Lab Workbook Using the IP Catalog and IP Integrator

Using the IP Catalog and IP Integrator

Introduction

In this lab you will use the IP Catalog to generate a clock resource. You will instantiate the generated
clock core in the provided waveform generator design. You will also use IP Integrator to generate a FIFO
core and then use it in the HDL design.

Objectives

After completing this lab, you will be able to:

Include an IP in the project during the project creation

Use IP Catalog to generate a clocking core

Instantiate the generated clock

Create a block design using IP Integrator

Instantiate the block design

Generate bitstream and verify the functionality in hardware

Procedure

This lab is broken into steps that consist of general overview statements providing information on the
detailed instructions that follow. Follow these detailed instructions to progress through the lab.

Note: You will notice certain procedures have different variations depending on development
board being ZedBoard or Zybo. It will be explicitly mentioned in notes when such variation is
encountered

Design Description
The design used in this lab is a programmable waveform generator, also known as a signal generator.

The waveform generator in this design is intended to be a “standalone” device that is controlled via a PC
(or other terminal device) using RS-232 serial communication. The design described here implements the
RS-232 communication channel, the waveform generator and connection to the external DAC, and a
simple parser to implement a small number of “commands” to control the waveform generation.

The wave generator implements a look-up table of 1024 samples of 16 bits each in a RAM. The wave
generator also implements three variables:

e nsamp: The number of samples to use for the output waveform. Must be between 1 and 1024.
e prescale: The prescaler for the sample clock. Must be 32 or greater.
e speed: The speed (or rate) for the output samples in units of the prescaled clock.

The wave generator can be instructed to send the appropriate number of samples once, cycling from 0 to
nsamp-1 once and then stopping, or continuously, where it continuously loops the nsamp samples. When
enabled, either once or continuously, the wave generator will send one sample to the DAC every
(prescale x speed) clk_tx clock cycles. The contents of the RAM, as well as the three variables, can be
changed via commands sent over the RS-232 link, as can the mode of the wave generator. The wave
generator will generate responses for all commands.

There are three clock domains within this design: clk_rx, clk_tx, and clk_samp. The clock generator
module instantiates all the clocking resources required for generating these three clocks. All three clocks
are derived from a single clock input, coming in on clk_pin. The frequency of the clock input depends on
the oscillator available on the target board; for the ZedBoard it is 100MHz and for Zybo it is 125MHz.

The block diagram is as shown in Figure 1.

i www.xilinx.com/support/university ZYNQ 4-1
i‘ Xl LINX Xup@xilinx.com

© copyright 2016 Xilinx

Lab Workbook Using the IP Catalog and IP Integrator

In this design we will use board’s USB-UART which is controlled by the Zyng's ARM Cortex-A9 processor.
Our PL design needs access to this USB-UART. So first thing we will do is to create a Processing System
design which will put the USB-UART connections in a simple GPIO-style and make it available to the PL
section. The complete system is shown in Figure 2.

The provided design places the UART (RX and TX) pins of the PS (Processing System) on the Cortex-A9
in a simple GPIO mode to allow the UART to be connected (passed through) to the Programmable Logic.
The processor samples the RX signal and sends it to the EMIO channel 0 which is connected to Rx input
of the HDL module provided in the Static directory. Similarly, the design samples the Tx output of the HDL
module through another EMIO channel 1 and sends it on the PS UART TX pin. This is done through a
software application provided in the lab4.sdk folder hierarchy. The design is shown in Figure 2.

Ib_sel_pin »Hebounce
#‘: uart_tx |« output_seq
txd_pin <¢
Q .
Ib_ctl char olk_tx
fifo full
resp_gen =
A
i . o e
rxd_pin P uart_rx > cmd_parse .
- ¢ |k _rx pYcikx_gclkx_Jg clkx_ samp_ |
K oi q P C |k _tx pre spd nsamp ram
clk_pin PlIclk_gen b c1k_samp
- cn_clk_samp ’ ”l
samp_gen >
clock_locked
v
- rst_clk_rx clk_samp
rst_pin Plrst_gen =P rst_clk_tx
_>rst_clk_samp
led_pins<f
dac_spi
clk tx
SPI P
(ta dae) -
Figure 1. The complete design on PL
ZYNQ 4-2 www.xilinx.com/support/universit =
© P Y & XILINX.

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Using the IP Catalog and IP Integrator

wave_gen
/@ —
_H
PS PL
PS-PL
e Xd
e txd
led_pins me—)

) |k_pin SP| we—)

(dac)
) st_pin
) |b_sel_pin
Figure 2. The Complete System
General Flow
Step 1: Step 2: Step 3: Step 4: Step 5:
Create a Generate & Im
¢ ; plement Generate the Generate and
Vivado |:> Insé?géfte |:> the Design |:> Bitstream & instantiate an
Project using Generator Verify the IPI Block
IDE Module Functionality
Create a Vivado Project using IDE Step 1

In this design we will use board’s USB-UART which is controlled by the
Zynqg’'s ARM Cortex-A9 processor. Our PL design needs access to this
USB-UART. So first thing we will do is to create a Processing System
design which will put the USB-UART connections in a simple GPIO-style
and make it available to the PL section.

i' XILINX www.xilinx.com/support/university ZYNQ 4-3
-~ ° xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Using the IP Catalog and IP Integrator

1-1. Launch Vivado and create a project targeting the XC72020clg484-1 device
(ZedBoard), or the XC7Z010clg400-1 (Zybo), and use provided the tcl
scripts (ps7_create_<board>.tcl) to generate the block design for the PS
subsystem. Also, add the Verilog HDL files, wave_gen _pins_<board>.xdc
and wave_gen_timing.xdc files from the <2016 _2 ZYNQ_sources>\lab4
directory.

References to <2016_2 ZYNQ _labs> is a placeholder for the
c:\xup\fpga_flow\2016 2 ZYNQ labs directory and <2016 _2 ZYNQ_sources> is a place
holder for the c:\xup\fpga flow\2016_2 ZYNQ_sources directory.

