
Lab Workbook Writing Basic Software Application

 www.xilinx.com/support/university ZYBO 4-1
 xup@xilinx.com
 © copyright 2014 Xilinx

Writing Basic Software Application

Introduction

This lab guides you through the process of writing a basic software application. The software you will
develop will write to the LEDs on the ZYBO board. An AXI BRAM controller with associated 8KB BRAM
were added in the last lab. The application will be run from the BRAM by modifying the linker script for the
project to place the text section of the application in the BRAM. You will verify that the design operates
as expected, by testing in hardware.

Objectives

After completing this lab, you will be able to:

• Write a basic application to access an IP peripheral in SDK
• Develop a linker script

• Partition the executable sections into both the DDR3 and BRAM spaces

• Generate an elf executable file
• Download the bitstream and application and verify on the ZYBO board

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 4 primary steps: You will open the Vivado project, export to and invoke SDK, create a
software project, analyze assembled object files and verify the design in hardware.

Design Description

The design was extended at the end of the previous lab to include a memory controller (see Figure 1),
and the bitstream should now be available. A basic software application will be developed to access the
LEDs on the ZYBO board.

Figure 1. Design used from the Previous Lab

Writing Basic Software Application Lab Workbook

ZYBO 4-2 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

General Flow for this Lab

Opening the Project Step 1

1-1. Use the lab3 project from the last lab, or use the lab3 project in
c:\xup\embedded\labsolution, and save it as lab4

1-1-1. Start the Vivado if necessary and open either the lab3 project (lab3.xpr) you created in the
previous lab or the lab3 project in the labsolution directory using the Open Project link in the
Getting Started page.

1-1-2. Select File > Save Project As … to open the Save Project As dialog box. Enter lab4 as the
project name. Make sure that the Create Project Subdirectory option is checked, the project
directory path is c:\xup\embedded\labs\ and click OK.

This will create the lab4 directory and save the project and associated directory with lab4 name.

Export to SDK and create Application Project Step 2

2-1. Export the hardware along with the generated bitstream to SDK.

To Export the hardware, the block diagram must be open and the Implemented design must be
open.

2-1-1. If it is not already open, click Open Block Design > system.bd (under IP Integrator in the Flow
Navigator).

2-1-2. Click Generate Bitstream. Click Yes to synthesize, implement the design, and generate the
bitstream.

2-1-3. Select Open Implemented Design option when the bitstream generation is completed, and click
OK.

2-1-4. Start SDK by clicking File > Export > Export Hardware for SDK...

The export GUI will be displayed.

2-1-5. Check all three checkboxes, including the Launch SDK box and click OK.

2-1-6. If prompted, click YES to overwrite the platform created by the previous lab.

Step 1:

Open the
Project

Step 2:

Export to
SDK

Step 3:
Analyze

Assembled
Object File

Step 4:

Verify the
design in
hardware

Lab Workbook Writing Basic Software Application

 www.xilinx.com/support/university ZYBO 4-3
 xup@xilinx.com
 © copyright 2014 Xilinx

2-1-7. Click Yes, if prompted, to overwrite the bit file since the design has changed.

Figure 2. Update .bit file warning

2-2. Create an empty project called lab4 using standalone_bsp_0 software
platform project. Import lab4.c file from the c:\xup\embedded\sources
directory

The hw_platform and bsp projects from the previous lab will automatically rebuild to include the
led_ip. Verify this by checking the system.mss for the led_ip and axi_bram_ctrl peripherals.

2-2-1. To tidy up the workspace and save unnecessary building of a project that is not being used, right
click on the TestApp project from the previous lab, and click Close Project, as this project will
not be used in this lab. It can be reopened later if needed.

2-2-2. Select File > New > Application Project.

2-2-3. Enter lab4 as the Project Name, and for Board Support Package, choose Use Existing
standalone_bsp_0 (should be the only option).

2-2-4. Click Next, and select Empty Application and click Finish.

2-2-5. Expand lab4 in the project view and right-click in the src folder and select Import.

2-2-6. Expand General category and double-click on File System.

