Lab Workbook Improving Performance Lab

Improving Performance Lab

Introduction
This lab introduces various techniques and directives which can be used in Vivado HLS to improve

design performance. The design under consideration accepts an image in a (custom) RGB format,
converts it to the Y’UV color space, applies a filter to the Y’UV image and converts it back to RGB.

Objectives

After completing this lab, you will be able to:

e Add directives in your design

e Understand the effect of INLINE directive

e Improve performance using PIPELINE directive

e Distinguish between DATAFLOW directive and Configuration Command functionality
Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 6 primary steps: You will create a new project using Vivado HLS command prompt,
analyze the created project and generated solution, turn off inlining and apply TRIPCOUNT directive,
apply PIPELINE directive, apply DATAFLOW directive and command configuration, and finally export and
implement the design.

General Flow for this Lab

Step 1: Step 2: Step 3: Step 4: Step 5:

Create a Analyze Apply Apply Apply
Project =) Project and) | TRIPGOUNT = | PIPELINE | T |DATARLOW
using CLI Results Directive Directive Directive

Step 6:

Export &
Implement
the Design

v www.xilinx.com/university Zynq 2-1
i‘ XI I—I NX® xup@xilinx.com

© Copyright 2015 Xilinx

Improving Performance Lab Lab Workbook

Create a Vivado HLS Project from Command Line Step 1

1-1. Validate your design using Vivado HLS command line window. Create a
new Vivado HLS project from the command line.

1-1-1. Launch Vivado HLS: Select Start > All Programs > Xilinx Design Tools > Vivado 2014.4 >
Vivado HLS > Vivado HLS 2014.4 Command Prompt.

1-1-2. In the Vivado HLS Command Prompt, change directory to c:\xup\hls\labs\lab2.

1-1-3. A self-checking program (yuv_filter_test.c) is provided. Using that we can validate the design. A
Makefile is also provided. Using the Makefile, the necessary source files can be compiled and
the compiled program can be executed. In the Vivado HLS Command Prompt, type make to
compile and execute the program.

Vivado HLS 2014.4 Command Prompt ‘ﬂli—ij

== Uivado HLS Command Prompt
== Auailable commands:
== vivado_hls,apcc,gcc,g++ make

Microsoft Windows [Uersion 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Xilinx\Uivado_HLS\2014.4>cd c:/xup/hls/labs/lab2

c:\xup\hls\labs\lab2>make

gcc -ggdb -w -I/c/Xilinx/Uivado_HLS/2014.4/include -¢ -0 yuv_filter.o yuv_filt
er.c

gcc -ggdb -w -I/c/Xilinx/Uivado_HLS/2014.4/include -c -o yuu_filter_test.o yuy
_filter_test.c

gcc -ggdb -w -I/c/Xilinx/Uivado_HLS/2014.4/include -¢c -0 image_aux.o image_aux
.C

gcc -lm yuu_filter.o yuu_filter_test.o image_aux.o -0 yuv_filter
./yuv_filter

Test passed!

c:\xup\hls\labs\lab2>

Figure 1. Validating the design

Note that the source files (yuv_filter.c, yuv_filter_test.c, and image_aux.c are compiled, then
yuv_filter executable program was created, and then it was executed. The program tests the
design and outputs Test Passed message.

1-1-4. A Vivado HLS tcl script file (yuv_filter.tcl) is provided and can be used to create a Vivado HLS
project. Type vivado_hls —f zed_yuv _filter.tcl in the Vivado HLS Command Prompt window to
create the project targeting the ZedBoard or type vivado_hls —f zybo_yuv_filter.tcl in the
Vivado HLS Command Prompt window to create the project targeting the Zybo.

The project will be created and Vivado HLS.log file will be generated.

1-1-5. Open the vivado_hls.log file from ¢:\xup\hls\labs\lab2 using any text editor and observe the
following sections:

Zynq 2-2 Xilinx.com/universit v
’ WWWXXL:FI)@)gininX.L(J:OIr\;l v iA XILINX@

© Copyright 2015 Xilinx

Lab Workbook Improving Performance Lab

o

Creating directory and project called yuv_filter.prj within it, adding design files to the project,
setting solution name as solution1, setting target device (Zyng-z020 for ZedBoard or Zyng-
z010 for Zybo), setting desired clock period of 10 ns (for ZedBoard) or 8 ns (for Zybo), and
importing the design and testbench files (Figure 2).

Synthesizing (Generating) the design which involves scheduling and binding of each
functions and sub-function (Figure 3).

Generating RTL of each function and sub-function in SystemC, Verilog, and VHDL languages
(Figure 4).

Vivado(TM) HLS - High-Level Synthesis from C, C++ and SystemC
Version 2014.4

Build 1071461 on Tue Nov 18 16:42:57 PM 2014

Copyright (C) 2014 Xilinx Inc. All rights reserved.