Reference to <board> means either the ZedBoard or the Zybo

1-1-1. Open Vivado by selecting Start > All Programs > Xilinx Design Tools > Vivado 2016.2 >
Vivado 2016.2

1-1-2. Click Create New Project to start the wizard. You will see Create A New Vivado Project dialog
box. Click Next.

1-1-3. Click the Browse button of the Project location field of the New Project form, browse to
<2016_2_ZYNQ_labs>, and click Select.

1-1-4. Enter lab4 in the Project name field. Make sure that the Create Project Subdirectory box is
checked. Click Next.

1-1-5. Select RTL Project option in the Project Type form, and click Next.

1-1-6. Using the drop-down buttons, select Verilog as the Target Language and Simulator Language in
the Add Sources form.

1-1-7. Click on the Green Plus button, then the Add Files... button and browse to the
<2016 _2 ZYNQ_sources >\lab4 directory, select all the Verilog files, click OK, and then click
Next.

1-1-8. Inthe Add IP form, click on the Green Plus button, then the Add Directories... button, browse to
the <2016_2_ ZYNQ_sources >\lab4\<board>\ip directory. Highlight the ip directory and click
Select.

1-1-9. Click Next to get to the Add Constraints form.

1-1-10. Click on the Green Plus button, then Add Files... and browse to the
c:\xup\fpga_flow\2016_2_ZYNQ_sources\lab4 directory (if necessary), select
wave_gen_timing_<board>.xdc and the appropriate wave_gen_pins_<board>.xdc and click Open.

1-1-11. Click Next.

1-1-12. In the Default Part form, Use the Boards option, you may select the Zedboard or the Zybo
depending on your board from the Display Name drop down field.

ZYNQ 4-4 www.xilinx.com/support/university i
Xup@xilinx.com i‘ Xl LINX‘
© copyright 2016 Xilinx

Lab Workbook Using the IP Catalog and IP Integrator

You may also use the Parts option and various drop-down fields of the Filter section. If using the
ZedBoard, select the XC72020clg484-1 part. If using the Zybo, select the XC72010clg400-1 part.

Note: Notice that Zedboard and Zybo may not be listed under Boards menu as they are not
in the tools database. If not listed then you can download the board files for the desired
boards either from Digilent Inc website or from the XUP website’s workshop material
pages.

1-1-13. Click Next.

1-1-14. Click Finish to create the Vivado project.

1-2. Correct the errors by adding file.

1-2-1. You will notice four Syntax Error Files are being highlighted in the Sources pane.
If you check the messages Tab, you will see that these errors are due to missing files.

1-2-2. Click on Add Sources in the Flow Navigator pane.

1-2-3. Select Add or Create Design Sources and click Next.

1-2-4. Click on the Green Plus button, then the Add Files... button and browse to
<2016_2_ZYNQ_sources >\lab4\.

1-2-5. In the File Type field, select All Files, and then select clogb2.txt file.

1-2-6. Click OK and then Finish.
The error messages should go away.

1-2-7. Inthe Sources pane, expand Design Sources and wave_gen_top and wave_gen if necessary,
and double-click on the clk_gen_iO entry.
Scroll down the file and notice that around line 79 there is an instruction to instantiate a clock core.

1-2-8. Inthe Tcl Shell window enter the following command to change to the lab directory and hit Enter.
cd c:/xup/fpga Flow/2016 2 ZYNQ sources/lab4

1-2-9. Generate the PS design by executing the provided Tcl script.
source ps7_create_zed.tcl (for ZedBoard) or
source ps7_create_zybo.tcl (for Zybo)
This script will create a block design called system, instantiate ZYNQ PS two GPIO channels 48
and 49 and two EMIO channels. It will create system.bd that is instantiated under wrapper file
called system_wrapper.v. You can check the contents of the tcl files to confirm the commands
that are being run.

= www.xilinx.com/support/universit ZYNQ 4-5
& XILINX. PP y ©

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook

Using the IP Catalog and IP Integrator

Generate and Instantiate Clock Generator Module

Step 2

2-1.

2-1-1.

2-1-2.

Launch the clocking wizard from the IP Catalog of Vivado and generate the
clock core with input frequency of 100.00 MHz and two output clocks of

50.000 MHZ each.
Note: For Zybo since the on-board clock is 125 MHz we will set the input frequency to 125
Mhz.

Click on IP Catalog in the Flow Navigator pane. The IP Catalog will open in the auxiliary pane.

Expand the FPGA Features and Design > Clocking sub-folders and double-click on the
Clocking Wizard entry.

E=Diagram X | ck_gen.v X | [Address Editor X |{F IP Catalog x

Cores | Interfaces
. 1
3| Name AXI4 Status
=7 |E-[Vivado Repository

+-[Alliance Partners

&= #-[= Automotive & Industrial
(= AXI Infrastructure

7 BaselP

) Basic Elements

) Communication & Networking

License VLNV

bk

; Debug & Verification
7 Digital Signal Processing
= Embedded Processing

it
o
£
3

o
=
e
3
e
¥

&

--4F Clocking Wizard AXIS Production Incduded xilinx.com:ip:clk_wiz:5.3
7 10 Interfaces

7 Soft Error Mitigation

) & e

Figure 3. Accessing the clocking wizard

2-1-3. Click Customize IP on the following Add IP window. The clocking wizard will open.

2-1-4. Check that the IP Location points to right location <2016 2 ZYNQ labs>\lab4.

ﬁ Customize [P
Clocking Wizard (5.3)
‘fﬂ Documentaﬁo@ Switch to Defaults
1P Symbol | 1P Location %
[Show disabled ¢ IF location: IC:fxupffpga_ﬂow,."ZD16_2_ZYNQ_Iabs,|"Iab4 I D
Assodate IP interface with board interface
1P Interface
CLK_IN1
CLK_INZ
| Clear Board Parameters
reset clk_outl =
clk_ini locked =
- =y -‘\-\

Figure 4. Accessing the clocking wizard

ZYNQ 4-6

www.xilinx.com/support/university
Xup@xilinx.com
© copyright 2016 Xilinx

& XILINX.

