.bd to open the block
diagram.

2-1-2. Click the Add IP icon and search for math in the catalog.

2-1-3. Double-click the math_ip_v1_0 to add an instance of the core to the design.

Debugging Using Hardware Analyzer Lab Workbook

Zynq 2-4 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

2-1-4. Click on Run Connection Automation, (ensure math_ip_0 and S_AXI are selected) and click
OK.

The Math IP consists of a hierarchical design with the lower-level module performing the addition.
The higher-level module includes the two slave registers.

Figure 3. Custom Core’s Main Functional Block

Add the ILA and VIO Cores Step 3

We want to connect the ILA core to the LED interface. Vivado prohibits connecting ILA cores to
interfaces. In order to monitor the LED output signals, we need to convert the LED interface to simple
output port.

3-1. Disable LEDs interface.

3-1-1. Double-click the leds instance to open its configuration form.

3-1-2. Click Clear Board Parameters and click OK to close the configuration form.

3-1-3. Expand the gpio interface of the leds instance to see the gpio_io_o port.

3-1-4. Delete the associated port, which will also disconnect the connection, by selecting it, right-clicking
on it and selecting Delete.

3-2. Make the gpio_io_o port of the leds instance external and rename it as leds.

3-2-1. Move the mouse close to the end of the gpio_io_o port, left-click to select (do not select the main
GPIO port), and then right click and select Make External.

Lab Workbook Debugging Using Hardware Analyzer

 www.xilinx.com/university Zynq 2-5
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 4. Select the gpio_io_o port

The port connector named gpio_io_o will be created and connected to the port.

3-2-2. Select the port gpio_io_o and change its name to leds by typing it in the properties form.

3-3. Enable cross triggering between the PL and PS

3-3-1. Double click on the Zynq block to open the configuration properties.

3-3-2. Click on PS-PL Configuration, and enable the PS-PL Cross Trigger interface.

3-3-3. Expand PS-PL Cross Trigger interface > Input Cross Trigger, and select CPU0 DBG REQ for
Cross Trigger Input 0.

3-3-4. Similarly, expand Output Cross Trigger, and select CPU0 DBG ACK for Cross Trigger Output 0
and click OK.

Figure 5. Enabling cross triggering in the Zynq processing system

Debugging Using Hardware Analyzer Lab Workbook

Zynq 2-6 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

3-4. Add the ILA core and connect it to the LED output port.

3-4-1. Click the Add IP icon and search for ila in the catalog.

3-4-2. Double-click on the ILA (Integrated Logic Analyzer) to add an instance of it. The ila_0 instance
will be added.

3-4-3. Double-click on the ila_0 instance.

3-4-4. Select Native as the Monitor type.

3-4-5. Enable Trigger Out Port, and Trigger In port.

3-4-6. Select the Probe Ports tab, and set the Probe Width of PROBE0 to 8 for the Zedboard and 4 for
the Zybo and click OK.

3-4-7. Using the drawing tool, connect the PROBE0 port of the ila_0 instance to the gpio_io_o port of
the leds instance.

3-4-8. Connect the CLK port of the ila_0 instance to the FCLK_CLK0 port of the Zynq subsystem.

3-4-9. Connect TRIGG_IN of the ILA to TRIGGER_OUT_0 of the Zynq processing system, and
TRIG_OUT of the ILA to the TRIGGER_IN_0.

3-5. Add the VIO core and connect it to the math_ip ports.

3-5-1. Click the Add IP icon and search for vio in the catalog.

3-5-2. Double-click on the VIO (Virtual Input/Output) to add an instance of it.

3-5-3. Double-click on the vio instance to open the configuration form.

3-5-4. In the General Options tab, leave the Input Probe Count set to 1 and set the Output Probe Count
to 3

3-5-5. Select the PROBE_IN Ports tab and set the PROBE_IN0 width to 9.

3-5-6. Select the PROBE_OUT Ports tab and set PROBE_OUT0 width to 1, PROBE_OUT1 width to 8,
and PROBE_OUT2 width to 8.

3-5-7. Click OK.

3-5-8. Connect the VIO ports to the math instance ports as follows:

PROBE_IN -> result
PROBE_OUT0 -> sel
PROBE_OUT1 -> ain_vio
PROBE_OUT2 -> bin_vio

Lab Workbook Debugging Using Hardware Analyzer

 www.xilinx.com/university Zynq 2-7
 xup@xilinx.com
 © copyright 2016 Xilinx

3-5-9. Connect the CLK port of the vio_0 to FCLK_CKL0 net.

3-5-10. The block diagram should look similar to shown below.

Figure 6. VIO added and connections made

3-6. Mark Debug the S_AXI connection between the AXI Interconnect and
math_0 instance. Validate the design.