2-2-7. Browse to c:\xup\embedded\sources\lab4 folder and click OK.

2-2-8. Select lab4.c and click Finish to add the file to the project. (Ignore any errors for now).

2-2-9. Select the system.mss tab.

2-2-10. Click on Documentation link corresponding to btns_4bit peripheral under the Peripheral Drivers
section to open the documentation in a default browser window. As our led_ip is very similar to
GPIO, we look at the mentioned documentation.

Writing Basic Software Application Lab Workbook

ZYBO 4-4 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 3. Accessing device driver documentation

2-2-11. View the various C and Header files associated with the GPIO by clicking Files at the top of the
page.

2-2-12. Click the header file xgpio.h and review the list of available function calls for the GPIO.

The following steps must be performed in your software application to enable reading from the
GPIO: 1) Initialize the GPIO, 2) Set data direction, and 3) Read the data

Find the descriptions for the following functions by clicking links:

XGpio_Initialize (XGpio *InstancePtr, u16 DeviceId)

InstancePtr is a pointer to an XGpio instance. The memory the pointer references must be pre-
allocated by the caller. Further calls to manipulate the component through the XGpio API must
be made with this pointer.

DeviceId is the unique id of the device controlled by this XGpio component. Passing in a device
id associates the generic XGpio instance to a specific device, as chosen by the caller or
application developer.

XGpio_SetDataDirection (XGpio * InstancePtr, unsigned Channel, u32 DirectionMask)

InstancePtr is a pointer to the XGpio instance to be worked on.

Channel contains the channel of the GPIO (1 or 2) to operate on.

Lab Workbook Writing Basic Software Application

 www.xilinx.com/support/university ZYBO 4-5
 xup@xilinx.com
 © copyright 2014 Xilinx

DirectionMask is a bitmask specifying which bits are inputs and which are outputs. Bits set to 0
are output and bits set to 1 are input.

XGpio_DiscreteRead(XGpio *InstancePtr, unsigned channel)

InstancePtr is a pointer to the XGpio instance to be worked on.

Channel contains the channel of the GPIO (1 or 2) to operate on

2-2-13. Double-click on lab4.c in the Project Explorer view to open the file. This will populate the Outline
tab. Open the header file xparameters.h by double-clicking on xparameters.h in the Outline
tab

Figure 4. Double-Click the generated header file

The xparameters.h file contains the address map for peripherals in the system. This file is
generated from the hardware platform description from Vivado. Find the following #define used to
identify the dip peripheral:

#define XPAR_SW_8BIT_DEVICE_ID 1

Notice the other #define XPAR_SW_4BIT* statements in this section for the 4 bit SW peripheral,
and in particular the address of the peripheral defined by: XPAR_SW_4BIT_BASEADDR

2-2-14. Modify line 15 of lab4.c to use this macro (#define) in the XGpio_Initialize function.

Note: The number might be
different

Writing Basic Software Application Lab Workbook

ZYBO 4-6 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 5. Imported source, highlighting the code to initialize the SW_4BIT as input, and
read from it

2-2-15. Do the same for to the BTNS_4BIT; find the macro (#define) for the BTNS_4BIT peripheral in
xparameters.h, and modify line 18 in lab4.c, and save the file.

The project will be rebuilt. If there are any errors, check and fix your code. Your C code will
eventually read the value of the switches and output it to the led_ip.

2-3. Assign the led_ip driver from the driver directory to the led_ip instance.

2-3-1. Select Xilinx Tools > Repositories.

2-3-2. Click on New button of Local Repositories, browse to
C:\xup\embedded\labs\led_ip\led_ip_1.0\ and click OK, and click OK again to close the
Preferences window

2-3-3. Select standalone_bsp in the project view, right-click, and select Board Support Package
Settings.

Lab Workbook Writing Basic Software Application

 www.xilinx.com/support/university ZYBO 4-7
 xup@xilinx.com
 © copyright 2014 Xilinx

2-3-4. Select drivers on the left (under Overview)

2-3-5. Select Generic under the Driver column for led_ip to access the dropdown menu. From the
dropdown menu, select led_ip, and click OK.