Lab Workbook Using the IP Catalog and IP Integrator

2-1-5. Change the core name to clk_core. Make sure that the Primary input clock frequency is 100.000
MHz and the primitive used is MMCM.

Note: For Zybo since the on-board clock is 125 MHz we will set the input frequency to 125
Mhz.

4F Customize IP

Clocking Wizard (5.3)

ﬁ; Documentation [IP Location [Switch to Defaults

TP Symbol Resource. Component Mame
[] Show disabled ports 7 éoar;i " Clocking Options | Output Clocks | MMCM Setting:
Clack Monitor

[] Enable Clock Monitoring

Primitive

Clocking Features

[¥] Freguency Synthesis [Minimize Power
[#] Phase Alignment [] Spread Spectrum
[] Dynamic Reconfig [] Dynamic Phase Shift

[] Safe Clock Startup

Dynamic Reconfig Interface Options

® AXIdLite oRp Phase Duty Cycle Co

Input Clock Information

Input Clock Input Frequency(MHz)

Primary 100,000 10.000 -

[] | Secondary 100.000

Figure 5. The clocking wizard for ZedBoard

LF Customize IP

Clocking Wizard (5.3)

ﬁﬂ Documentation || IP Location [Switch to Defaults

(1P Symibiol | Resource | Component Name
[] Show disabled ports ; éuar;{-' Clocking Options | Output Clocks | MMCM Setting
Clock Monitor

[} Enable Clock Monitaring

Primitive

@ MMCM |) PLL

Clocking Features
[#] Frequency Synthesis [] Minimize Power
[7] Phase Alignment [T Spread Spectrum
[”] Dynamic Reconfig [Dynamic Phase Shift

[] safe Clock Startup

Dynamic Reconfig Interface Options

@ Axidite s Phase Duty Cyde Cc

Input Clock Information

Input Clock Input Frequency(MHz)

B Frimary 125,000 10,000 -

[] | Secondary 100.000

Figure 5. The clocking wizard for Zybo

i www.xilinx.com/support/university ZYNQ 4-7
i‘ XI LINX“‘ Xup@xilinx.com

© copyright 2016 Xilinx

Lab Workbook Using the IP Catalog and IP Integrator

2-1-6. Select the Output Clocks tab. Click on the check box to enable the second clock output. Make
sure that the requested output frequency is 50 MHz for both clocks.

Component Name | dk_core

Board | Clocking Options Output Clocks | MMCM Settings | Fort Renaming | Summary

The phase is calculated relative to the active input dock.

Qutput Freg (MHz) Phase (degrees) Duty Cycle (%)
Output Clock Requested Actual Requested Actual Requested Actual
dk_out1 50 50.000 0,000 0.000 50,000 50.0
dk_out2 50 50.000 0,000 0.000 50,000 50.0

Figure 6. Setting output clocks

2-1-7. Click on the Summary tab and check the information.

Compaonent Mame | dk_core

Board | Clocking Options | Output Clocks | MMCM Settings | Port Renaming” Summary

Attribute Value
Input Clock (MHz) 100,000
Phase Shift Mone
Divide Counter 1

Mult Counter 10,000
CLKOUTO Divider 20,000
CLKOUT 1 Divider 20
CLKOUT 2 Divider OFF
CLKOUT3 Divider OFF
CLKOUT4 Divider OFF
CLKOUTS Divider OFF
CLKOUTS Divider OFF

Figure 7. Summary page of the clock core being generated for ZedBoard

Component Mame | dk_core

Board | Clocking Options | Qutput Clocks | MMCM Settings | Port Renaming Summary

Attribute Value
Input Clock (MHz) 125,000
Phase shift Mone
Divide Counter 1

Mult Counter 2,000
CLEOUTO Divider 20,000
CLKOUT1 Divider 20
CLEOUTZ2 Divider QFF
CLEOUT3 Divider QFF
CLEOUT4 Divider QFF
CLEOUTS Divider QFF
CLKOUTS Divider QFF

Figure 7. Summary page of the clock core being generated for Zybo

2-1-8. Click OK to see the Generate Output Products form.

ZYNQ 4-8 www.xilinx.com/support/university i
Xup@xilinx.com iA XI LINxs

© copyright 2016 Xilinx

Lab Workbook Using the IP Catalog and IP Integrator

¢ Generate Output Products =

The following output products will be generated.

¢

Preview

@ | B-LFE dk_core.xd (0OC per IF]
+- [l Instantiation Template

il synthesized Checkpaint {.dep)
-l Structural Simulation

_'] Change Log

=
=)
g
=

Synthesis Options
~) Global

@ Out of context per IP

Run Settings

Mumber of jobs: | 2

pply [Generate H Skip]

Figure 8. Generate output products form

2-1-9. Click on Generate to generate the output products including the instantiation template. Click OK
to proceed.
2-2. Instantiate the generated clock core.
2-2-1. Select the IP Sources tab in the Sources pane.
2-2-2. Expand the IP (2) branch. Notice the two IP entries. The char_fifo IP is the core that was included
while creating project. The second core clk_core is the one that you have generated.
2-2-3. Expand clk_core > Instantiation Template and double-click on clk_core.veo to see the
instantiation template.
2-2-4. Copy lines 71 through 80 and paste them at or around line 79 of the clk_gen.v file.
2-2-5. Change the instance name and net names to as shown in the figure below to match the names of
existing signals in the design.
79 clk_core clk_core i0 S
B0 (// Clock in ports
g1 .clk inl{clk pin}, input clk_inl
B3 clk_::ul_ltln:c]tk_l_:;n: gutput clk
g4 .clk_out? (ClE_tx), clk_out2
B6 .reset{rst_i),// imput rese
87 .locked (clock locked)): gutput locked
Figure 9. Assigning instance name and net conenctions
= www.xilinx.com/support/universit ZYNQ 4-9
& XILINX. PP y ©

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Using the IP Catalog and IP Integrator

2-2-6. Select File > Save File to save clk_gen.v

2-2-7. Select the Hierarchy tab and expand the wave_gen > clk_gen_i0 hierarchy and verify that
clk_core.xci is in the hierarchy. The IP has a bordered yellow square icon next to it.