[LIC-101] Checked out feature [HLS]

[HLS-10] Running 'C:/Xilinx/Vivado HLS/2014.4/bin/unwrapped/win64.o/vivado
for user ‘parimalp’' on host 'xsjparimalp3@’ (Windows NT_amd6d ver:
in directory 'C:/xup/hls/labs/lab2’

[HLS-10] Creating and opening project 'C:/xup/hls/labs/lab2/yuv_filter.prj

[HLS-10] Adding design file 'yuv_filter.c' to the project

[HLS-10] Adding test bench file 'image_aux.c' to the project

[HLS-10] Adding test bench file 'yuv_filter test.c' to the project

[HLS-10] Adding test bench file "test _data' to the project

[HLS-10] Creating and opening solution 'C:/xup/hls/labs/lab2/yuv_filter.pr

[HLS-10] Cleaning up the solution database.

[LIC-101] Checked out feature [HLS]

[HLS-10] Setting target device to 'xc7z010clgd-1'

[SYN-201] Setting up clock 'default’ with a period of 8ns.

[HLS-10] Analyzing design file 'yuv_filter.c' ...

[HLS-10] Validating synthesis directives ...

[HLS-10] Starting code transformations ...

Figure 2. Creating project and setting up parameters

& XILI

NX www.xilinx.com/university Zynq 2-3
® xup@xilinx.com
© Copyright 2015 Xilinx

Improving Performance Lab Lab Workbook

|HLS-1©] Starting code transtormations ...

[HLS-10] Checking synthesizability ...

[XFORM-602] Inlining function 'yuv_scale' into 'yuv_filter' (yuv_filter.c:
[XFORM-401] Performing if-conversion on hyperblock from (yuv filter.c:92:3
[XFORM-11] Balancing expressions in function ‘rgb2yuv' (yuv_filter.c:30)..
[HLS-111] Elapsed time: 3.498 seconds; current memory usage: 69.9 MB.
[HLS-10] Starting hardware synthesis ...

[HLS-10] Synthesizing 'vyuv_filter'

[HLS-18] —---mm o mm o m oot oo oo
[HLS-10] -- Scheduling module ‘yuv_filter rgb2yuv’

[HLS-18] —---mm o mm o m oo oo e
[SCHED-11]|Starting scheduling ...

[SCHED-11]|Finished scheduling.

[HLS-111] Elapsed time: 0.14 seconds; current memory usage: 71.2 MB.

[HLS-18] —---mm o mm o m oot oo oo
[HLS-10] -- Exploring micro-architecture for module 'yuv_filter rgb2yuv’
[HLS-18] —---mm o mm o m oot oo oo
[BIND-1@0]| Starting micro-architecture generation ...

[BIND-101]| Performing variable lifetime analysis.
[BIND-1021]| Exploring resource sharing.

[BIND-101]| Binding ...

[BIND-1@01]| Finished micro-architecture generation.

[HLS-111] Elapsed time: 0.04 seconds; current memory usage: 71.3 MB.
[HLS-18] —---mm o mm o m oot oo oo
[HLS-10] -- Scheduling module ‘yuv_filter yuv2rgb’

[HLS-18] --------mmmmmm e e o e T T s T s T e m T mm e mm i mm e m oo
[SCHED-11] Starting scheduling ...

[SCHED-11] Finished scheduling.

[HLS-111] Elapsed time: 0.13 seconds; current memory usage: 72.2 MB.
[HLS-18] —---mm o mm o m oot oo oo
[HLS-10] -- Exploring micro-architecture for module 'yuv_filter yuv2rgb’

rur e aml

Figure 3. Synthesizing (Generating) the design

Zynq 2-4

www.xilinx.com/university v
xup@xilinx.com i‘ XILINX@
© Copyright 2015 Xilinx

Lab Workbook Improving Performance Lab

@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1
@1

[HLS=1@] === = o= oo m oo oo oo oo
[HL5-18] -- Generating RTL for module ‘yuv_filter yuv2rgb’

[HLS-10] --- "o -
[RTGEN-180] Finished creating RTL model for 'yuv_filter_wyuvZrgh’.

[HL5-111] Elapsed time: ©.26 seconds; current memory usage: 73.2 MB.

