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FPGAs provide the ability to integrate and support
new protocols and standards with ease, as well as
product customization while still delivering rapid
time to market. With the internet and the global
market, outsourcing manufacturing has become
more popular making security a bigger factor. As
stated in articles published by industry leaders,
reverse engineering, cloning, overbuilding, and
tampering have become major security issues.
Experts estimate that each year multiple billions of
dollars in revenue are lost due to counterfeiting.
These goods threaten the economy and have a
significant effect worldwide in the consumer
markets according to the Anti-counterfeiting
Coalition. This white paper identifies the top design
security threats, explores the advanced security
options, and describes how new, low-cost
Spartan™-3A, Spartan-3AN, and Spartan-3A DSP
FPGAs from Xilinx can help protect your products
and profits.
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What are the Top Security Breaches?
The top security breaches that designs face today are reverse engineering, overbuilding, 
cloning, and tampering.

Reverse engineering occurs when a thief takes your design with the intent of recreating 
or rebuilding a competitive product and selling it on the open market. The effects of 
reverse engineering are that the perpetrator can build the design much faster, and 
minimize Research and Development costs. This has been the most common threat 
since the genesis of the electronics industry. 

Overbuilding is a potential concern in an outsourcing business model. In this situation, 
what can occur is unauthorized overbuilding of product that is then sold through 
other channels without the permission of the original equipment manufacturer. The 
obvious challenge here is that this can have very adverse ramifications once this 
product hits the market. Usually, the “overbuilt” products are sold at a lower cost with 
a much faster time-to-market. 

Cloning is when a thief creates a duplicate of your design, Intellectual Property (IP), or 
product under the same or different label. The obvious benefit to the cloner is that they 
incur no Research and Development costs and have a drastically reduced time-to-
market for the cloned product.

Tampering is the modification and/or replacement of the original design to gain access 
to unauthorized services, to steal sensitive data, or to sabotage an application. 
Tampering is a huge concern for financial, defense, and premium service audio/video 
media providers.

Security Schemes in Spartan-3A/3AN/3A DSP FPGAs
The amount and type of security used to protect FPGAs is related to cost. First, it is 
important to realize that there is no such thing as unbreakable security. Ultimately, 
there is nothing you can do to completely stop a determined attacker from breaking a 
system. If someone wants your data or design, they can use brute force to get what 
they want. This is not the casual hacker, but possibly a well-funded government or a 
well-funded competitor, so with that in mind you will not be creating a solution that 
can never be broken but rather one that adequately protects you from the threats 
commonly encountered from cloners, overbuilders, tamperers, and reverse engineers. 
When you think about security, you need to consider what is appropriate for your 
needs. If your product cost is $10, there is a certain amount of security that you can 
afford for a system in this price range versus a system that might cost $10,000. This is 
an evaluation that you will need to do. Once you have gone through that evaluation, 
you can determine which set of products and which pieces of the security you might 
wish to implement based on that evaluation. There are a variety of solutions available 
from Xilinx that you can explore to solve your security issues. These solutions range 
from very simple to more complex. Solutions that are considered to be more basic for 
security implementation within the Spartan-3 Generation are addressed in the 
“Security Solutions Using Spartan-3 Generation FPGAs” white paper (WP266).

This white paper explores more advanced techniques, such as:

• Bitstream Generation Security Level
• Active Defense (JTAG boundary scan)
• Bitstream Validation (Cyclic Redundancy Checking (CRC))
• Advanced Data Manipulation

http://www.xilinx.com
http://www.xilinx.com/bvdocs/whitepapers/wp266.pdf


Security Schemes in Spartan-3A/3AN/3A DSP FPGAs

WP267 (v1.0) August 15, 2007 www.xilinx.com  3

R

Beyond the Spartan product, Xilinx offers an even more advanced solution with our 
Virtex™ FPGA products.