Sources — O ® =
ol e
A |Z| Iv_JI OI:II}:II . E
=I-{ Design Sources (2] -
i EIE Text (1)

=18 g Wave_gen_top (wave_oen_top.v) (2]

=48 1J0_wave_gen - wave_gen (wave_gen.v) (14
-8 ck_gen_i0 - dk_gen (dk_gen.v) (2

-8 dk_div_i0 - ck_div (ck_div.v)
+-4LF0 dk_core_i0 - dk_core (clk_core, i)

Figure 10. The clk_core instantiated and shown in the hierarchy

Implement the Design Step 3

3-1. Implement the design.
3-1-1. Click on the Run Implementation in the Flow Navigator pane.

3-1-2. Click OK and run the synthesis first before running the implementation process. Click Save to
Save Project if prompted.

When the implementation is completed, a dialog box will appear with three options.

3-1-3. Select the Open Implemented Design option and click OK.

3-2. View the amount of FPGA resources consumed by the design using Report
Utilization.

3-2-1. Inthe Flow Navigator pane, select Implemented Design > Report Utilization.

The Report Utilization dialog box opens.
3-2-2. Click OK.

3-2-3. Verify that the design is using the clock resource.

ZYNQ 4-10 www.xilinx.com/support/university i
Xup@xilinx.com i; Xl LINX;

© copyright 2016 Xilinx

Lab Workbook Using the IP Catalog and IP Integrator

Utilization - utilization_1

A TS 4=y 4 Clocking - MMCME2_ADV (4 available)

= “Clocking ~ ¥ Q| Name Used
E----BLIFHCE E =3 wave_gen_top 1
+-BUFR, (0%%) o Fiaans Y
BUFGCTRL (3%) % E-[@] Uo_wave_gen (wave_gen) 1
e = - N E r dk_gen_i0 (dk_gen) []
== (25%) % B-[@ dk_core_i0 (dk_core) 1
=-BUFIO (1 |,_| inst (ck core 1

F‘LLEZ_AD‘.I' = T

=-BUFMR.CE (0°%)

[=-Specific Feature il

' D 3

utilization_1

5 Td Console | Messages | (& Log | () Reports | 3 Design Runs | S Package Pins | O I

Figure 11. Clock resource utilization for the ZedBoard

Utilization - utilization_1

O = 4= [4| Clocking - MMCME2_ADV (2 available)
%""BUFHCE (2%) 2V A Name Used
&-BUFR. (0%) 5 w to ;
i P =5 o] wave_gen_top
g'""BUFGCTRL S = E-[@] uo_wave_gen (wave_gen) 1
- =-[@ dk_gen_io {dk_gen) 1
B0 (%) % B {3 di_core (ck_core) 1
++PLLEZ_ADV (0 | @] inst (ck,_core. ck ;
“-BUFMRCE (0 |E| e

(= Speuﬁc Feature

i L-CAPTUREE2 (0%) <

4 1 3

utilization_1
|3 Td Console | Messages | Esl Log | (2 Reports | 3» Design Runs | & Package Pins | Cr

Figure 11. Clock resource utilization for the Zybo

Generate the Bitstream and Verify the Functionality Step 4

4-1. Generate the bitstream.

4-1-1. Inthe Flow Navigator, under Program and Debug, click Generate Bitstream.

4-1-2. Click Cancel when the bitstream generation is completed.

4-2. Connect the board and power it ON. Open a hardware session, and
program the FPGA.

4-2-1. Make sure that the Micro-USB cable is connected to the JTAG PROG connector next to the
power supply connector for the Zedboard. The Zybo JTAG PROG connector is located next to the
power supply switch).

4-2-2. Select the Open Hardware Manager option and click OK.

The Hardware Manager window will open indicating “unconnected” status.
i' XILINX www.xilinx.com/support/university ZYNQ 4-11

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Using the IP Catalog and IP Integrator

4-2-3. Click on the Open target link, then Auto Connect from the dropdown menu.

You can also click on the Open recent target link if the board was already targeted before.

4-2-4. The Hardware Manager status changes from Unconnected to the server name and the device is
highlighted. Also notice that the Status indicates that it is not programmed.

4-2-5. Select the device and verify that the wave_gen.bit is selected as the programming file in the
General tab.

4-3. Start aterminal emulator program such as TeraTerm or HyperTerminal.
Select an appropriate COM port (you can find the correct COM number
using the Control Panel). Set the COM port for 115200 baud rate
communication. Program the FPGA

4-3-1. Start a terminal emulator program such as TeraTerm or HyperTerminal.

4-3-2. Select the appropriate COM port (you can find the correct COM number using the Control Panel).
4-3-3. Set the COM port for 115200 baud rate communication.

4-3-4. Right-click on the FPGA entry in the Hardware window and select Program Device...

4-3-5. Click on the Program button.

The programming bit file be downloaded and the DONE light will be turned ON indicating the
FPGA has been programmed.

4-4. Start a SDK session, point it to the c:/xup/fpga_flow/2016_2 ZYNQ_
Sources /lab4/<board>/lab4.sdk workspace.