[HLS=1@] === = m = mmm o m oo oo oo
[HL5-18] -- Generating RTL for module ‘yuv_filter’

[HLS-10] --- -
[RTGEN-588] Setting interface mode on port 'yuv_filter/in_channels _chl' to

[RTGEN-588] Setting interface mode on port 'yuv_filter/in_channels_ch2' to
[RTGEN-588] Setting interface mode on port 'yuv_filter/in_channels_ch3' to
[RTGEN-5@88] Setting interface mode on port ‘yuv_filter/in_width® to 'ap_nor
[RTGEN-588] Setting interface mode on port ‘yuv_filter/in_height' to ‘ap_n¢
[RTGEN-5@88] Setting interface mode on port 'yuv_filter/out_channels _chl" t«¢
[RTGEN-5@88] Setting interface mode on port 'yuv_filter/out_channels ch2" t«¢
[RTGEN-5@88] Setting interface mode on port ‘yuv_filter/out_channels _ch3" t«¢
[RTGEN-5@88] Setting interface mode on port 'yuv_filter/out width' to ‘ap_v:
[RTGEN-5@88] Setting interface mode on port 'yuv_filter/out_height' to 'ap_»
[RTGEN-5@88] Setting interface mode on port ‘yuv_filter/Y scale' to 'ap_none
[RTGEN-5@88] Setting interface mode on port 'yuv_filter/U scale' to 'ap_none
[RTGEN-5@88] Setting interface mode on port ‘yuv_filter/V _scale' to 'ap_none
[RTGEN-588] Setting interface mode on function ‘"yuv_filter' to '"ap_ctrl_hs
[RTGEN-180] Finished creating RTL model for 'yuv _filter'.

[HL5-111] Elapsed time: ©.38 seconds; current memory usage: 74 MB.
[RTMG-278] Implementing memory ‘yuv_filter p yuv_channels_chl_ram' using b
[HL5-1@] Finished generating all RTL models.

[WSYSC-381] Generating RTL SystemC for “yuv_filter'.
[WVHDL-384] Generating RTL VHDL for ‘yuv_filter'.
[WVLOG-387] Generating RTL Verileog for "yuv_filter'.

[HL5-112] Total elapsed time: 5.28 seconds; peak memory usage: 74 MB.
[LIC-101] Checked in feature [HLS]

Figure 4. Generating RTL

1-1-6. Open the created project (in GUI mode) from the Vivado HLS Command Prompt window, by
typing vivado_hls —p yuv_filter.prj.

The Vivado HLS will open in GUI mode and the project will be opened.

Analyze the Created Project and Results Step 2

2-1. Open the source file and note that three functions are used. Look at the
results and observe that the latencies don’t have definite answer
(represented by ?).

2-1-1. In Vivado HLS GUI, expand the source folder in the Explorer view and double-click yuv_filter.c
to view the content.

o

o

The design is implemented in 3 functions: rgb2yuv, yuv_scale and yuv2rgb.

Each of these filter functions iterates over the entire source image (which has maximum

dimensions specified in image_aux.h), requiring a single source pixel to produce a pixel in
the result image.

v www.xilinx.com/university Zynq 2-5
i‘ XI I—I NX® xup@xilinx.com

© Copyright 2015 Xilinx

Improving Performance Lab Lab Workbook

o The scale function simply applies individual scale factors, supplied as top-level arguments to
the Y’UV components.

o Notice that most of the variables are of user-defined (typedef) and aggregate (e.g. structure,
array) types.

o Also notice that the original source used malloc() to dynamically allocate storage for the
internal image buffers. While appropriate for such large data structures in software, malloc()
is not synthesizable and is not supported by Vivado HLS.

o Aviable workaround is conditionally compiled into the code, leveraging the __ SYNTHESIS
macro. Vivado HLS automatically defines the _ SYNTHESIS__ macro when reading any code.
This ensure the original malloc() code is used outside of synthesis but Vivado HLS will use
the workaround when synthesizing.

2-1-2. Expand the syn > report folder in the Explorer view and double-click yuv_filter_csynh.rpt entry
to open the synthesis report.

2-1-3. Each of the loops in this design has variable bounds — the width and height are defined by
members of input type image_t. When variables bounds are present on loops the total latency of
the loops cannot be determined: this impacts the ability to perform analysis using reports. Hence,
“?” is reported for various latencies.

= yuv_filter_csynth.rpt &2

sumihesss Report forary filter Synthesis Report for 'yuv filter’

General Information i
General Information

Date: Tue Jan 13 12:29:33 2015 Date: Mon Jan 12 16:29:37 2015

Version: 20144 (Build 1071461 on Tue Nov 18 o o, 2014.4 (Build 1071461 on Tue Nov 18
Project yuy filter.prj Project: yuv_filter.prj

Solution: solutionl Solution: solutionl

Product family: zynq Product family: zyng

Target device: xc7z020clg484-1 Target device: xc7z010clg400-1
Performance Estimates Performance Estimates
-1 Timing (ns) -l Timing (ns)
= Summary = Summary
Clock Target Estimated Uncertainty Clock Target Estimated Uncertainty
default 10.00 811 1.25 default 8.00 6.75 1.00
-I Latency (clock cycles) - Latency (clock cycles)
= Summary = Summary
Latency Interval Latency Interval
min max min max Type min max min max Type
| ? ? ? ? nonel | ? ? ? 7 none
(a) ZedBoard (b) Zybo

Figure 5. Latency computation

Zynq 2-6 xilinx.com/university v
. WWWXXLLFI)@)sininX.L(J:OIr\;I | iA XILINX®

© Copyright 2015 Xilinx

Lab Workbook Improving Performance Lab
Apply TRIPCOUNT Pragma Step 3
3-1. Open the source file and uncomment pragma lines, re-synthesize, and

observe the resources used as well as estimated latencies. Answer the
questions listed in the detailed section of this step.