Bitstream Generation Security Level
During the test and debug phase of a design, you can decide to leave the Internal 
Configuration Access Port (ICAP) or the ChipScope™ Pro Analyzer Cores in the 
design for possible maintenance or for random check-ups after the design goes into 
production. Some of the software utilities, such as the ChipScope Pro Analyzer, 
require these macros for reading the state of internal logic. While this is handy for the 
designer, it can leave a potential security hole.

The Bitstream Generator creates the configuration .bit file based on the contents of a 
physical implementation file called the NCD file. The .bit file defines the behavior of 
the programmed FPGA. The Bitstream Generator includes many options, some of 
which are not commonly used. One of these options is the Security Level settings. The 
Bitstream Generator has four settings; the first one is the default, and the remaining 
three are optional and provide additional security. As shown in Table 1, Readback can 
be optionally disabled completely or disabled except for internal access from the 
FPGA application via the ICAP.

For a detailed explanation of all the Bitstream Generator options; refer to the Spartan-
3 Generation Configuration User Guide (UG332). Using the above security settings, Level 
1, 2, and 3, will inhibit any of the following solutions that require the ICAP primitive.

Active Defense (JTAG)
A common concern is that any device with a JTAG interface is vulnerable to reverse 
engineering. JTAG can also be used to reverse engineer a system, device, IP, or a 
standard product by using the boundary scan chain. These actions require a well-
funded, knowledgeable, and skilled attacker who has the equipment and the time. 
This organization, competitor, or government is trying to learn how a product works 
and will most likely try to cost-reduce it or add features. This section discusses 
methods for incorporating features into your designs to detect and prevent JTAG 
reverse engineering.

JTAG boundary scan was initially designed to help test and debug I/O connectivity on 
a PCB and was later adopted to include the logic inside of a chip. By using the INTEST 
command with boundary scan, you can shift data into a block or IC and then clock the 
IC to read back the resultant data. This operation can provide a skilled user with the 
architecture or logic in an IC or a block. As shown in Figure 1, this is also one way of 

Table  1:  Bitstream Generator Security Level Settings

Security Level Description

None Default. Unrestricted access to all configuration and Readback functions.

Level1 Disable all Readback functions from both the configuration or JTAG ports 
(external pins). Readback via the ICAP allowed.

Level2 Disable all Readback operations on all ports. 

Level3

Disable all configuration and Readback functions from all configuration 
and JTAG ports. The only command (in terms of Readback and 
configuration) that can be issued and executed in Level3 is reboot. This 
erases the configuration of the device. This has the same function as 
enabling the PROG_B pin on the device, except it is done from within the 
device.

http://www.xilinx.com
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reverse engineering a design or a system. For this reason, unauthorized use of the 
JTAG port is a concern for some users and the security of their products.

Spartan-3A/3AN/3A DSP devices are JTAG compliant, which allows configuration 
and readback of the FPGA. JTAG compliancy also means that JTAG pins cannot be 
inhibited. However, by using the Boundary Scan Block, a designer can design security 
to detect and inhibit unauthorized use of the JTAG port. 

Boundary Scan Block 
The BSCAN_SPARTAN3A macro block (see Figure 2) gives designers access to the 
boundary-scan signals. By simple instantiation of this block, the designer can monitor 
the activity on the JTAG pins from inside the FPGA. 

Figure 1: Standard Boundary Scan Chain
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-- BSCAN_SPARTAN3A: Boundary Scan primitive for connecting internal 
-- logic to JTAG interface
-- Spartan-3A
-- Xilinx HDL Libraries Guide, version 9.1i
BSCAN_SPARTAN3A_inst : BSCAN_SPARTAN3A
port map (
TCK => TCK,
TMS => TMS,
CAPTURE => CAPTURE, -- CAPTURE output from TAP controller
DRCK1 => DRCK1, -- Data register output for USER1 functions
DRCK2 => DRCK2, -- Data register output for USER2 functions
RESET => RESET, -- Reset output from TAP controller
SEL1 => SEL1, -- USER1 active output
SEL2 => SEL2, -- USER2 active output
SHIFT => SHIFT, -- SHIFT output from TAP controller
TDI => TDI, -- TDI output from TAP controller
UPDATE => UPDATE, -- UPDATE output from TAP controller
TDO1 => TDO1, -- Data input for USER1 function
TDO2 => TDO2, -- Data input for USER2 function
);
-- End of BSCAN_SPARTAN3A_inst instantiation

How Does the Boundary Scan Block Increase Security?

