
WP267 (v1.0) August 15, 2007 www.xilinx.com 1

© 2007 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

FPGAs provide the ability to integrate and support
new protocols and standards with ease, as well as
product customization while still delivering rapid
time to market. With the internet and the global
market, outsourcing manufacturing has become
more popular making security a bigger factor. As
stated in articles published by industry leaders,
reverse engineering, cloning, overbuilding, and
tampering have become major security issues.
Experts estimate that each year multiple billions of
dollars in revenue are lost due to counterfeiting.
These goods threaten the economy and have a
significant effect worldwide in the consumer
markets according to the Anti-counterfeiting
Coalition. This white paper identifies the top design
security threats, explores the advanced security
options, and describes how new, low-cost
Spartan™-3A, Spartan-3AN, and Spartan-3A DSP
FPGAs from Xilinx can help protect your products
and profits.

White Paper: Spartan-3A/3AN/3A DSP

WP267 (v1.0) August 15, 2007

Advanced Security Schemes for
Spartan-3A/3AN/3A DSP FPGAs

By: Glenn Crow

R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

What are the Top Security Breaches?

WP267 (v1.0) August 15, 2007 www.xilinx.com 2

R

What are the Top Security Breaches?
The top security breaches that designs face today are reverse engineering, overbuilding,
cloning, and tampering.

Reverse engineering occurs when a thief takes your design with the intent of recreating
or rebuilding a competitive product and selling it on the open market. The effects of
reverse engineering are that the perpetrator can build the design much faster, and
minimize Research and Development costs. This has been the most common threat
since the genesis of the electronics industry.

Overbuilding is a potential concern in an outsourcing business model. In this situation,
what can occur is unauthorized overbuilding of product that is then sold through
other channels without the permission of the original equipment manufacturer. The
obvious challenge here is that this can have very adverse ramifications once this
product hits the market. Usually, the “overbuilt” products are sold at a lower cost with
a much faster time-to-market.

Cloning is when a thief creates a duplicate of your design, Intellectual Property (IP), or
product under the same or different label. The obvious benefit to the cloner is that they
incur no Research and Development costs and have a drastically reduced time-to-
market for the cloned product.

Tampering is the modification and/or replacement of the original design to gain access
to unauthorized services, to steal sensitive data, or to sabotage an application.
Tampering is a huge concern for financial, defense, and premium service audio/video
media providers.

Security Schemes in Spartan-3A/3AN/3A DSP FPGAs
The amount and type of security used to protect FPGAs is related to cost. First, it is
important to realize that there is no such thing as unbreakable security. Ultimately,
there is nothing you can do to completely stop a determined attacker from breaking a
system. If someone wants your data or design, they can use brute force to get what
they want. This is not the casual hacker, but possibly a well-funded government or a
well-funded competitor, so with that in mind you will not be creating a solution that
can never be broken but rather one that adequately protects you from the threats
commonly encountered from cloners, overbuilders, tamperers, and reverse engineers.
When you think about security, you need to consider what is appropriate for your
needs. If your product cost is $10, there is a certain amount of security that you can
afford for a system in this price range versus a system that might cost $10,000. This is
an evaluation that you will need to do. Once you have gone through that evaluation,
you can determine which set of products and which pieces of the security you might
wish to implement based on that evaluation. There are a variety of solutions available
from Xilinx that you can explore to solve your security issues. These solutions range
from very simple to more complex. Solutions that are considered to be more basic for
security implementation within the Spartan-3 Generation are addressed in the
“Security Solutions Using Spartan-3 Generation FPGAs” white paper (WP266).

This white paper explores more advanced techniques, such as:

• Bitstream Generation Security Level
• Active Defense (JTAG boundary scan)
• Bitstream Validation (Cyclic Redundancy Checking (CRC))
• Advanced Data Manipulation

http://www.xilinx.com
http://www.xilinx.com/bvdocs/whitepapers/wp266.pdf

Security Schemes in Spartan-3A/3AN/3A DSP FPGAs

WP267 (v1.0) August 15, 2007 www.xilinx.com 3

R

Beyond the Spartan product, Xilinx offers an even more advanced solution with our
Virtex™ FPGA products.