3-1-1. To assist in providing loop-latency estimates, Vivado HLS provides a TRIPCOUNT directive
which allows limits on the variables bounds to be specified by the user. In this design, such
directives have been embedded in the source code, in the form of #pragma statements.

3-1-2. Uncomment lines (50, 53, 90, 93, 130, 133) to bring the #pragma statements into the design to
define the variable bounds.

3-1-3. Synthesize the design by selecting Solution > Run C Synthesis > Active Solution. View the
synthesis report when the process is completed.

Performance Estimates Performance Estimates
= Timing (ns) -1 Timing (ns)
- Summary - Summary
Clock Target Estimated Uncertainty Clock Target Estimated Uncertainty
default 10.00 811 1.25 default 8.00 6.75 1.00
-1 Latency (clock cycles) -1 Latency (clock cycles)
= Summary = Summary
Latency Interval Latency Interval
min max min max Type min max min max Type
601205 36875525 601206 36875526 none 641205 39333125 641206 39333126 none
(a) ZedBoard (b) Zybo
Figure 6. Latency computation after applying TRIPCOUNT pragma

3-1-4. Looking at the report, and answer the following question.

Question 1
Estimated clock period:

Worst case latency:
Number of DSP48E used:
Number of BRAMSs used:
Number of FFs used:
Number of LUTs used:
3-1-5. Scroll the Console window and note that yuv_scale function is automatically inline into the

yuv_filter function.

& XILINX.

www.xilinx.com/university
xup@xilinx.com

Zynq 2-7

© Copyright 2015 Xilinx

Improving Performance Lab Lab Workbook

@I [XFORM-602] Inlining function 'yuv scale' into 'yuv filter' (yuv filter.c:24) automatically.

@I [XFORM-401] Performing if-conversion on hyperblock from (yuv filter.c:92:33) to (yuv filter.c:92:27)
@I [XFORM-11] Balancing expressions in function 'rgb2yuv' (yuv filter.c:3@)...11 expression(s) balanced
@I [HLS-111] Elapsed time: 3.35 seconds; current memory usage: 68.7 MB.

Figure 7. Vivado HLS automatically inlining function

3-1-6. Observe that there are three entries — rgb2yuv.rpt, yuv_filter.rpt, and yuv2rgb.rpt under the syn
report folder in the Explorer view. There is no entry for yuv_scale.rpt since the function was
inlined into the yuv_filter function.

You can access lower level module’s report by either traversing down in the top-level report under
components (under Area Estimates > Details > Component) or from the reports container in the
project explorer.

3-1-7. Expand the Summary of loop latency and note the latency and trip count numbers for the
yuv_scale function. Note that the YUV_SCALE_LOOP_Y loop latency is 4X the specified
TRIPCOUNT, implying that 4 cycles are used for each of the iteration of the loop.

- Latency (clock cycles)
= Summary
Latency Interval
min max min max Type
601205 36875525 601206 36875526 none
=l Detail
- Instance
Latency Interval
Instance Module min max min max Type
grp_yuv_filter_rgb2yuv_fu_245 yuv_filter_rgb2yuv | 200401 12291841 200401 12291841 none
grp_yuv_filter_yuv2rgb_fu_265 yuv_filter_yuvZrgb | 240401 14749441 240401 14749441 none
(a) ZedBoard
- Latency (clock cycles)
= Summary
Latency Interval
min max min max Type
641205 39333125 641206 39333126 none
=l Detail
= Instance
Latency Interval
Instance Module min max min max Type
grp_yuv_filter_rgb2yuv_fu_245 yuv_filter_rgb2yuv = 240401 14749441 240401 14749441 none
grp_yuv_filter_yuv2rgb_fu_265 yuv_filter_ yuv2rgb 240401 14749441 240401 14749441 none
-l Loop
Latency Initiation Interval
Loop Name min max Iteration Latency achieved target Trip Count Pipelined
- YUV_SCALE_LOOP_X 160400 9834240 802 ~ 5122 - - 200 ~ 1920 ne
+ YUV_SCALE_LOOPY 800 5120 4 - - 200 ~ 1280 no
(b) Zybo
Figure 8. Loop latency
Zynq 2-8 www.xilinx.com/universit v
ynd Y & XILINX.

xup@xilinx.com
© Copyright 2015 Xilinx

Lab Workbook Improving Performance Lab

3-1-8. You can verify this by opening an analysis perspective view, expanding the
YUV_SCALE_LOOP_X entry, and then expanding the YUV_SCALE_LOOP_Y entry.