Figure 6. Assign led_ip driver

2-4. Examine the Driver code

The driver code was generated automatically when the IP template was created.
The driver includes higher level functions which can be called from the user
application. The driver will implement the low level functionality used to control
your peripheral.

2-4-1. In windows explorer, browse to
C:\xup\embedded\labs\led_ip\led_ip_1.0\drivers\led_ip_v1_00_a\src. Notice the files in this
directory and open led_ip.c. This file only includes the header file for the IP.

2-4-2. Close led_ip.c and open the header file led_ip.h and notice the macros:
LED_IP_mWriteReg(…)
LED_IP_mReadReg(…)

e.g: search for the macro name LED_IP_mWriteReg:

/**

 *

 * Write a value to a LED_IP register. A 32 bit write is performed.

 * If the component is implemented in a smaller width, only the least

 * significant data is written.

 *

 * @param BaseAddress is the base address of the LED_IP device.

 * @param RegOffset is the register offset from the base to write to.

 * @param Data is the data written to the register.

 *

 * @return None.

 *

 * @note

 * C-style signature:

 * void LED_IP_mWriteReg(Xuint32 BaseAddress, unsigned RegOffset,

Xuint32 Data)

 *

 */

#define LED_IP_mWriteReg(BaseAddress, RegOffset, Data) \

 Xil_Out32((BaseAddress) + (RegOffset), (Xuint32)(Data))

Writing Basic Software Application Lab Workbook

ZYBO 4-8 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

For this driver, you can see the macros are aliases to the lower level functions Xil_Out32() and
Xil_Out32(). The macros in this file make up the higher level API of the led_ip driver. If you are
writing your own driver for your own IP, you will need to use low level functions like these to read
and write from your IP as required. The low level hardware access functions are wrapped in your
driver making it easier to use your IP in an Application project.

2-4-3. Modify your C code (see figure below, or you can find modified code in lab4_sol.c from sources
folder) to echo the dip switch settings on the LEDs by using the led_ip driver API macros, and
save the application.

2-4-4. Include the header file:

#include "led_ip.h"

2-4-5. Include the function to write to the IP (insert before the for loop):

LED_IP_mWriteReg(XPAR_LED_IP_S_AXI_BASEADDR, 0, dip_check);

Remember that the hardware address for a peripheral (e.g. the macro
XAR_LED_IP_S_AXI_BASEADDR in the line above) can be found in xparameters.h

Figure 7. The completed C file

2-4-6. Save the file and the program will be compiled again.

Lab Workbook Writing Basic Software Application

 www.xilinx.com/support/university ZYBO 4-9
 xup@xilinx.com
 © copyright 2014 Xilinx

Analyze Assembled Object Files Step 3

3-1. Launch Shell and objdump lab4.elf and look at the sections it has created.

3-1-1. Launch the shell from SDK by selecting Xilinx Tools > Launch Shell.

3-1-2. Change the directory to lab4\Debug using the cd command in the shell.

You can determine your directory path and the current directory contents by using the pwd and
dir commands.

3-1-3. Type arm-xilinx-eabi-objdump –h lab4.elf at the prompt in the shell window to list various
sections of the program, along with the starting address and size of each section

You should see results similar to that below:

Figure 8. Object dump results - .text in the DDR3 space

Writing Basic Software Application Lab Workbook

ZYBO 4-10 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

Verify in Hardware Step 4

4-1. Make sure that the JP7 is set to select USB power. Connect the board with
a micro-usb cable and power it ON. Establish the serial communication
using SDK’s Terminal tab.

4-1-1. Make sure that the JP7 is set to select USB power.

4-1-2. Make sure that a micro-USB cable is connected to the JTAG PROG connector (next to the power
supply connector). Turn ON the power.

4-1-3. Select the tab. If it is not visible then select Window > Show view > Terminal.

4-1-4. Click on and if required, select appropriate COM port (depends on your computer), and
configure it with the parameters as shown. (These settings may have been saved from previous
lab).