Bitstream Generation Security Level
During the test and debug phase of a design, you can decide to leave the Internal
Configuration Access Port (ICAP) or the ChipScope™ Pro Analyzer Cores in the
design for possible maintenance or for random check-ups after the design goes into
production. Some of the software utilities, such as the ChipScope Pro Analyzer,
require these macros for reading the state of internal logic. While this is handy for the
designer, it can leave a potential security hole.

The Bitstream Generator creates the configuration .bit file based on the contents of a
physical implementation file called the NCD file. The .bit file defines the behavior of
the programmed FPGA. The Bitstream Generator includes many options, some of
which are not commonly used. One of these options is the Security Level settings. The
Bitstream Generator has four settings; the first one is the default, and the remaining
three are optional and provide additional security. As shown in Table 1, Readback can
be optionally disabled completely or disabled except for internal access from the
FPGA application via the ICAP.

For a detailed explanation of all the Bitstream Generator options; refer to the Spartan-
3 Generation Configuration User Guide (UG332). Using the above security settings, Level
1, 2, and 3, will inhibit any of the following solutions that require the ICAP primitive.

Active Defense (JTAG)
A common concern is that any device with a JTAG interface is vulnerable to reverse
engineering. JTAG can also be used to reverse engineer a system, device, IP, or a
standard product by using the boundary scan chain. These actions require a well-
funded, knowledgeable, and skilled attacker who has the equipment and the time.
This organization, competitor, or government is trying to learn how a product works
and will most likely try to cost-reduce it or add features. This section discusses
methods for incorporating features into your designs to detect and prevent JTAG
reverse engineering.

JTAG boundary scan was initially designed to help test and debug I/O connectivity on
a PCB and was later adopted to include the logic inside of a chip. By using the INTEST
command with boundary scan, you can shift data into a block or IC and then clock the
IC to read back the resultant data. This operation can provide a skilled user with the
architecture or logic in an IC or a block. As shown in Figure 1, this is also one way of

Table 1: Bitstream Generator Security Level Settings

Security Level Description

None Default. Unrestricted access to all configuration and Readback functions.

Level1 Disable all Readback functions from both the configuration or JTAG ports
(external pins). Readback via the ICAP allowed.

Level2 Disable all Readback operations on all ports.

Level3

Disable all configuration and Readback functions from all configuration
and JTAG ports. The only command (in terms of Readback and
configuration) that can be issued and executed in Level3 is reboot. This
erases the configuration of the device. This has the same function as
enabling the PROG_B pin on the device, except it is done from within the
device.

http://www.xilinx.com
http://www.xilinx.com/bvdocs/userguides/ug332.pdf

Security Schemes in Spartan-3A/3AN/3A DSP FPGAs

WP267 (v1.0) August 15, 2007 www.xilinx.com 4

R

reverse engineering a design or a system. For this reason, unauthorized use of the
JTAG port is a concern for some users and the security of their products.

Spartan-3A/3AN/3A DSP devices are JTAG compliant, which allows configuration
and readback of the FPGA. JTAG compliancy also means that JTAG pins cannot be
inhibited. However, by using the Boundary Scan Block, a designer can design security
to detect and inhibit unauthorized use of the JTAG port.

Boundary Scan Block
The BSCAN_SPARTAN3A macro block (see Figure 2) gives designers access to the
boundary-scan signals. By simple instantiation of this block, the designer can monitor
the activity on the JTAG pins from inside the FPGA.