Current Module : vuv filter

|oneration\Control 5.1 co | c1 | ¢c2 | ca | ca | c5 | ce |
in width read(r...

in height read(...

yuv filter rgb2...

WV scale read(read)

U scale read(read)

¥ scale read(read)

SYUOV SCALE LOOP X
¥ i(phi mux)
exitcondl i (icmp)
x(+)
p addr (+)

SYUOV SCALE LOOP Y
v i(phi mux)
exitcond i(icmp)
v(+)

p addrl (+)

Y (read)

U(read)

V(read)

tmp 32 i(*)

tmp 34 i(%)

tmp 36 i(*)

node 87 (write)

node 90 (write)
25 node 93 (write)
26 | yuv filter yuvZ2...
27 | node 102 (write)
28 | node 104 (write)

[e T R T N e e e e =
BUuNROoo~Nu e wNRSWRNSWRWN -

Figure 9. Design analysis view of the YUV_SCALE_LOOP_Y loop

3-1-9. In the report tab, expand Detail > Instance section of the Ulilization Estimates and click on the
grp_rgb2yuv_fu_245 (rgb2yuv) entry to open the report.

3-1-10. Answer the following question pertaining to rgb2yuv function.
Question 2

Estimated clock period:

Worst case latency:

Number of DSP48E used:

Number of FFs used:

Number of LUTs used:

3-1-11. Similarly, open the yuv2rgb report.

v www.xilinx.com/university Zynq 2-9
i‘ XILINX® xup@xilinx.com
© Copyright 2015 Xilinx

Improving Performance Lab Lab Workbook

3-1-12.

Answer the following question pertaining to yuv2rgb function.

Question 3

3-1-13.

Estimated clock period:

Worst case latency:

Number of DSP48E used:

Number of FFs used:

Number of LUTs used:

For the rgb2yuv function the worst case latency is reported as 12291840 clock cycles. The
reported latency can be estimated as follows.

o RGB2YUV_LOOP_Y total loop latency = 5 x 1280 = 6400 cycles

o 1 entry and 1 exit clock for loop RGB2YUV_LOOP_Y = 6402 cycles

o RGB2YUV_LOOP_X loop body latency = 6402 cycles

o RGB2YUV_LOOP_X total loop latency = 6402 x 1920 =12291840 cycles

o 1 entry clock for RGB2YUV_LOOP_X = 12291841 cycles

For Zybo it is reported as 14749441

o RGB2YUV_LOOP._Y total loop latency = 6 x 1280 = 7680 cycles

o 1 entry and 1 exit clock for loop RGB2YUV_LOOP_Y = 7682 cycles

o RGB2YUV_LOOP_X loop body latency = 7682 cycles

o RGB2YUV_LOOP_X total loop latency = 7682 x 1920 =14749440 cycles
1 entry clock for RGB2YUV_LOOP_X = 14749441 cycles

Turn OFF INLINE and Apply PIPELINE Directive Step 4

4-1.

Create a new solution by copying the previous solution settings. Prevent
the automatic INLINE and apply PIPELINE directive. Generate the solution
and understand the output.

4-1-1. Select Project > New Solution or click on (<2) from the tools bar buttons.

4-1-2. A Solution Configuration dialog box will appear. Note that the check boxes of Copy existing
directives from solution and Copy custom constraints directives from solution are checked with
Solution1 selected. Click the Finish button to create a new solution with the default settings.

Zynq 2-10 www.xilinx.com/university i' XILINX

xup@xilinx.com
© Copyright 2015 Xilinx

Lab Workbook

Improving Performance Lab

’ Solution Wizard

: : : - 4 Solution Wizard [|)
Solution Configuration
Create Vivado HLS solution for selected technology Solution Configuration
Create Vivado HLS solution for selected technology
Solution Name: Iso]ution2
CGlock Solution Name: ' kolution2
Period: 10 Uncertainty: ok
! Period: 8 Uncertainty:
Part Selection N
|s| Part Selection
Part xc72020cigd84-1 B Part: Xc72010clgd00-1 =
Options Options
V| Copy directives and constraints from solution: [¥] Copy directives and constraints from solution: ~solutionl v
Finish ‘ [Cancel] Finish l [Cancel

(a) ZedBoard

(b) Zybo

Figure 10. Creating a new Solution after copying the existing solution

4-1-3.
the Directive tab.
4-1-4
4-1-5
directives. Select INLINE directive.
4-1-6.

inlining. Make sure that the Directive File is selected as destination. Click OK.

Vivado HLS Directive Editor

N

Type

Directive: | INLINE

Destination
Source File

Q) Directive File

Options

region (optional):

off (optional):

recursive (optional): [

V]

Help

||

Cancel OK

||

Figure 11. Turning OFF the inlining function

Make sure that the yuv_filter.c source is opened and visible in the information pane, and click on

Select function yuv_scale in the directives pane, right-click on it and select Insert Directive...