4-4-1. Open SDK by selecting Start > All Programs > Xilinx Design Tools > SDK 2016.2 > Xilinx
SDK 2016.2

4-4-2. Inthe Select a workspace window, click on the browse button, browse to
c:/xup/fpga_flow/2016_2 ZYNQ _Sources /lab4/ directory and select either
c:/xup/fpga_flow/2016_2 ZYNQ _Sources /lab4/Zybo/lab4.sdk or
c:/xup/fpga_flow/2016_2 ZYNQ _Sources /lab4/ ZedBoard/lab4.sdk and click OK.

4-4-3. Click OK.

In the Project Explorer, right-click on the wave_gen_uart, select Run As, and then Launch on
Hardware (System Debugger)

ZYNQ 4-12 www.xilinx.com/support/university i
Xup@xilinx.com i; Xl LINX;

© copyright 2016 Xilinx

Lab Workbook Using the IP Catalog and IP Integrator

B C/C+ - wave gen vart/sr/Testapp. - Xilinx SX N

File Edit Source Refactor Mavigate Search Project Run Xiling Tools Window Help

= | B - R -wE-- -G~ FrO-G-wEORNPREEE S -
[Project Explorer 52 =& | ¥ = I i system.hdf i, system.mss [€] TestAppa
[@ standalone_bsp_0 #include "xparameters.h”
> fg wave_gen_top_hw_platform_0 #include "xgpiops.h”
b |5 wave aen uart s o e
New » £
Go Into @ // static XGpioPs psGpioInstancePtr;[

Open in New Window ~int main (woid)

1
B Copy Ctrl+C
! XGpioPs psGpioIlnstancePtr;
Paste Ctrl+V in‘[: iPinlﬂumEer'_T)(= 48; // seri
3 Delete Delete int iPinNumber RX = 49; // seri
Source . >.(GpioPs_Config"ﬁpio(onfigl?tr;
int w5tatus, inl_status, in2 st
Move... int iPinNumberEMIO TX = 55; //
o E2 int iPJI‘.nNL.meer'IIEﬁID_RJ(= 54; [/
u32 uPinDirectionEMIO_TX = @x@;
bu; Import. u32 uP:!.nD:'Erect::LonEMIO_RX = 8x1;
e u32 uPinDirection TX = @x1;
g Bwport..
// Ps GPI0 Intializakien
Build Project GpioConfigPtr = XGpioPs_Lookupl

if{GpioConfigPtr == NULL)

Clean Project
return XST_FAILURE;

Z Refresh F5 xStatus = XGpioPs Cfglnitialize
Close Project Gp::r.oConf:i:gPtr,
; GpioConfigPtr->BaseAddr);
Close Unrelated Projects if(XST_SUCCESS != xStatus)
print(” PS GPIO INIT FAILED %
Make Targets 3
Index 3 //PS GPIO pin 49 setting to Inp
: : ; XGpioPs_SetDirectionPin(&psGpic
Build Configurations »
: : J/EMIO PIN 54 Setting to Output
Show in Remote Systems view XGpioPs_SetDirectionPin(&psGpic
Profiling Toals » XGpioPs_SetOutputEnablePin(&psC
Run As I] 15.:; 1 Launch on Hardware (System Debugger) I
Debug As b | [2 Start Performance Analysis
Profile As] 13_[; 3 Launch on Hardware (System Debugger on QEMU)
Compare With 3 GD:B 4 Launch on Hardware (GDB)
Restore from Local Histery... [E] 5Llocal C/C++ Application
ﬁ. Targe C/C++ Build Settings Run Configurations...

Figure 12. Running the application

4-4-4. Slide Switch 0 to the ON position and type in some characters in the terminal window and see the
character is echoed back. Setting Switch 0 to the ON position makes the design function as a

loopback.

4-4-5. Set Switch 0 back to OFF position (down) so it is no longer in the loopback mode.

4-4-6. Select File > Send File ... in the Tera Term window.

4-4-7. Browse to <2016_2_ ZYNQ_>\lab4, select testpattern.txt file, and click Open.

The file content will be send to the design. The file content is as follows:

*PFFFF < -- specifies the pre-scaling
*SOfff < -- specifies the speed value
*NOOOf < -- specifies the number of samples to play
i' XILINX www.xilinx.com/support/university ZYNQ 4-13

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Using the IP Catalog and IP Integrator

*W00000000 < -- write first sample of value 0 at location 0000
*W00011111 < -- write second sample of value 0x1111 at location 0001
*W00022222

*W00033333

*W00044444

*WO00055555

*W00066666

*WO00077777

*W00088888

*W00099999

*WOO0AAAAA

*W000BBBBB

*WO000CCCCC

*W000DDDDD

*WOOOEEEEE

*WOOOFFFFF

4-4-8. The design understands various commands as listed in figure below. All values are in
hexadecimal. All values and addresses are in hexadecimal.

Cmd Input Response Description

W aaaavww | -OKor-ERR 03ff 2aaaa=0000. Value “vvvv” is written into RAM at location
“aaaa”and “-OK” is return.

*R aaaa -hhhhddddor-ERR | 03ff 2aaaa=0000. Ifin range, then the value at “aaaa” is
returned in hex and decimal.

*N WY -OKor-ERR 0400 =2vvvv=0001. Specifies the number of samples before
recycling.

*P WY -OKor-ERR ffff 2vwvv=0020. Specifies prescaling value to divide clk_tx by
to produce clk_samp.

S WY -OK or-ERR ffff =vwwv=0001. Specifies “speed” value to divide clk_samp by
to produce the rate of read from RAM.

*n/*pl*s -hhhh dddd Returns current value of nsamp, prescale, and speed.

*G -OK Triggers a single pass through nsamp memory locations.

*C -OK Starts continuous triggering.

*H -OK Halts continuous loop at end of currentcycle.

Figure 13. Commands

4-4-9. Next type *G in the terminal window and observe the LED pattern changing slowly as written by
the above file.

4-4-10. You can type *s to see the sample value, *p to see the prescale value, and *n to see how many
samples are being played back.

4-4-11. You can also type *H to halt the play.