As stated previously, the block enables the JTAG port to be monitored internally for 
activity. If activity is detected on the port, you can design the logic to completely erase 
the FPGA configuration or bypass/inhibit selected functions. The ICAP can be used to 
erase the configuration of the Spartan-3A/3AN/3A DSP device. For a detailed 
explanation about ICAP, refer to the Spartan-3 Generation Configuration User Guide 
(UG332).

Figure 3 shows an example of bypassing key logic and functionality. The design 
incorporates a bypass MUX into the key input functions that is controlled by the 
output of the Detection Logic. During normal operation the signals go into the logic 
but when JTAG activities are detected the signals bypass are disconnected and a set 
value is placed through the logic. This makes the INTEST output completely useless 
for reverse engineering the internal logic.

Figure 3: User Defined Boundary Scan Chain
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In Figure 4, the “Detection Logic” can be as simple as a gate or your application might 
require more sophisticated logic. 

JTAG Field Updates and Diagnostics With Security
In most cases, once a system or device is deployed and in operation, the JTAG interface 
is not accessed or used. However, there is always an exception to the rule; for example, 
when a system needs field updates or diagnostics, the JTAG port is required. If 
detection security is implemented to protect the device from unauthorized access 
through the JTAG port, this can inhibit authorized access. Several possibilities are 
available for the design to implement. The first is to design the Detection Logic so it 
only activates on INTEST test instructions leaving the JTAG to operate normally in all 
other modes such as BYPASS, IDCODE, USERCODE, and EXTEST. This makes it 
simple for field access to the JTAG port for upgrades and diagnostics.

For more complex security the Detection Logic could be designed to watch for a 
specific access routine or code sequence to allow access to the JTAG normal operation 
modes. This is useful when the field teams need access to the INTEST instruction for 
internal test and verification of the system functionality. This can unlock the JTAG 
instructions until the diagnostic testing and upgrades are complete. Once the 
upgrades are complete the rebooting of the upgraded FPGA can reset the Detection 
Logic. For systems only undergoing diagnostics, a code sequence can be issued which 
will restart the Detection Logic monitoring.

Both methods allow necessary field service tasks to be performed without 
compromising security via the JTAG Port. If the sequence detected is incorrect, then 
the ICAP can be used to reset (erase).

Active Defense Logic Resource Requirements
The Spartan-3 generation has many embedded features and functions built into the 
silicon. The JTAG state machine and interface logic to the ICAP are among the 
embedded functions. The BSCAN_SPARTAN3A block does not require logic 
resources since this function is embedded. However, user logic connected to the 
instantiated JTAG block does consume logic and interconnect resources. This logic can 
be as little as one logic cell or 10’s of logic cells depending on the complexity of the 
user logic/function.

Figure 4: Detection Logic
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Active Defense Conclusion
With a little extra logic, you can detect and increase the security against reverse 
engineering by instantiating the Boundary Scan Block and simple Detection Logic 
when designing with a Spartan-3A/3AN/3A DSP FPGA.

Bitstream Validation
This section is focused on how to deter tampering of the configuration bitstream. A 
person who is interested in tampering a design may try to modify the original design 
to gain access to unauthorized services, steal sensitive data, or sabotage an 
application. By validating the device configuration during normal operation, an 
altered configuration can be detected and the design can decide how to handle the 
tampering. There are many ways to implement a validation circuit. One simple 
example is illustrated in Figure 5 using ICAP and CRC.

ICAP Block
The ICAP block enables interface between the fabric and the FPGA configuration 
controller. This block primitive is like the Boundary Scan Block primitive in that its 
instantiation does not require extra logic cells because the ports are embedded in the 
FPGA. To read the configuration bitstream after the device is configured, the ICAP 
macro must be instantiated. The ICAP block is also commonly used for MultiBoot 
capability in the Spartan-3A/3AN/3A DSP platforms. If the ICAP is being used for 
more than one function, such as MultiBoot and bitstream validation then signal 
priority and control will need to be taken into consideration when connecting to ICAP. 
This can be as simple as a multiplexer or more complex arbitration logic.