Click on the drop-down button of the Directive field. A pop-up menu shows up listing various

In the Vivado HLS Directive Editor dialog box, click on the off option to turn OFF the automatic

& XILINX.

www.xilinx.com/university
xup@xilinx.com
© Copyright 2015 Xilinx

Zynq 2-11

Improving Performance Lab Lab Workbook

4-1-7.

4-1-8.

4-1-9.

4-1-10.

o When an object (function or loop) is pipelined, all the loops below it, down through the
hierarchy, will be automatically unrolled.

o In order for a loop to be unrolled it must have fixed bounds: all the loops in this design have
variable bounds, defined by an input argument variable to the top-level function.

o Note that the TRIPCOUNT directive on the loops only influences reporting, it does not set
bounds for synthesis.

o Neither the top-level function nor any of the sub-functions are pipelined in this example.

o The pipeline directive must be applied to the inner-most loop in each function — the inner-
most loops have no variable-bounded loops inside of them which are required to be unrolled
and the outer loop will simply keep the inner loop fed with data

Expand the yuv_scale in the Directives tab, right-click on YUV_SCALE _LOOP_Y object and
select insert directives ..., and select PIPELINE as the directive.

Leave Il (Initiation Interval) blank as Vivado HLS will try for an Il=1, one new input every clock
cycle.

Click OK.

Similarly, apply the PIPELINE directive to YUV2RGB_LOOP_Y and RGB2YUV_LOOP_Y objects.
At this point, the Directive tab should look like as follows.

4 @ rgb2yuv
O x
Oy

- = Jree v —
r) and i o Mo yr Y amasnn +

C .
*[1 Wrgb
4 %' RGB2YUV_LOOP_X
HLS loop tripcount min=200 max=1920
4 %' RGB2YUV_LOOP_Y
% HLS PIPELINE
HLS loop_tripcount min=200 max=1280

4 @ yuv2rgb
O x

&) & - .

FGia amta 2 ", =]

RRPPON ¢ YA . Y b o ™4
~

OE
x[1 Wyuv
4 %' YUV2RGB_LOOP_X
HLS loop_tripcount min=200 max=1920
4 %' YUV2RGB_LOOP_Y
% HLS PIPELINE
HLS loop_tripcount min=200 max=1280

Zynqg 2-12 www.xilinx.com/university i‘ XILINX

xup@xilinx.com
© Copyright 2015 Xilinx

Lab Workbook Improving Performance Lab

4 © yuv_scale
% HLS INLINE off
O x
ey VO Y

® vn
4 ' YUV_SCALE_LOOP_X
HLS loop_tripcount min=200 max=1920
4 %" YUV_SCALE_LOOP_Y
% HLS PIPELINE
HLS loop_tripcount min=200 max=1280

Figure 12. PIPELINE directive applied

4-1-11. Click on the Synthesis button.

4-1-12. When the synthesis is completed, select Project > Compare Reports... or click on & to
compare the two solutions.

4-1-13. Select Solution1 and Solution2 from the Available Reports, and click on the Add>> button.
4-1-14. Observe that the latency reduced from 34417926 to 7372823 clock cycles.

Vivado HLS Report Comparison Vivado HLS Report Comparison

All Compared Solutions All Compared Solutions
solutionZ: xc7z020clg484-1 solution?: xc7z010clg400-1
solutionl: xc7z020clg484-1 solutionl: ¥c7z010clg400-1
Performance Estimates Performance Estimates
=l Timing (ns) =1 Timing (ns)
Clock solution2 solutionl Clock solution2 solutionl
default Target 10.00 10.00 default Target 8.00 8.00
Estimated 811 811 Estimated 6.75 6.75
= Latency (clock cycles) = Latency (clock cycles)
solutionZ solutionl solution2 solutionl
Latency min 120023 601205 Latency min 120024 641205
max 7372823 36875525 max 7372824 39333125
Interval min = 120024 601206 Interval min 120025 641206
max 7372824 36875526 max 7372825 39333126
(a) ZedBoard (b) Zybo

Figure 13. Performance comparison after pipelining

In Solution1, the total loop latency of the inner-most loop was loop_body_latency x loop iteration
count, whereas in Solution2 the new total loop latency of the inner-most loop is
loop_body_latency + loop iteration count.

v www.xilinx.com/university Zynqg 2-13
(A X”—INX@ xup@xilinx.com

© Copyright 2015 Xilinx

Improving Performance Lab Lab Workbook

4-1-15. Scroll down in the comparison report to view the resources utilization. Observe that the FFs,

LUTs, and DSP48E utilization increased whereas BRAM remained same.

Utilization Estimates Utilization Estimates
solution2 solutionl solution2 solutionl
BRAM_18K 7200 7200 BRAM_18K 7200 7200
DSP48E 15 12 DSPASE 15 12
FF 391 653 FF 919 706
LuUT 1305 855 LUT 1305 857
(a) ZedBoard (b) Zybo

Figure 14. Resources utilization after pipelining

Apply DATAFLOW Directive and Configuration Command Step 5

5-1.