ZYNQ 4-14 www.xilinx.com/support/university i
Xup@xilinx.com iA XI LINX@

© copyright 2016 Xilinx

Lab Workbook Using the IP Catalog and IP Integrator

oS =
==
= =

Figure 14. Terminal window display
4-4-12. Select File > Close Hardware Manager. Click OK to close it.

4-4-13. Close the SDK program by selecting File > Exit and click OK.

Generate and Instantiate an IPI Block Step 5

5-1. Save the project as lab4_ipi. Remove the char_fifo IP from the design.

5-1-1. Select File > Save Project As... and save it as lab4 _ipi in the <2016 _2 ZYNQ_labs> directory
making sure that the Create Project Subdirectory option is checked.

5-1-2. Select the IP Sources tab in the Sources pane.
5-1-3. Right-click on char_fifo, and select Remove File from Project...

5-1-4. If a following window appears, click on the check-box of Also delete the project local file/directory
from disk, and click OK or else continue to next step.

i]

¢ Remowve Sources 29

[9} 0K to remove the one selected file from the project?

V| Also delete the project local file fdirectory from disk

0K | | Cancel

L.)

Figure 15. Removing an existing IP from the project

5-1-5. Select Hierarchy tab in the Sources pane and observe that the char_fifo instance has a ? mark
indicating that it is missing the source file.

i www.xilinx.com/support/university ZYNQ 4-15
i‘ Xl LINX Xup@xilinx.com

© copyright 2016 Xilinx

Lab Workbook Using the IP Catalog and IP Integrator

[=-{= Design Sources :3: -
- .Ferllng Header (1]

= i wave_gen top...:.&_g&-“_::-:u.'.': (2
|_:_|----.-e- 0_wave_gen - wave_gen [y
-8 dk_gen_i0 - dk_gen (-
---.-_.-'e‘- rst_gen_id - rst_gen {r=
F-#8 uart_rx_j0 - uart_rx (uart_rx.v)
: crnd_parse_i0 - U‘ndjarse crnd_J
LB samp_ram_i0 - samp_ram (sam
8 resp_gen_i0 - resp_gen (resp_gen,
-[2 char_fifo_i0 - char_fifo

-8 uart_tx_i0 - uart_te (uart_ti,v)
----.-'e‘- Ib_ct_i0 - Ib_ctl (lb_cH.
w8 dhkx_nsamp_i0 - u:Ikx I:uus dkx_bus.v) (1)
{8 dkx_pre_i0 - dkx_bus {dkx_bus.v) (1)
w8 dkx_spd_i0 - dkx_bus {clkx_bus.v) (1)
~(#8 samp_gen_i0 - samp_gen (sam _'n c-=“ v) (1) =

T . | I ST S

m

(]
et

S SO B S -

Hierarchy | IP Sources | Libraries | Compile Drder

&b Sources | ' Templates

Figure 16. Removed source file
5-1-6. Double-click on the wave_gen.v to open it in the editor window.
5-1-7. Remove the instantiation of the char_fifo from the file around line 336.

5-1-8. Select File > Save File.

5-2. Create a block design naming it as char_fifo and add an instance of an
FIFO Generator IP.

5-2-1. Click on Create Block Design in the Flow Navigator block.

5-2-2. Enter char_fifo as the block design name.

¢ Create Block Design 28

Please specify name of block design.

Design name: char_fifo
Directory: & <Local to Project> -
Specify source set: | Design Sources -

b

Figure 17. Naming the new block design

ZYNQ 4-16 www.xilinx.com/support/university i
Xup@xilinx.com i‘ XI LINX“‘
© copyright 2016 Xilinx

Lab Workbook

Using the IP Catalog and IP Integrator

5-2-3.

5-2-4.

5-2-5.

5-2-6.

Click OK.

The IP Integrator workspace opens and, in the information area, invites you to begin adding IP.

Right-click in the IP Integrator design canvas and select Add IP.

The IP Integrator IP Catalog opens, displaying a list of IP available in the IP Integrator.

Type FIFO in the search box at the top of the IP Integrator Catalog to see FIFO related available

IPs.

Search: FIFD (5 matches)

{F AXI-Stream FIFO

{F AXI4-Stream Dats FIFO
{F AXI Data FIFO

{F AXI Virtual FIFO Controller
{F FIFQ Generator

EMTER. to select, ESC to cancel, Ctrl+Q for IP details

Figure 18. Searching for an IP in the IP Catalog

Double-click FIFO Generator.

The FIFO is added to the IP Integrator design canvas.

5] i char_fifo

o fifo_generator_0

R ||| 4= FIFO_WRITE

L =t FIFD_READ
I+ i

v
aQ srst
e
i
i
na

FIFO Generator

—

Figure 19. FIFO Generator instantiated

i www.xilinx.com/support/university
i‘ XI LINXJ‘ Xup@xilinx.com

© copyright 2016 Xilinx

ZYNQ 4-17

Lab Workbook Using the IP Catalog and IP Integrator

5-3. Customize the FIFO Generator IP instance.

5-3-1. Double-click the FIFO Generator IP.

The FIFO Generator displays in the Re-customize IP dialog box.
5-3-2. Make sure that the default Native option is selected for the interface type.

5-3-3. Select Independent Clocks Block RAM from the Fifo Implementation drop-down list.