Figure 1: Standard Boundary Scan Chain

WP267_01_070207

D Q

CLR CLR

D Q
Combinational

Logic

Figure 2: BSCAN_SPARTAN3A

BSCAN_SPARTAN3A

TDO2

TDO1

SEL1

RESET

DRCK2

DRCK1

CAPTURE

TMS

TCK

SEL2

SHIFT

TDI

UPDATE

WP267_02_060507

http://www.xilinx.com

Security Schemes in Spartan-3A/3AN/3A DSP FPGAs

WP267 (v1.0) August 15, 2007 www.xilinx.com 5

R

-- BSCAN_SPARTAN3A: Boundary Scan primitive for connecting internal
-- logic to JTAG interface
-- Spartan-3A
-- Xilinx HDL Libraries Guide, version 9.1i
BSCAN_SPARTAN3A_inst : BSCAN_SPARTAN3A
port map (
TCK => TCK,
TMS => TMS,
CAPTURE => CAPTURE, -- CAPTURE output from TAP controller
DRCK1 => DRCK1, -- Data register output for USER1 functions
DRCK2 => DRCK2, -- Data register output for USER2 functions
RESET => RESET, -- Reset output from TAP controller
SEL1 => SEL1, -- USER1 active output
SEL2 => SEL2, -- USER2 active output
SHIFT => SHIFT, -- SHIFT output from TAP controller
TDI => TDI, -- TDI output from TAP controller
UPDATE => UPDATE, -- UPDATE output from TAP controller
TDO1 => TDO1, -- Data input for USER1 function
TDO2 => TDO2, -- Data input for USER2 function
);
-- End of BSCAN_SPARTAN3A_inst instantiation

How Does the Boundary Scan Block Increase Security?

As stated previously, the block enables the JTAG port to be monitored internally for
activity. If activity is detected on the port, you can design the logic to completely erase
the FPGA configuration or bypass/inhibit selected functions. The ICAP can be used to
erase the configuration of the Spartan-3A/3AN/3A DSP device. For a detailed
explanation about ICAP, refer to the Spartan-3 Generation Configuration User Guide
(UG332).

Figure 3 shows an example of bypassing key logic and functionality. The design
incorporates a bypass MUX into the key input functions that is controlled by the
output of the Detection Logic. During normal operation the signals go into the logic
but when JTAG activities are detected the signals bypass are disconnected and a set
value is placed through the logic. This makes the INTEST output completely useless
for reverse engineering the internal logic.

Figure 3: User Defined Boundary Scan Chain

D Q

CLR

D Q

CLR

Combinatorial
LogicD Q

CLR

D Q

CLR

D Q

CLR

D Q

CLR

D Q

CLR

Combinatorial
Logic

Combinatorial
Logic

http://www.xilinx.com
http://www.xilinx.com/bvdocs/userguides/ug332.pdf

Security Schemes in Spartan-3A/3AN/3A DSP FPGAs

WP267 (v1.0) August 15, 2007 www.xilinx.com 6

R

In Figure 4, the “Detection Logic” can be as simple as a gate or your application might
require more sophisticated logic.

JTAG Field Updates and Diagnostics With Security
In most cases, once a system or device is deployed and in operation, the JTAG interface
is not accessed or used. However, there is always an exception to the rule; for example,
when a system needs field updates or diagnostics, the JTAG port is required. If
detection security is implemented to protect the device from unauthorized access
through the JTAG port, this can inhibit authorized access. Several possibilities are
available for the design to implement. The first is to design the Detection Logic so it
only activates on INTEST test instructions leaving the JTAG to operate normally in all
other modes such as BYPASS, IDCODE, USERCODE, and EXTEST. This makes it
simple for field access to the JTAG port for upgrades and diagnostics.

For more complex security the Detection Logic could be designed to watch for a
specific access routine or code sequence to allow access to the JTAG normal operation
modes. This is useful when the field teams need access to the INTEST instruction for
internal test and verification of the system functionality. This can unlock the JTAG
instructions until the diagnostic testing and upgrades are complete. Once the
upgrades are complete the rebooting of the upgraded FPGA can reset the Detection
Logic. For systems only undergoing diagnostics, a code sequence can be issued which
will restart the Detection Logic monitoring.