Figure 5: Bitstream Validation
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Figure 6 shows the schematic symbol of the ICAP primitive followed by the VHDL 
instantiation template.

-- ICAP_SPARTAN3A: Internal Configuration Access Port
-- Spartan-3A
-- Xilinx HDL Libraries Guide, Version 9.1.3i

ICAP_SPARTAN3A_inst : ICAP_SPARTAN3A
port map (

BUSY => BUSY, -- Busy output
0 => 0, -- 8-bit data output
CE => CE, -- Clock enable input
CLK => CLK, -- Clock input
I => I, -- 8-bit data input
WRITE => WRITE -- Write input

);

-- End of ICAP_SPARTAN3A_inst instantiation

Cyclic Redundancy Checking (CRC)
CRC is a type of check sum that is used to detect errors most commonly in data 
transmission and reception. It is incorporated in Bluetooth, Ethernet, USB, and 
satellite communication, as well as in the configuration of the FPGA. Xilinx FPGAs 
have a self check capability to verify the bitstream as the device loads the 
configuration. The CRC is calculated and compared to the Stored Value in the 
generated bitstream; if the two values are equal, the “Done” pin goes high indicating 
a successful configuration. 

CRC algorithms are simple yet a highly effective way to check the integrity of the data. 
Hashing algorithms can also be used to validate the FPGA configuration. The choice 
of CRC or hashing algorithms is completely up to the designer.

Figure 6: ICAP_SPARTAN3A
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Simple Bitstream Validation 
The ICAP block is used to read the device configuration, which is then sent to a CRC 
that generates an active resulting value. The Active Value is then compared to the 
stored CRC Stored Value. In this example, the Stored Value is in an empty 
configuration memory location. If the two values are equal, then the configuration is 
correct. If the values are different then the device has been tampered with and the 
designer can determine the action. Some common actions that can be taken are as 
follows:

• Reload Configuration

By using the ICAP block the FPGA can be erased and reconfigured. If the main 
configuration has been tampered with this will result in the FPGA continuously 
reconfiguring

• No Functionality

The design completely stops functioning. This can be easily implemented in a 
Spartan FPGA by using global control signals like 3-state, Gated Clocks, Flip-flop 
clock enable and so on.

Additional action can be taken based on the design need.

Logic Resource Requirements
Using the embedded ICAP block uses no logic resource in the FPGA. There are a 
variety of CRC and hashing algorithms to choose from which are as simple as a few 
logic cells to hundreds of logic cells for the more complex algorithms.

Bitstream Validation Conclusion
Protecting data and access is more important to some designs than the design 
functionality. Simple bitstream validation can aid in the protection of the data, access, 
and design functionality being attacked by tamperers.

Advanced Data Manipulation
The Device DNA and the Stored Check Code are not a secret to the outside world; 
anyone can access this information. For more information on Device DNA security, see 
the “Security Solutions Using Spartan-3 Generation FPGAs” white paper (WP266). 
The real secret of the Device DNA design level security is the “security algorithm.” For 
some designs the security requirements need more than the default 57-bit Device 
DNA to increase protection from brute force attacks. The Device DNA was designed 
with the ability to add additional bits for increased security. The more Device DNA 
bits used, the longer it takes to complete a brute force attack. A brute force attack is 
when a cloner or overbuilder attempts to discover your security algorithm with the 
goal of generating the Stored Check Code. At some point, it becomes outrageously 
long, somewhat impossible, or not worthwhile to attempt a brute force attack. The 
total time for a brute force attack is a combination of the number of bits in the Device 
DNA and the Stored Check Code. 

http://www.xilinx.com
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Additional security to aid against brute force attacks by using data manipulation of 
the Device DNA is shown in Figure 7. In this example, the design is constructed to add 
64,000 bits to the Device DNA, which is stored in the Spartan-3AN user flash memory. 
This can just as easily be stored in the configuration memory or system memory. After 
the Device DNA, a sorter is inserted into the design. The sorter is simply a de-
multiplexer, and a counter that is decoded to control the de-multiplexer’s select lines. 
The first output of the de-multiplexer is sending data to the security algorithm and the 
second output dumps bits into the proverbial bit bucket. This simple circuit has now 
altered the Device DNA relationship to the Stored Check Code, making a brute force 
attack or reverse engineering of the security algorithm even more difficult.