3-6-1. Select the S_AXI connection between the AXI Interconnect and the math_ip_0 instance.

3-6-2. Right-click and select Mark Debug to monitor the AXI4Lite transactions.

Figure 7. Mark Debug on S_AXI interface

Debugging Using Hardware Analyzer Lab Workbook

Zynq 2-8 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

3-6-3. Select Tools > Validate Design to run the design rules checker.

3-6-4. Verify that there are no unmapped addresses shown in the Address Editor tab.

Add Design Constraints and Assign Nets for Debugging Step 4

4-1. Add the provided lab2_<board>.xdc from the sources\lab2 directory. Run
the synthesis.

4-1-1. Right click in the Sources panel, and select Add Sources.

4-1-2. Select Add or Create Constraints and click Next.

4-1-3. Click the Green Plus then Add Files, and browse to {sources}\lab2\ and select lab2_zybo.xdc
or lab2_zedboard.xdc depending on the board you are using.

4-1-4. Click OK and then click Finish.

4-1-5. Click Run Synthesis, and click OK, and Save (if prompted) to save the design and run the
synthesis process.

4-1-6. When the synthesis is completed, select the Open Synthesized Design option and click OK.

4-2. Assign nets for debugging.

4-2-1. The synthesized design will be opened in the Auxiliary pane and the Debug tab will be opened in
the Console pane.

If the Debug tab is not open then select Window > Debug.

Notice that the nets which can be debugged are grouped into the signals connected to the ila,
and vio, and Unassigned nets. The Unassigned nets are associated with the AXI interface that
was marked for debug.

Figure 8. The Debug tab

Lab Workbook Debugging Using Hardware Analyzer

 www.xilinx.com/university Zynq 2-9
 xup@xilinx.com
 © copyright 2016 Xilinx

4-2-2. Right-click on the Unassigned Debug Nets and select Set up Debug… and click Next.

The nets are listed. There are 146 nets to debug.

Figure 9. Nets to debug

4-2-3. Right click on the BRESP and RRSEP (which are driven by GND and marked in red as
undefined) and select Remove Nets.

4-2-4. Click Next, leave the default values for the ILA core, click Next, and then Finish.

Generate Bitstream Step 5

5-1. Generate the bitstream.

5-1-1. Click on the Generate Bitstream to run the implementation and bit generation processes.

5-1-2. Click Save to save the project (if prompted), OK to ignore the warning (if prompted), and Yes to
launch Implementation (if prompted).

5-1-3. When the bitstream generation process has completed successfully, click Cancel.

Debugging Using Hardware Analyzer Lab Workbook

Zynq 2-10 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Generate an Application in SDK Step 6

6-1. Export the implemented design and launch SDK.

6-1-1. Export the hardware configuration by clicking File > Export > Export Hardware…, click the box
to Include Bitstream

6-1-2. Click OK to export and Yes to overwrite the previous project created by lab1.

6-1-3. Launch SDK by clicking File > Launch SDK and click OK.

6-1-4. Right-click on the lab1 and standalone_bsp_0 and system_wrapper_hw_platfrom_0 projects
in the Project Explorer view and select close project.

6-2. Create an empty application project named lab2, and import the provided
lab2.c file.

6-2-1. Select File > New > Application Project.

6-2-2. In the Project Name field, enter lab2 as the project name, leave all other settings to their default’s
and click Next (a new BSP will be created).

6-2-3. Select the Empty Application template and click Finish.

The lab2 project will be created in the Project Explorer window of the SDK.

6-2-4. Select lab2 > src in the project view, right-click, and select Import.

6-2-5. Expand the General category and double-click on File System.

6-2-6. Browse to the {sources}\lab2 folder.

6-2-7. Select lab2.c and click Finish.

A snippet of the part of the source code is shown in the following figure. It shows that two
operands are written to the custom core, the result is read, and printed out. The write transaction
will be used as a trigger condition in the Vivado Logic Analyzer.

Lab Workbook Debugging Using Hardware Analyzer

 www.xilinx.com/university Zynq 2-11
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 10. Source Code snippet

6-2-8. Right click on lab2, and select Debug As > Debug Configurations

6-2-9. Double click on Xilinx C/C++ application (GDB) to create a new configuration (lab2 Debug will be
created), and in the Target Setup tab, Enable Cross-Triggering, click Apply, then Close

Figure 11. Enable cross triggering in the software environment

Test in Hardware Step 7

7-1. Connect and power up the board. Download the bitstream into the target
device. Start the debug session on lab2 project. Switch to the Debug
perspective and establish serial communication.

7-1-1. Connect and power up the board.

7-1-2. Select Xilinx Tools > Program FPGA and click Program

7-1-3. Select the lab2 project in Project Explorer, right-click and select Debug As > Launch on
Hardware (System Debugger) to download the application, execute ps7_init. (If prompted, click
Yes to switch to the Debug perspective.) The program execution starts and suspends at the
entry point.