Create a new solution by copying the previous solution (Solution2) settings.
Apply DATAFLOW directive. Generate the solution and understand the
output.

5-1-1. Select Project > New Solution or click on (2) from the tools bar buttons.

5-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution2 selected).

5-1-3. Close all inactive solution windows by selecting Project > Close Inactive Solution Tabs.

5-1-4 Mske sure that the yuv_filter.c source is opened in the information pane and select the Directive
tab.

5-1-5. Select function yuv_filter in the directives pane, right-click on it and select Insert Directive...

5-1-6. A pop-up menu shows up listing various directives. Select DATAFLOW directive and click OK.

5-1-7. Click on the Synthesis button.

5-1-8. When the synthesis is completed, the synthesis report is automatically opened.

5-1-9. Observe additional information, Dataflow Type, in the Performance Estimates section is
mentioned.

Zynq 2-14 www.xilinx.com/university i: XILINX@

xup@xilinx.com
© Copyright 2015 Xilinx

Lab Workbook

Improving Performance Lab

Performance Estimates
=l Timing (ns)
= Summary

Clock
default

Target
10.00

-l Latency (clock cycles)
- Summary

Latency

min Max

Estimated Uncertainty
811 125
Interval

min max Type

120020 7372820 40008 2457608 | dataflow |

(a) ZedBoard

Performance Estimates
-| Timing (ns)
= Summary

Clock
default

Estimated
6.72

Target
8.00

Uncertainty
100

-I Latency (clock cycles)
-l Summary
Latency Interval

min max min max Type

120021 7372821 40008 2457608
(b) Zybo

Figure 15. Performance estimate after DATAFLOW directive applied

o The Dataflow pipeline throughput indicates the number of clocks cycles between each set of
inputs reads. If this throughput value is less than the design latency it indicates the design
can start processing new inputs before the currents input data are output.

o While the overall latencies haven’t changed significantly, the dataflow throughput is showing
that the design can achieve close to the theoretical limit (1920x1280 = 2457600) of
processing one pixel every clock cycle.

5-1-10. Scrolling down into the Area Estimates, observe that the number of BRAMSs required has doubled.
This is due to the default dataflow ping-pong buffering.

Utilization Estimates

- Summary
Name BRAM_18K DSP48E
Expression
FIFO 0
Instance - 15
Memaory 14400
Multiplexer
Register -
Total 14400 15
Awvailable 280 220
Utilization (%) 5142 6
(a) ZedBoard

FF

20
897

16

933
106400
~0

LUT

112
1221

22

1357
53200

Utilization Estimates

= Summary
Name BRAM_18K DSP48E FF LUT
Expression - - 0 2
FIFO 0 20 112
Instance 15 913 1229
Memory 14400 - 0 0
Multiplexer 22
Register 16
Total 14400 15 049 1365
Available 120 80 35200 17600
Utilization (%) 12000 18 2 7
(b) Zybo

Figure 16. Resource estimate with DATAFLOW directive applied

o When DATAFLOW optimization is performed, memory buffers are automatically inserted
between the functions to ensure the next function can begin operation before the previous
function has finished. The default memory buffers are ping-pong buffers sized to fully
accommodate the largest producer or consumer array.

o Vivado HLS allows the memory buffers to be the default ping-pong buffers or FIFOs. Since
this design has data accesses which are fully sequential, FIFOs can be used. Another
advantage to using FIFOs is that the size of the FIFOs can be directly controlled (not possible
in ping-pong buffers where random accesses are allowed).

5-1-11. The memory buffers type can be selected using Vivado HLS Configuration command.

& XILINX.

www.xilinx.com/university

Zynq 2-15

xup@xilinx.com

© Copyright 2015 Xilinx

Improving Performance Lab Lab Workbook

5-2. Apply Dataflow configuration command, generate the solution, and
observe the improved resources utilization.
5-2-1. Select Solution > Solution Settings... or click on % to access the configuration command
settings.
5-2-2. In the Configuration Settings dialog box, select General and click the Add... button.
5-2-3. Select config_dataflow as the command using the drop-down button and fifo as the
default_channel. Enter 2 as the fifo_depth. Click OK.
» el X
Command:
config_dataflow -
Parameters
default_channel |fifo -
fifo_depth 2 |
Figure 17. Selecting Dataflow configuration command and FIFO as buffer
5-2-4. Click OK again.
5-2-5. Click on the Synthesis button.
5-2-6. When the synthesis is completed, the synthesis report is automatically opened.
5-2-7. Note that the performance parameter has not changed; however, resource estimates show that
the design is not using any BRAM and other resources (FF, LUT) usage has also reduced.
Utilization Estimates Utilization Estimates
= Summary = Summary
Name BRAM_18K DSP48E FF LuT Name BRAM_18K DSP48E FF LuT
Expression - - - - Expression - - -
FIFO 0 - 50 232 FIFO 0 - 50 232
Instance - 15 690 047 Instance - 15 794 924
Memory - - - - Memory - - _
Multiplexer - - - 2 Multiplexer - - - 2
Register - - 7 - Register - - 7
Total 0 15 747 1181 Total 0 15 851 1158
Available 280 220 106400 53200 Available 120 80 35200 17600
Utilization (%) 0 6 ~0 2 Utilization (%) 0 18 2 6
(a) ZedBoard (b) Zybo
Figure 18. Resource estimation after Dataflow configuration command
Zynq 2-1 xilinx.com/universi v
yng 2-16 www.xilinx.com/university iA X”_INX