Advanced Data Manipulation on the Stored Check Code and Algorithm Control
Further expansion of the data manipulation technique can be used to incorporate the 
Stored Check Code. Figure 8 shows an example in which the data manipulation sorter 
has been expanded to combine the additional Device DNA bits with the Stored Check 
Code. Now, the cloner or overbuilder only sees the Device DNA being read into the 
FPGA. This makes it very difficult for a cloner or overbuilder to first reverse engineer 
the Device DNA, the Stored Check Code and the trash bits, and then continue to 
reverse engineer the security algorithm. In this example, a third de-multiplexer output 
has been added to separate out the Stored Check Code and send it to the comparator. 

Figure 7: Data Manipulation of Device DNA

Device DNA

De-Multiplexer

Stored Check  Code

Active 
Check
CodeSecurity   

Algorithm   

Key/Seed Code
(if needed)

Sorter

Counter & 
Decode

User Memory
Added Device DNA bits

Stored Check Code

=

Device DNADevice DNA

De-Multiplexer

Stored Check  Code

Active 
Check
CodeSecurity   

Algorithm   

Key/Seed Code
(if needed)

Key/Seed Code
(if needed)

Sorter

Counter & 
Decode
Counter & 
Decode

User Memory
Added Device DNA bits

Stored Check Code

User Memory
Added Device DNA bits

Stored Check Code

Added Device DNA bits

Stored Check Code

==

Figure 8: Data Manipulation on Stored Check Code

Device DNA

De-Multiplexer

Stored Check  Code

Active 
Check
CodeSecurity   

Algorithm   

Key/Seed Code
(if needed)

Sorter

Counter & 
Decode

User Memory
Added Device DNA bits

=
Device DNADevice DNA

De-Multiplexer

Stored Check  Code

Active 
Check
CodeSecurity   

Algorithm   

Key/Seed Code
(if needed)

Sorter

Counter & 
Decode
Counter & 
Decode

User Memory
Added Device DNA bits

==

http://www.xilinx.com


Conclusion

WP267 (v1.0) August 15, 2007 www.xilinx.com  11

R

This data manipulation can be taken even further by adding a fourth output to the De-
multiplexer and connecting it directly to the security algorithm as seen in Figure 9. 
Based on the security algorithm selected, this can allow the designer to alter his seed 
values, security key, or even the algorithm itself resulting in another layer of security 
to prevent cloning or overbuilding. Also, with this data manipulation the hardware 
design in the FPGA remains 100% the same, but the security algorithm is altered. This 
altering of the added security algorithm allows for easy upgrade of the design security 
in the manufacturing flow or even in the field.

Logic Resource Requirements
The data manipulation sorter is a de-multiplexer, and a counter that is decoded to 
control the de-multiplexer’s select lines that can be implemented in as few as 10’s of 
logic cells. 

Advanced Data Manipulation Conclusion
Advanced data manipulation helps protect FPGA designs from cloners and 
overbuilders attempting brute force attacks while also providing a simple and quick 
way to upgrade the security.

Conclusion
This white paper presents multiple advanced security schemes that can be 
incorporated by a designer to help defend against cloning, unauthorized 
overbuilding, reverse engineering, and tampering of a design or system. Part of the 
advanced methods described are also layering techniques. This technique 
incorporates various schemes to reduce multiple vulnerabilities simultaneously.

Revision History
The following table shows the revision history for this document. 

Figure 9: Adding Fourth Output to De-Multiplexer
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