Debugging Using Hardware Analyzer Lab Workbook

Zynq 2-12 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

7-1-4. Select the tab. If it is not visible then select Window > Show view > Terminal.

7-1-5. Click on and select the appropriate COM port (depending on your computer), and configure
it as you did it in Lab 1.

7-2. Start the hardware session from Vivado.

7-2-1. Switch to Vivado.

7-2-2. Click on Open Hardware Manager from the Program and Debug group of the Flow Navigator
pane to invoke the analyzer.

7-2-3. Click on the Open Target > Auto connect to establish the connection with the board.

7-2-4. Select Window > Debug Probes

The hardware session will open showing the Debug Probes tab in the Console view.

Figure 12. Debug probes

The hardware session status window also opens showing that the FPGA is programmed (we did it in
SDK), there are three cores, and the two ila cores are in the idle state.

Lab Workbook Debugging Using Hardware Analyzer

 www.xilinx.com/university Zynq 2-13
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 13 Hardware session status (for Zedboard - XC7Z020)

7-2-5. Select the XC7Z010/ XC7Z020, and click on the Run Trigger Immediate button to see the
signals in the waveform window.

Figure 14. Opening the waveform window

7-3. Setup trigger conditions to trigger on a write transaction (WSTRB) when
the desired data (WDATA_1) of 0x12 is written (For Zybo, WDATA_1 = 2,
and WDATA[27:4] = xx_xxx1). The transaction takes place when WVALID
and WREADY are equal to 1.

7-3-1. Click on the hw_ila_2 tab to select it. In the Debug Probes window, under hw_ila_2, drag and
drop the WDATA_1[7:0] signal to the ILA Basic Trigger setup window for ZedBoard. For Zybo,
use WDATA_1[3:0] and WDATA[27:4].

7-3-2. Change the value from xx to 12 (HEX) (the value written to the math_0 instance at line 51 of the
program). For Zybo set WDATA_1=2 and WDATA[27:4]=xx_xxx1.

7-3-3. Add WSTRB[3:0], WREADY and WVALID signals to the ILA Basic Trigger setup window.

7-3-4. Change the radix to binary for WSTRB, and change the value from xxxx to xxx1

7-3-5. Change the value of WVALID and WREADY to 1.

7-3-6. Set the trigger position of the hw_ila_2 to 512.

Debugging Using Hardware Analyzer Lab Workbook

Zynq 2-14 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 15. Setting up the ILA (ZedBoard)

Figure 16. Setting up the ILA (Zybo)

7-3-7. Similarly, set the trigger position of the hw_ila_1 to 512.

7-3-8. Select hw_ila_2 in the Hardware window and click on the Run Trigger () button and
observe that the hw_ila_2 core is armed and showing the status as Waiting For Trigger.

Figure 17. Hardware analyzer running and in capture mode

7-3-9. Switch to SDK.

7-3-10. Near line 54 (right click in the margin and select Show Line Numbers if necessary), double click
on the left border on the line where xil_printf statement is (before the while (1) statement) is
defined in the lab2.c window to set a breakpoint.

Lab Workbook Debugging Using Hardware Analyzer

 www.xilinx.com/university Zynq 2-15
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 18. Setting a breakpoint

7-3-11. Click on the Resume () button to execute the program and stop at the breakpoint.

7-3-12. In the Vivado program, notice that the hw_ila_2 status changed from capturing to Idle, and the
waveform window shows the triggered output (select the hw_ila_data_2.wcfg tab if necessary).

7-3-13. Move the cursor to closer to the trigger point and then click on the button to zoom at the
cursor. Click on the Zoom In button couple of times to see the activity near the trigger point.

Figure 19. Zoomed waveform view of the three AXI transactions

Observe the following:

Around the 512th sample WDATA being written is 0x012 at offset 0 (AWADDR=0x0), WVALID is
‘1’, WREADY ‘1’ indicating the data is being written into the IP.

At the 533rd sample, WVALID is ‘1’ WSTRB is 0xf, offset is 0x4 (AWADDR), and the data being
written is 0x034.

At the 554th sample, RREADY and RVALID are ‘1’ indicating data is being read from the IP at the
offset 0x0 (ARADDR), and at 556th mark the result (0x46) is on the RDATA[7:0] bus.

7-3-14. You also should see the following output in the SDK Terminal console.

Figure 19. Terminal Output

7-4. In Vivado, select the VIO Cores in Console, set the vio_1_probe_out0 so
math_ip’s input can be controlled manually through the VIO core. Try
entering various values for the two operands and observe the output on the
math_ip_1_result port in the Console pane.