xup@xilinx.com
© Copyright 2015 Xilinx

Lab Workbook

Improving Performance Lab

Export and Implement the Design in Vivado HLS

Step 6

6-1.

6-1-1.

6-1-3.

6-1-4.

In Vivado HLS, export the design, selecting VHDL as a language, and run
the implementation by selecting Evaluate option.

In Vivado HLS, select Solution > Export RTL or click on the & button to open the dialog box so
the desired implementation can be run.

An Export RTL Dialog box will open.

Click on the drop-down button of the Option field and select VHDL as the language and tick
Evaluate.

Click OK and the implementation run will begin. You can observe the progress in the Vivado HLS
Console window. When the run is completed the implementation report will be displayed in the
information pane.

Export Report for 'yuv_filter' Export Report for "yuv filter'

General Information General Information

Tue Jan 13 10:28:46 -0800 2015
xc/7z010clg400-1
Implementation tool: Xilink Vivado v.2014.4

Report date:
Device target:

Report date: Tue Jan 13 13:21:52 -0800 2015
xc7z020clg484-1

Implementation tool: Xilinx Vivado v.2014.4

Device target:

Resource Usage Resource Usage

VHDL WVHDL
SLICE 408 SLICE 367
LUT 1010 LUT 947
FF 697 FF 745
DSP 3 DSP 3
BRAM 0 BRAM 0
SRL 56 SRL 68
Final Timing Final Timing
WVHDL WHDL
CPrequired 10.000 CPrequired 8.000
CP achieved 8.596 CP achieved | 7.155
(a) ZedBoard (b) Zybo

Figure 19. Implementation results in Vivado HLS

Note that the implementation was successful, meeting the expected timings.

Close Vivado HLS by selecting File > Exit.

& XILINX.

www.xilinx.com/university
xup@xilinx.com
© Copyright 2015 Xilinx

Zynq 2-17

Improving Performance Lab Lab Workbook

Conclusion

In this lab, you learned that even though this design could not be pipelined at the top-level, a strategy of
pipelining the individual loops and then using dataflow optimization to make the functions operate in
parallel was able to achieve the same high throughput, processing one pixel per clock. When
DATAFLOW directive is applied, the default memory buffers (of ping-pong type) are automatically
inserted between the functions. Using the fact that the design used only sequential (streaming) data
accesses allowed the costly memory buffers associated with dataflow optimization to be replaced with
simple 2 element FIFOs using the Dataflow command configuration.

Zynqg 2-18 xilinx.com/university v
. WWWXXL:FI)@)gininX.L(J:OI:1 (A XILINX®

© Copyright 2015 Xilinx

Lab Workbook

Improving Performance Lab

Answers

1. Answer the following questions for yuv_filter:

Estimated clock period:

8.11 ns (ZedBoard) 6.75 ns (Zybo)

Worst case latency:

36875525 (ZedBoard) 39333125 (Zybo) clock cycles

Number of DSP48E used:

12

Number of BRAMs used:

7200

Number of FFs used:

653 (ZedBoard) 706 (Zybo)

Number of LUTs used:

855 (ZedBoard) 857 (Zybo)

2. Answer the following questions rgb2yuv:

Estimated clock period:

8.11 ns (ZedBoard) 6.75 ns (Zybo)

Worst case latency:

12291841 (ZedBoard) 14749441 (Zybo) clock cycles

Number of DSP48E used:

5

Number of FFs used:

223 (ZedBoard) 272 (Zybo)

Number of LUTs used:

286 (ZedBoard) 288 (Zybo)

3. Answer the following questions for yuv2rgb:

Estimated clock period:

7.74 ns (ZedBoard) 6.75 ns (Zybo)

Worst case latency:

14749441 (ZedBoard) 14749441 (Zybo) clock cycles

Number of DSP48E used:

4

Number of FFs used:

206 (ZedBoard) 210 (Zybo)

Number of LUTs used:

257 (ZedBoard) 257 (Zybo)

v www.xilinx.com/university Zynqg 2-19
i‘ X”—INX@ xup@xilinx.com

© Copyright 2015 Xilinx