'I__J: Re-customize IP =
FIFO Generator (13.1) ‘
ﬁj Documentation | IP Location
[] Show disabled ports Component Name | char_fifo_fifo_generator_0_0
- Basic Nah’_ve P_nrts | S_tah__ls Flags | Data Cgunts _' Summar_\d’_
Interface Type
~) AXI Memary Mapped) AXI Stream
Fifo Implementation IIndependent Clocks Block RAM - I
Synchronization Stages | 2 b
FIFO Implementation Options
Supported Features
Memory
Type (1) (2) (3) (4) (s)
Commen Clock (CLK) Block RAM P ; -
II '{Il:' F]FO_WR ITE Common Clock (CLK) Distributed RAM
Common Clock (CLK) Shift Register
" e']:l FIFO_READ Commen Clack (CLK) Built-in FgIFO v ¥ ; .
Independent Clocks (RD_CLK, WR_CLK) Block RAM v/ ¥ ¥ ¥
Independent Clocks (RD_CLK, WR_CLK) Distributed RAM
Independent Clocks (RD_CLK, WR_CLK) Built-in FIFO
{1) Non-symmetric aspect ratios {different read and write data widths)
{2) First-Word Fall-Through
{4) ECC support
{5) Dynamic Error Injection
(Gt |
Figure 20. Configuring BRAM for separate read and write clocks
5-3-4. Select the Native Ports tab.
From the Native Ports tab you can configure the read mode, built-in FIFO options, data port
parameters, and implementation options.
5-3-5. Select First Word Fall Through as the read mode.
5-3-6. Set the write width to be 8 bits.
5-3-7. Click in the Read Width field to change it automatically to match the write width.
5-3-8. Leave everything else at their default settings.
ZYNQ 4-18 www.xilinx.com/support/university i
& XILINX.

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Using the IP Catalog and IP Integrator

Component Mame |char_fifo_fifo_generator_0_0

Basic~ Mative Ports | Status Flags | Data Counts | Summary

Read Mode
(71 Standard FIFO Ia First Word Fall ThrougFl
Data Port Parameters
write Width |8 |1.2,3,..1024
Write Depth | 1024 ~ | Actual Write Depth: 1025
Read Width | 8 ~|

1024 Actual Read Depth: 1025

ECC, Output Register and Power Gating Options

[Pl ece Hard ECC Single Bit Error Injection Double Bit Errar Injection
ECC Fipeline Reg Dynamic Power Gating
[] Qutput Registers Embedded Registers
Initialization

[¥] Reset Pin [¥] Enable Reset Synchronization Enable Safety Circuit

Reset Type Asynchronous Reset

Full Flags Reset Value 1 X
Dout Reset Value |0 (Hex)

Read Latency : 0

Figure 21. Configuring port width and read mode

5-3-9. Browse through the settings of the Status Flags and Data Counts tabs.
These tabs configure other options for the FIFO Generator. For this design, leave everything at
their default settings
5-3-10. Select the Summary tab.
This tab displays a summary of all the selected configuration options, as well as listing resources
used for this configuration.
Bas_ic | .Nati\te Forts | ..SEU.IIS Ifla_gs. I_Z)am Counts % Summary
WARNING : The use of Asynchronous Reset can lead to BRAM data corruption(AR 42571). Itis recommended to Enable Sa
IBIock RAM resource(s) (18K BRAMs): 1 I
Block RAM resource(s) (36K BRAMz): 0
Clocking Scheme Independent Clocks
Memory Type EBlock RAM
Model Generated Behavioral Model
Write Width 3
Write Depth Write Depth
Read Width 8
Almost Full Empty Flags Mot Selected /Mot Selected
Programmable Full Empty Flags Not Selected/Mot Selected
Data Count Qutputs Mot Selected
Handshaking Mot Selected
Read Mode | Reset First-word Fall-through / Asynchronous
Read Latency {From Rising Edge of Read Clock) 1]
Figure 22. Summary page
i www.xilinx.com/support/university ZYNQ 4-19
& XILINX.

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Using the IP Catalog and IP Integrator

5-3-11. Verify that the information is correct. For this configuration you are using one 18K block RAM.
Click OK.

5-4. Make the ports external naming them as shown below.

char_fifo_full
Q. char_fifo_empty

fifo_generator_0

Fr B!
|||=FrFo_wrITE |
“Afull
char_fifo_din[7:0] 2> p-din[7:0] |
char_fifo_wr_en ngv Bwr_en
|||=FlFO_READ ———
1T
«dout[7:0] ————
char_fifo_rd_en E& prd_en
rst i Eg} st
clk_rx |:\@ wr_dk
clk_tx [g., rd_dk
L . |

FIFO Generator

Q‘ char_fifo_dout[7:0]

Figure 23. FIFO Generator IP fully generated and connected
5-4-1. Expand the FIFO_WRITE and FIFO_READ interfaces.

5-4-2. Select wr_clk and then press and hold the Ctrl key and select the rd_clk ports of the FIFO.

fifo_generator_0

|||4=F1FO_WRITE
|||4=F1FO_READ
rst

FIFO Generator

Figure 24. Selecting multiple ports

5-4-3. With the ports highlighted, right-click and select Make External.

Two external connections are created for the selected FIFO ports. Notice that the external
connections have the same name as the IP module port that they connect to. You can rename
these connections by selecting them and changing the name in the External Port Properties
window.

ZYNQ 4-20 www.xilinx.com/support/university i
Xup@xilinx.com iA XI LINxs

© copyright 2016 Xilinx

Lab Workbook Using the IP Catalog and IP Integrator

5-4-4.

5-4-5.

5-4-6.

5-4-7.

Select the external connection port named wr_clk.

In the External Port Properties window, in the Name field of the General tab, type the name
clk_rx and press Enter. Similarly, select the external connection port named rd_clk and change
its name to clk_tx.

ls
®

External Paort Properties]
4= =) (P [
Cr dk_rx

Mame: dk_rx

Direction: Input

Met — wr_dk 1

Figure 25. Changing the external port name

You will need to expand FIFO_WRITE and FIFO_READ to see the signal names by clicking on
the “+” symbols next to the bus names. While pressing the Ctrl key, click all of the remaining
FIFO input and output ports and make them external.

Change their names as listed below:
din = char_fifo_din

dout = char_fifo_dout

empty = char_fifo_empty

full = char_fifo_full

rd_en = char_fifo_rd_en

wr_en = char_fifo_wr_en

rst =rst_i

OO0OO0OO0OO0OO0O0

When you have finished, your subsystem design should look like the figure below.