Both methods allow necessary field service tasks to be performed without
compromising security via the JTAG Port. If the sequence detected is incorrect, then
the ICAP can be used to reset (erase).

Active Defense Logic Resource Requirements
The Spartan-3 generation has many embedded features and functions built into the
silicon. The JTAG state machine and interface logic to the ICAP are among the
embedded functions. The BSCAN_SPARTAN3A block does not require logic
resources since this function is embedded. However, user logic connected to the
instantiated JTAG block does consume logic and interconnect resources. This logic can
be as little as one logic cell or 10’s of logic cells depending on the complexity of the
user logic/function.

Figure 4: Detection Logic

BSCAN_SPARTAN3A

Detection
Logic

Bypass

Erase

TDO2

TDO1

SEL1

RESET

DRCK2

DRCK1

CAPTURE

TMS

TCK

SEL2

SHIFT

TDI

UPDATE

WP267_03_081307

http://www.xilinx.com

Security Schemes in Spartan-3A/3AN/3A DSP FPGAs

WP267 (v1.0) August 15, 2007 www.xilinx.com 7

R

Active Defense Conclusion
With a little extra logic, you can detect and increase the security against reverse
engineering by instantiating the Boundary Scan Block and simple Detection Logic
when designing with a Spartan-3A/3AN/3A DSP FPGA.

Bitstream Validation
This section is focused on how to deter tampering of the configuration bitstream. A
person who is interested in tampering a design may try to modify the original design
to gain access to unauthorized services, steal sensitive data, or sabotage an
application. By validating the device configuration during normal operation, an
altered configuration can be detected and the design can decide how to handle the
tampering. There are many ways to implement a validation circuit. One simple
example is illustrated in Figure 5 using ICAP and CRC.

ICAP Block
The ICAP block enables interface between the fabric and the FPGA configuration
controller. This block primitive is like the Boundary Scan Block primitive in that its
instantiation does not require extra logic cells because the ports are embedded in the
FPGA. To read the configuration bitstream after the device is configured, the ICAP
macro must be instantiated. The ICAP block is also commonly used for MultiBoot
capability in the Spartan-3A/3AN/3A DSP platforms. If the ICAP is being used for
more than one function, such as MultiBoot and bitstream validation then signal
priority and control will need to be taken into consideration when connecting to ICAP.
This can be as simple as a multiplexer or more complex arbitration logic.

Figure 5: Bitstream Validation

Flash Memory

Stored Check Code

ICAP

ICAP
Controller

Stored Check
Code

CRC

System
Control=

CompareFlash Memory

Stored Check Code

ICAP

ICAP
Controller

Stored Check
Code
Stored Check
Code

CRC

System
Control
System
Control=

Compare

=

Compare

http://www.xilinx.com

Security Schemes in Spartan-3A/3AN/3A DSP FPGAs

WP267 (v1.0) August 15, 2007 www.xilinx.com 8

R

Figure 6 shows the schematic symbol of the ICAP primitive followed by the VHDL
instantiation template.

-- ICAP_SPARTAN3A: Internal Configuration Access Port
-- Spartan-3A
-- Xilinx HDL Libraries Guide, Version 9.1.3i

ICAP_SPARTAN3A_inst : ICAP_SPARTAN3A
port map (

BUSY => BUSY, -- Busy output
0 => 0, -- 8-bit data output
CE => CE, -- Clock enable input
CLK => CLK, -- Clock input
I => I, -- 8-bit data input
WRITE => WRITE -- Write input

);

-- End of ICAP_SPARTAN3A_inst instantiation

Cyclic Redundancy Checking (CRC)
CRC is a type of check sum that is used to detect errors most commonly in data
transmission and reception. It is incorporated in Bluetooth, Ethernet, USB, and
satellite communication, as well as in the configuration of the FPGA. Xilinx FPGAs
have a self check capability to verify the bitstream as the device loads the
configuration. The CRC is calculated and compared to the Stored Value in the
generated bitstream; if the two values are equal, the “Done” pin goes high indicating
a successful configuration.

