
Lab Workbook Software Writing for Timer and Debugging

 www.xilinx.com/support/university ZYBO 5-1
 xup@xilinx.com
 © copyright 2014 Xilinx

Software Writing for Timer and Debugging

Introduction

This lab guides you through the process of writing a software application that utilizes the private timer of
the CPU. You will refer to the timer’s API in the SDK to create and debug the software application. The
application you will develop will monitor the dip switch values and increment a count on the LEDs. The
application will exit when the center push button is pressed.

Objectives

After completing this lab, you will be able to:

• Utilize the CPU’s private timer in polled mode

• Use SDK Debugger to set break points and view the content of variables and memory

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 4 primary steps: Open the project in Vivado, create a SDK software project, verify
operation in hardware, and launch the debugger and debug the design.

Design Description

You will use the hardware design created in lab 4 to use CPU’s private timer (see Figure 1). You will
develop the code to use it.

Figure 1. Design updated from Previous Lab

General Flow for this Lab

Step 1:

Open the
project in
Vivado

Step 2:
Create an

SDK
software
project

Step 3:
Verify

operation in
hardware

Step 4:

Launch
Debugger

Software Writing for Timer and Debugging Lab Workbook

ZYBO 5-2 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

Open the Project in Vivado Step 1

1-1. Use the lab4 project from the last lab or, use the lab4 from the labsolution
directory, and save it as lab5. Open the project in Vivado and then export to
SDK.

1-1-1. If you wish to continue using the design that you created in the previous lab, open the lab4 project
from the previous lab, or open the lab4 project in the labsolution directory, and Save it as lab5 to
the labs/ directory

Since we will be using the private timer of the CPU, which is always present, we don’t need to
modify the hardware design.

1-1-2. Open the Block Design and notice that the status changes to synthesis and implementation out-
of-date. Since the bitstream is already generated and will be in the exported directory, we can
safely ignore the warning.

1-1-3. Launch SDK by selecting File > Export > Export Hardware for SDK in Vivado

1-1-4. Check the Launch SDK box only and click OK.

You may see the following message when SDK opens. Ignore this warning.

Create an SDK Software Project Step 2

2-1. Create a new empty application project called lab5 utilizing already existing
standalone_bsp_0 software platform. Import the lab5.c source file.

2-1-1. In the Project Explorer in SDK, right click on lab4 and select Close Project

2-1-2. Select File > New > Application Project.

2-1-3. Name the project lab5, and for the board Support Package, select Use Existing
(standalone_bsp) and click Next.

2-1-4. Select Empty Application and click Finish.

2-1-5. Select lab5 > src in the project explorer, right-click, and select Import.

2-1-6. Expand General category and double-click on File System.

2-1-7. Browse to c:\xup\embedded\sources\lab5 folder, select lab5.c and click OK, and then click
Finish.

Lab Workbook Software Writing for Timer and Debugging

 www.xilinx.com/support/university ZYBO 5-3
 xup@xilinx.com
 © copyright 2014 Xilinx

You will notice that there are multiple compilation errors. This is expected as the code is
incomplete. You will complete the code in this lab.

2-2. Refer to the Scutimer API documentation.

2-2-1. Select the system.mss tab (if it is not open, open it from standalone > system.mss)

2-2-2. Click on Documentation link corresponding to scutimer (ps7_scutimer) peripheral under the
Peripheral Drivers section to open the documentation in a default browser window.

2-2-3. Click on the Files link to see available files related to the private timer API.

2-2-4. Click on the xscutimer.h link to see various functions and data structures available in the API.

Look at the XScuTimer_LookupConfig() and XScuTimer_CfgInitialize() API functions which must
be called before the timer functionality can be accessed.

Look at various functions available to interact with the timer hardware, including

Figure 2. Useful Functions

2-3. Correct the errors.

2-3-1. In SDK, in the Problems tab, double-click on the first red unknown type name x for the parse
error. This will open the source file and bring you around to the error place.

Software Writing for Timer and Debugging Lab Workbook

ZYBO 5-4 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 3. First error

2-3-2. Add the include file for the XScuTimer.h. Save the file and the errors should disappear.

2-3-3. Scroll down the file and notice that there are few lines intentionally left blank with some guiding
comments.

Figure 4. Fill in Missing Code

2-3-4. Using the API functions list, fill those lines. Save the file and correct errors if any.

2-3-5. Scroll down the file further and notice that there are few more lines intentionally left blank with
some guiding comments.

Lab Workbook Software Writing for Timer and Debugging

 www.xilinx.com/support/university ZYBO 5-5
 xup@xilinx.com
 © copyright 2014 Xilinx

Figure 5. More Code to be completed

2-3-6. Using the API functions list, complete those lines. Save the file and correct errors if necessary.

Figure 6. Portions of the completed Code

Software Writing for Timer and Debugging Lab Workbook

ZYBO 5-6 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

Verify Operation in Hardware Step 3

3-1. Make sure that the JP7 is set to select USB power. Connect the board with
a micro-usb cable and power it ON. Establish the serial communication
using SDK’s Terminal tab.

3-1-1. Make sure that the JP7 is set to select USB power.

3-1-2. Make sure that a micro-USB cable is connected to the JTAG PROG connector (next to the power
supply connector). Turn ON the power.

3-1-3. Select the tab. If it is not visible then select Window > Show view > Terminal.

3-1-4. Click on and if required, select appropriate COM port (depends on your computer), and
configure it with the parameters as shown. (These settings may have been saved from previous
lab).