4-2. Program the FPGA by selecting Xilinx Tools > Program FPGA and
assigning system_wrapper.bit file. Run the TestApp application and verify
the functionality.

4-2-1. Select Xilinx Tools > Program FPGA.

4-2-2. Click on the Search button of the Bitstream field, select system_wrapper.bit, and click OK.

4-2-3. Click the Program button to program the FPGA.

4-2-4. Select lab4 in Project Explorer, right-click and select Run As > Launch on Hardware (GDB) to
download the application, execute ps7_init, and execute lab4.elf

Flip the DIP switches and verify that the LEDs light according to the switch settings. Verify that
you see the results of the DIP switch and Push button settings in SDK Terminal.

Figure 9. DIP switch and Push button settings displayed in SDK terminal

Note: Setting the DIP switches and push buttons will change the results displayed.

Lab Workbook Writing Basic Software Application

 www.xilinx.com/support/university ZYBO 4-11
 xup@xilinx.com
 © copyright 2014 Xilinx

4-3. Change the linker script to target Code sections to the BRAM controller
and objdump lab4.elf and look at the sections it has created.

4-3-1. Select Xilinx Tools > Generate Linker Script…

4-3-2. In the Basic Tab change the Code sections to axi_bram_ctrl_S_AXI_BASEADDR memory, click
Generate, and click Yes to overwrite.

Figure 10. Targeting code section to BRAM

The program will compile again.

4-3-3. Type arm-xilinx-eabi-objdump –h lab4.elf at the prompt in the shell window to list various
sections of the program, along with the starting address and size of each section

You should see results similar to that below:

Figure 11. The ,text section targeted to BRAM whereas .data to DDR

DO not try to run the application as the tools will block running the application from the BRAM controller.

Writing Basic Software Application Lab Workbook

ZYBO 4-12 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

4-4. Change the first xil_printf function calls to printf. Re-compile the code and
observe that the BRAM space is not sufficient. Generate the linker script to
target the Code sections back to external memory
(ps7_ddr_0_S_AXI_BASEADDR) and Heap and Stack sections to the
axi_bram_ctrl_0_S_AXI_BASEADDR memory.

4-4-1. In the text editor, in lab4.c, change one of the xil_printf function calls to printf and save the file.

4-4-2. The code compilation will begin and observe the output in the console window.

Figure 12. Errors Shown in Console Window

The .text section is too big for the allocated section.

4-4-3. Select Xilinx Tools > Generate Linker Script…

4-4-4. In the Basic Tab change the Code sections to ps7_ddr_0_S_AXI_BASEADDR memory and the
Heap and Stack sections to axi_bram_ctrl_0_S_AXI_BASEADDR.

Figure 13. Targeting Heap and Stack sections to BRAM

4-4-5. Click Generate, and click Yes to overwrite.

4-5. Execute the lab4.elf application and observe the application working even
when various sections are in different memory.

Lab Workbook Writing Basic Software Application

 www.xilinx.com/support/university ZYBO 4-13
 xup@xilinx.com
 © copyright 2014 Xilinx

4-5-1. Select lab4 in Project Explorer, right-click and select Run As > Launch on Hardware (GDB) to
download the application, execute ps7_init, and execute lab4.elf

Click Yes if prompted to stop the execution and run the new application.

Observe the SDK Terminal window as the program executes. Play with dip switches and observe
the LEDs. Notice that the system is very slow in displaying the message in the Terminal tab and
to change in the switches as the stack and heap are from a non-cached BRAM memory.

4-5-2. When finished, click on the Terminate button in the Console tab.

4-5-3. Exit SDK and Vivado.

4-5-4. Power OFF the board.

Conclusion

Use SDK to define, develop, and integrate the software components of the embedded system. You can
define a device driver interface for each of the peripherals and the processor. SDK imports an xml file,
creates a corresponding MSS file and lets you update the settings so you can develop the software side
of the processor system. You can then develop and compile peripheral-specific functional software and
generate the executable file from the compiled object code and libraries. If needed, you can also use a
linker script to target various segments in various memories. When the application is too big to fit in the
internal BRAM, you can download the application in external memory and then execute the program.