CRC algorithms are simple yet a highly effective way to check the integrity of the data.
Hashing algorithms can also be used to validate the FPGA configuration. The choice
of CRC or hashing algorithms is completely up to the designer.

Figure 6: ICAP_SPARTAN3A

ICAP_SPARTAN3AI[7:0]

WRITE

CE

CLK

BUSY

O[7:0]

WP267_01_060507

http://www.xilinx.com

Security Schemes in Spartan-3A/3AN/3A DSP FPGAs

WP267 (v1.0) August 15, 2007 www.xilinx.com 9

R

Simple Bitstream Validation
The ICAP block is used to read the device configuration, which is then sent to a CRC
that generates an active resulting value. The Active Value is then compared to the
stored CRC Stored Value. In this example, the Stored Value is in an empty
configuration memory location. If the two values are equal, then the configuration is
correct. If the values are different then the device has been tampered with and the
designer can determine the action. Some common actions that can be taken are as
follows:

• Reload Configuration

By using the ICAP block the FPGA can be erased and reconfigured. If the main
configuration has been tampered with this will result in the FPGA continuously
reconfiguring

• No Functionality

The design completely stops functioning. This can be easily implemented in a
Spartan FPGA by using global control signals like 3-state, Gated Clocks, Flip-flop
clock enable and so on.

Additional action can be taken based on the design need.

Logic Resource Requirements
Using the embedded ICAP block uses no logic resource in the FPGA. There are a
variety of CRC and hashing algorithms to choose from which are as simple as a few
logic cells to hundreds of logic cells for the more complex algorithms.

Bitstream Validation Conclusion
Protecting data and access is more important to some designs than the design
functionality. Simple bitstream validation can aid in the protection of the data, access,
and design functionality being attacked by tamperers.

Advanced Data Manipulation
The Device DNA and the Stored Check Code are not a secret to the outside world;
anyone can access this information. For more information on Device DNA security, see
the “Security Solutions Using Spartan-3 Generation FPGAs” white paper (WP266).
The real secret of the Device DNA design level security is the “security algorithm.” For
some designs the security requirements need more than the default 57-bit Device
DNA to increase protection from brute force attacks. The Device DNA was designed
with the ability to add additional bits for increased security. The more Device DNA
bits used, the longer it takes to complete a brute force attack. A brute force attack is
when a cloner or overbuilder attempts to discover your security algorithm with the
goal of generating the Stored Check Code. At some point, it becomes outrageously
long, somewhat impossible, or not worthwhile to attempt a brute force attack. The
total time for a brute force attack is a combination of the number of bits in the Device
DNA and the Stored Check Code.

http://www.xilinx.com
http://www.xilinx.com/bvdocs/whitepapers/wp266.pdf

Security Schemes in Spartan-3A/3AN/3A DSP FPGAs

WP267 (v1.0) August 15, 2007 www.xilinx.com 10

R

Additional security to aid against brute force attacks by using data manipulation of
the Device DNA is shown in Figure 7. In this example, the design is constructed to add
64,000 bits to the Device DNA, which is stored in the Spartan-3AN user flash memory.
This can just as easily be stored in the configuration memory or system memory. After
the Device DNA, a sorter is inserted into the design. The sorter is simply a de-
multiplexer, and a counter that is decoded to control the de-multiplexer’s select lines.
The first output of the de-multiplexer is sending data to the security algorithm and the
second output dumps bits into the proverbial bit bucket. This simple circuit has now
altered the Device DNA relationship to the Stored Check Code, making a brute force
attack or reverse engineering of the security algorithm even more difficult.

Advanced Data Manipulation on the Stored Check Code and Algorithm Control
Further expansion of the data manipulation technique can be used to incorporate the
Stored Check Code. Figure 8 shows an example in which the data manipulation sorter
has been expanded to combine the additional Device DNA bits with the Stored Check
Code. Now, the cloner or overbuilder only sees the Device DNA being read into the
FPGA. This makes it very difficult for a cloner or overbuilder to first reverse engineer
the Device DNA, the Stored Check Code and the trash bits, and then continue to
reverse engineer the security algorithm. In this example, a third de-multiplexer output
has been added to separate out the Stored Check Code and send it to the comparator.