3-2. Program the FPGA by selecting Xilinx Tools > Program FPGA and
assigning system_wrapper.bit file. Run the TestApp application and verify
the functionality.

3-2-1. Select Xilinx Tools > Program FPGA.

3-2-2. Click on the Search button of the Bitstream field, select system_wrapper.bit, and click OK.

3-2-3. Click the Program button to program the FPGA.

3-2-4. Select lab5 in Project Explorer, right-click and select Run As > Launch on Hardware (GDB) to
download the application, execute ps7_init, and execute lab5.elf

Depending on the switch settings you will see LEDs counting with corresponding delay.

Flip the DIP switches and verify that the LEDs light with corresponding delay according to the
switch settings. Also notice in the Terminal window, the previous and current switch settings are
displayed whenever you flip switches.

Figure 7. Terminal window output

Launch Debugger Step 4

4-1. Launch Debugger and debug

4-1-1. Right-click on the Lab5 project in the Project Explorer view and select Debug As > Launch on
Hardware (GDB).

Lab Workbook Software Writing for Timer and Debugging

 www.xilinx.com/support/university ZYBO 5-7
 xup@xilinx.com
 © copyright 2014 Xilinx

The lab5.elf file will be downloaded and if prompted, click Yes to stop the current execution of the
program.

4-1-2. Click Yes if prompted to change to the Debug perspective.

At this point you could have added global variables by right clicking in the Variables tab and
selecting Add Global Variables … All global variables would have been displayed and you could
have selected desired variables. Since we do not have any global variables, we won’t do it.

4-1-3. Double-click in the left margin to set a breakpoint on various lines in lab5.c shown below. A
breakpoint has been set when a “tick” and blue circle appear in the left margin beside the line
when the breakpoint was set.

The first breakpoint is where count is initialized to 0. The second breakpoint is to catch if the
timer initialization fails. The third breakpoint is when the program is about to read the dip switch
settings. The fourth breakpoint is when the program is about to terminate due to pressing of
center push button. The fifth breakpoint is when the timer has expired and about to write to LED.

Figure 8. Setting breakpoints

Software Writing for Timer and Debugging Lab Workbook

ZYBO 5-8 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2014 Xilinx

4-1-4. Click on the Resume () button to continue executing the program up until the first breakpoint
is reached.

In the Variables tab you will notice that the count variable may have value other than 0.

4-1-5. Click on the Step Over () button or press F6 to execute one statement. As you do step over,
you will notice that the count variable value changed to 0.

4-1-6. Click on the Resume button again and you will see that several lines of the code are executed
and the execution is suspended at the third breakpoint. The second breakpoint is skipped. This is
due to successful timer initialization.

4-1-7. Click on the Step Over button to execute one statement. As you do step over, you will notice that
the dip_check_prev variable value changed to a value depending on the switch settings on your
board.

4-1-8. Click on the memory tab. If you do not see it, go to Window > Show View > Memory.

4-1-9. Click the sign to add a Memory Monitor

Figure 9. Monitor memory location

4-1-10. Enter the address for the private counter load register (0xF8F00600), and click OK.

Figure 10. Monitoring a Memory Address

You can find the address by looking at the xparameters.h file entry to get the base address

(), and find the load offset double-clicking on the xscutimer.h
in the outline window followed by double-clicking on the xscutimer_hw.h and then selecting
XSCUTIMER_LOAD_OFFSET.

Figure 71. Memory Offset

Lab Workbook Software Writing for Timer and Debugging

 www.xilinx.com/support/university ZYBO 5-9
 xup@xilinx.com
 © copyright 2014 Xilinx

4-1-11. Click on the Step Over button to execute one statement which will load the timer register.

Notice that the address 0xF8F00604 has become red colored as the content has changed. Verify
that the content is same as the value: dip_check_prev*325000000. You will see hexadecimal
equivalent (displaying bytes in the order 0 -> 3).

E.g. for dip_check_prev = 1; the value is 0x13D92D40; (reversed: 0x402DD913)

4-1-12. Click on the Resume button to continue execution of the program. It will stop at the writing to the
LED port (skipping fourth breakpoint as center push button as has not occurred).

Notice that the value of the counter register is changed from the previous one as the timer was
started and the countdown had begun.

4-1-13. Click on the Step Over button to execute one statement which will write to the LED port and
which should turn OFF the LEDs as the count=0.

4-1-14. Double-click on the fifth breakpoint, the one that writes to the LED port, so the program can
execute freely.

4-1-15. Click on the Resume button to continue execution of the program. This time it will continuously
run the program changing LED lit pattern at the switch setting rate.

4-1-16. Flip the switches to change the delay and observe the effect.

4-1-17. Press center push button and observe that the program suspends at the fourth breakpoint. The
timer register content as well as the control register (offset 0x08) is red as the counter value had
changed and the control register value changed due to timer stop function call. (In the Memory
monitor, you may need to right click on the address that is being monitored and click Reset to
refresh the memory view.)

4-1-18. Terminate the session by clicking on the Terminate () button.

4-1-19. Exit the SDK and Vivado.

4-1-20. Power OFF the board.

Conclusion

This lab led you through developing software that utilized CPU’s private timer. You studied the API
documentation, used the appropriate function calls and achieved the desired functionality. You verified
the functionality in hardware. Additionally, you used the SDK debugger to view the content of variables
and memory, and stepped through various part of the code.