[char_fifo_full
[char_fifo_empty

fifo_generator_0

|| =FIFo_wRITE
full
char_fifo_din[7:0] C» =din[7:0]
char_fifo_wr_en [Pwir_en
=FIFO_ READ — |
RECNTT
p— ddout[7:0]
char_fifo_rd_en [Wrd_en
rst i [rst
clk_rx [wr_clk
clk_be [rd_dk

s
o
f

FIFO

ar)

arator

r

[char_fifo_dout{7:0]

Figure 26. Renamed external ports

f' X| LlNX www.xilinx.com/support/university ZYNQ 4-21

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook

Using the IP Catalog and IP Integrator

P
5-4-8. Click on Refresh (-) icon from the vertical toolbar to see the above diagram.

5-4-9. Select Tools > Validate Design.

You should see a message that validation was successful.

5-5. Generate the output product.

5-5-1. Inthe IP Sources tab of the Sources window, select the char_fifo under the Block Designs.

5-5-2. Right-click and select Generate Output Products.

¢ Generate Cutput Products P

The following output products will be generated.

Preview

Q| Ehd, char_fifo.bd (Global)

= 0 Synthesis

= i) Implementation
a :

= [Simulation

Synthesis Options
@ Global
~ Qut of context per IP

~) Out of context per Block Design

Run Settings

Number of jobs: |2 =

Apply Generate Cancel

Figure 27. Generating the output products so the IP can be instantiated in the design

5-5-3. Click Generate and OK to generate the output products.

You should see the various IP output products displayed in the IP Sources tab of the Sources

window.

SRSTCRE)
o LR dk_core (13)
-~ Block Designs (2]
=}, char_fifo (11)
5[Synthesis (4]
=L char_fifo_fifo_generator_0_0 (4]
A% char_fifo_fifo_generator_0_0_docks. xdc
{Y char_fifo_fifo_generator_0_0.xdc
whi char_fifo_fifo_generator_0_0.vhd
i char_fifo_fifo_generator_0_0_ooc.xdc
@8 char_fifo.w
Y char_fifo_ooc.xdc
=1-{= Implementation (2]
- LF char_fifo_fifo_generator_0_0
-8 char_fifo.v
—HY char_fifo_ooc.xdc
=1-{= Simulation (3]
—+1F char_fifo_fifo_generator_0_0 (2]
il fifo_generator_vhdl_beh.vhd
char_fifo_fifo_generator_0_0.vhd
- 48 char_fifo.v
-, system (52)

Figure 28. Generated output products

ZYNQ 4-22 www.xilinx.com/support/university
Xup@xilinx.com
© copyright 2016 Xilinx

& XILINX.

Lab Workbook Using the IP Catalog and IP Integrator

5-6. Instantiate the char_fifo IP in the project.
5-6-1. From the IP Sources tab of the Sources window, select the char_fifo module.

5-6-2. Right-click and select View Instantiation Template.

Sources e N
QXS 2e|E

P (1

{F dk_core (13

ock Designs (2

= Source File Properties. .. Ctrl+E
"9 @ openFie Alt+0

{3 ReportIP Status
Create HDL Wrapper...
View Instantiation Template
Generate Output Products...

Figure 29. Generating an instantiation template

The char_fifo_wrapper.v instantiation template is opened in the text editor in the Vivado IDE.

42 char_fifo char_fifo i

43 {«char_fifo_din{char fifo_din),

44 .char_fifo_doutichar fifo_dout),
45 .char_fifo_eupty(char_ fifo_empty),
46 .char_fifo_fullichar fifo_fullj,
47 .char_fifo_rd eni{char fifo_rd en),
43 .char_fifo wr_en({char fifo wr_en),
49 olk_rxiclk_rx),

50 Lolk_txiclk_tx),

51 Lret_ ifrst i));

52 endmodule

Figure 30. Part of the instantiation template
5-6-3. Copy lines 42 through line 51, and paste them at or around line 334 in the wave_gen.v file.

5-6-4. Save the Verilog file.

5-7. Generate the bitstream and verify the functionality in hardware.

5-7-1. Click on the Run Implementation in the Flow Navigator pane.

If prompted, click Yes to Save the project before proceeding.
5-7-2. Click OK to re-run the synthesis process, followed by clicking Save to save the design.
5-7-3. When completed, generate the resource utilization report and verify that one FIFO is being used.
5-7-4. In the Flow Navigator, under Program and Debug, click Generate Bitstream.

5-7-5. Open the hardware manager and program the FPGA.

i' X”_INX www.xilinx.com/support/university ZYNQ 4-23
- Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Using the IP Catalog and IP Integrator

5-7-6. Open SDK by selecting Start > All Programs > Xilinx Design Tools > SDK 2016.2 > Xilinx
SDK 2016.2

5-7-7. Inthe Select a workspace window, click on the browse button, browse to
c:/xup/fpga_flow/2016_2 ZYNQ _Sources /lab4/ directory and select either
c:/xup/fpga_flow/2016_2 ZYNQ __ Sources /lab4/Zybo/lab4.sdk or
c:/xup/fpga_flow/2016_2 ZYNQ __Sources /lab4/ ZedBoard/lab4.sdk and click OK.

5-7-8. Click OK.

In the Project Explorer, right-click on the wave _gen_uart, select Run As, and then Launch on
Hardware (System Debugger)

verify the functionality of the design in the hardware.
5-7-9. When done, close the Vivado program by selecting File > Exit and click OK.

5-7-10. Close the SDK program by selecting File > Exit and click OK.

Conclusion

In this lab, you learned how to add an existing IP during the project creation. You also learned how to
use IP Catalog and generate a core. You then instantiated the core in the design, implemented the
design, and verified the design in hardware. You also used the IP Integrator capability of the tool to
generate a FIFO and then use it in the HDL design.

ZYNQ 4-24 www.xilinx.com/support/university i
Xup@xilinx.com i; Xl LINX;

© copyright 2016 Xilinx