Debugging Using Hardware Analyzer Lab Workbook

Zynq 2-16 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

7-4-1. Select the hw_vio_1 core in the Debug Probes panel

7-4-2. Drag and drop vio_0_probe_out0 to the pane on the right, and change its value to 1 so the
math_ip core input can be controlled via the VIO core.

Figure 20. VIO probes

7-4-3. Also add math_ip_0_result, then add vio_0_probe_out1 and change its value to 55 (in Hex),
and similarly, add vio_0_probe_out2 and change its value to 44 (in Hex). Notice that for a brief
moment a blue-colored up-arrow will appear in the Activity column and the result value changes
to 099 (in Hex).

Figure 21. Input stimuli through the VIO core’s probes

7-4-4. Try a few other inputs and observe the outputs.

7-4-5. Once done, set the vio_0_probe_out0 to 0 to isolate the vio interactions with the math_ip core.

7-5. Setup the ILA core (hw_ila_1) trigger condition to 0101_0101 (0x55) for the
Zedboard or 0101 (0x5) for the Zybo. Make sure that the switches on the
board are not set at x55 (for ZedBoard) or 0x5 (for Zybo). Set the trigger
equation to be ==, and arm the trigger. Click on the Resume button in the
SDK to continue executing the program. Change the switches and observe
that the hardware core triggers when the preset condition is met.

7-5-1. Select the hw_ila_1 in the Debug Probes panel.

7-5-2. Add the LEDs to the Basic Trigger Setup, and set the trigger condition of the hw_ila_1 to trigger
at LED output value equal to 0x55 for the Zedboard or 0x5 for the Zybo.

Lab Workbook Debugging Using Hardware Analyzer

 www.xilinx.com/university Zynq 2-17
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 22. Setting up Trigger for hw_ila_1

7-5-3. Ensure that the trigger position for the hw_ila_1 is set to 512.

Make sure that the switches are not set to 01010101 (Zedboard) or 0101 (Zybo) as this is the exit
pattern.

7-5-4. Right-click on the hw_ila_1 in the hardware window, and arm the trigger by selecting Run Trigger.

The hardware analyzer should be waiting for the trigger condition to occur.

7-5-5. In the SDK window, click on the Resume button.

7-5-6. Change the slide switches and see the corresponding LED turning ON and OFF.

7-5-7. When the condition is met, the waveform will be displayed.

Figure 23. ILA waveform window after Trigger

7-6. Cross trigger a debug session between the hardware and software

7-6-1. In Vivado, select hw_ila_1

7-6-2. In the ILA properties, set the Trigger mode to BASIC_OR_TRIGG_IN, and the TRIG_OUT mode
to TRIGGER_OR_TRIG_IN

7-6-3. In SDK, in the C/C++ view, relaunch the software by right clicking on the lab2 project, and
selecting Debug As > Launch on Hardware (System Debugger) (Click OK if prompted to reset the
processor)

The program will be loaded and the excution will suspend at the entry point

Debugging Using Hardware Analyzer Lab Workbook

Zynq 2-18 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2016 Xilinx

7-6-4. In Vivado, change the trigger condition from 0x55 to 0x59 (or anything else) for ZedBoard or from
0x5 to 0x9 for Zybo

7-6-5. Arm the hw_ila_1 trigger

7-6-6. In SDK continue execution of the software to the next breakpoint (line 54)

When the next breakpoint in SDK is reached, return to Vivado and notice the ILA has triggered

7-7. Trigger the ILA and cause the software to halt

7-7-1. Click Step Over (F6) button twice to pass the current breakpoint

7-7-2. Arm the hw_ila_1 trigger

7-7-3. Resume the software (F8) until it enters the while loop

7-7-4. Verify it is executing by toggling the dip switches

7-7-5. In Vivado, arm the hw_ila_1 trigger

7-7-6. Toggle the dip switches to 0x59 on ZedBoard or 0x9 on Zybo, and notice that the application in
SDK will break at some point (This point will be somewhere within the while loop)

7-7-7. Click on the Resume button

The program will continue execution. Flip switches until it is 0x0f.

7-7-8. Click the Disconnect button () in the SDK to terminate the execution.

7-7-9. Close the SDK by selecting File > Exit.

7-7-10. Close the hardware session by selecting File > Close Hardware Manager. Click OK.

7-7-11. Close Vivado program by selecting File > Exit.

7-7-12. Turn OFF the power on the board.

Conclusion

In this lab, you added a custom core with extra ports so you can debug the design using the VIO core.
You instantiated the ILA and the VIO cores into the design. You used Mark Debug feature of Vivado to
debug the AXI transactions on the custom peripheral. You then opened the hardware session from
Vivado, setup various cores, and verified the design and core functionality using SDK and the hardware
analyzer.

.