Figure 7: Data Manipulation of Device DNA

Device DNA

De-Multiplexer

Stored Check Code

Active
Check
CodeSecurity

Algorithm

Key/Seed Code
(if needed)

Sorter

Counter &
Decode

User Memory
Added Device DNA bits

Stored Check Code

=

Device DNADevice DNA

De-Multiplexer

Stored Check Code

Active
Check
CodeSecurity

Algorithm

Key/Seed Code
(if needed)

Key/Seed Code
(if needed)

Sorter

Counter &
Decode
Counter &
Decode

User Memory
Added Device DNA bits

Stored Check Code

User Memory
Added Device DNA bits

Stored Check Code

Added Device DNA bits

Stored Check Code

==

Figure 8: Data Manipulation on Stored Check Code

Device DNA

De-Multiplexer

Stored Check Code

Active
Check
CodeSecurity

Algorithm

Key/Seed Code
(if needed)

Sorter

Counter &
Decode

User Memory
Added Device DNA bits

=
Device DNADevice DNA

De-Multiplexer

Stored Check Code

Active
Check
CodeSecurity

Algorithm

Key/Seed Code
(if needed)

Sorter

Counter &
Decode
Counter &
Decode

User Memory
Added Device DNA bits

==

http://www.xilinx.com

Conclusion

WP267 (v1.0) August 15, 2007 www.xilinx.com 11

R

This data manipulation can be taken even further by adding a fourth output to the De-
multiplexer and connecting it directly to the security algorithm as seen in Figure 9.
Based on the security algorithm selected, this can allow the designer to alter his seed
values, security key, or even the algorithm itself resulting in another layer of security
to prevent cloning or overbuilding. Also, with this data manipulation the hardware
design in the FPGA remains 100% the same, but the security algorithm is altered. This
altering of the added security algorithm allows for easy upgrade of the design security
in the manufacturing flow or even in the field.

Logic Resource Requirements
The data manipulation sorter is a de-multiplexer, and a counter that is decoded to
control the de-multiplexer’s select lines that can be implemented in as few as 10’s of
logic cells.

Advanced Data Manipulation Conclusion
Advanced data manipulation helps protect FPGA designs from cloners and
overbuilders attempting brute force attacks while also providing a simple and quick
way to upgrade the security.

Conclusion
This white paper presents multiple advanced security schemes that can be
incorporated by a designer to help defend against cloning, unauthorized
overbuilding, reverse engineering, and tampering of a design or system. Part of the
advanced methods described are also layering techniques. This technique
incorporates various schemes to reduce multiple vulnerabilities simultaneously.

Revision History
The following table shows the revision history for this document.

Figure 9: Adding Fourth Output to De-Multiplexer

Key/Seed Code
Algorithm Control

Device DNA

De-Multiplexer

Stored Check Code

Active
Check
CodeSecurity

Algorithm

Key/Seed Code
(if needed)

Sorter

Counter &
Decode

User Memory
Added Device DNA bits

=

Key/Seed Code
Algorithm Control

Device DNADevice DNA

De-Multiplexer

Stored Check Code

Active
Check
CodeSecurity

Algorithm

Key/Seed Code
(if needed)

Sorter

Counter &
Decode
Counter &
Decode

User Memory
Added Device DNA bits

==

Date Version Revision

08/15/07 1.0 Initial Xilinx release.

http://www.xilinx.com

	Advanced Security Schemes for Spartan-3A/3AN/3A DSP FPGAs
	What are the Top Security Breaches?
	Security Schemes in Spartan-3A/3AN/3A DSP FPGAs
	Bitstream Generation Security Level
	Active Defense (JTAG)
	Bitstream Validation
	Advanced Data Manipulation

	Conclusion
	Revision History

