How to Design a High-Speed Memory Interface
Connectivity 3

MEM21000-ILT (v1.0)

Course Specification

- 7 Series Memory Interface Resources
- Memory Controller Details and Signals
- MIG Design Generation
- Lab 1: MIG Core Generation
- MIG Design Simulation
- Lab 2: MIG Design Simulation

Day 2
- Memory Design Implementation
- Lab 3: MIG Design Implementation
- Memory Interface Test and Debugging
- Lab 4: MIG Design Debugging
- MIG in Embedded Designs
- Lab 5: MIG in IP Integrator
- Memory Interface Board-Level Design
- DDR3 PCB Simulation (optional)
- Lab 6: DDR3 Signal Integrity Simulation (optional)

Lab Descriptions
- Lab 1: MIG Core Generation – Create a DDR3 memory controller using the Memory Interface Generator (MIG) in the Vivado IP catalog. Customize the soft core memory controller for the board.
- Lab 2: MIG Design Simulation – Simulate the memory controller created in Lab 1 using the Vivado simulator or Mentor Graphics QuestaSim simulator.
- Lab 3: MIG Design Implementation – Implement the memory controller created in the previous labs. Modify constraints, synthesize, implement, create the bitstream, program the FPGA, and check the functionality.
- Lab 4: MIG Design Debugging – Debug the memory interface design utilizing the Vivado logic analyzer.
- Lab 5: MIG in IP Integrator – Use the block design editor to include the MIG IP in a given processor design.
- Lab 6: DDR3 Signal Integrity Analysis – Learn basic signal analysis options to check waveforms and design optimization (optional).

Register Today
Xilinx’s network of Authorized Training Providers (ATP) delivers public and private courses in locations throughout the world. Please contact your closest ATP for more information, to view schedules, or to register online.

Visit www.xilinx.com/training and click on the region where you want to attend a course.

America, contact your training provider at www.xilinx.com/training/atp.htm#NA or send your inquiries to registrar@xilinx.com.

Europe, contact your training provider at www.xilinx.com/training/atp.htm#EU or send your inquiries to eurotraining@xilinx.com.

Asia Pacific, contact your training provider at www.xilinx.com/training/atp.htm#AP, or send your inquiries to education_ap@xilinx.com, or call +61-3-8744-7970.

Japan, contact your training provider at www.xilinx.com/training/atp.htm#JP, or send your inquiries to education_kk@xilinx.com, or call +81-3-6744-7970.

Course Description
This course teaches hardware designers who are new to high-speed memory I/O to design a memory interface in Xilinx FPGAs. It introduces designers to the basic concepts of high-speed memory I/O design, implementation, and debug using Xilinx 7 series FPGAs. Additionally, students will learn about the tools available for high-speed memory interface design, debug, and implementation of high-speed memory interfaces.

The major memory types covered are DDR2 and DDR3. The following memory types are covered on demand: RLDRAMII, LPDDR2, and QDRII+. Labs are available for DDR3 on the Kintex®-7 FPGA KC705 board.

Level – Connectivity 3
Course Duration – 2 days
Course Part Number – MEM21000-ILT
Who Should Attend? – FPGA designers and logic designers

Prerequisites
- VHDL or Verilog experience or Designing with VHDL or Designing with Verilog course
- Familiarity with logic design: state machines and synchronous design
- Very helpful to have:
 - Basic knowledge of FPGA architecture
 - Familiarity with Xilinx implementation tools
- Nice to have:
 - Familiarity with I/O basics
 - Familiarity with high-speed I/O standards

Software Tools
- Vivado® Design or System Edition 2014.1
- Mentor Graphics QuestaSim Prime Simulator 10.2c
- Mentor Graphics HyperLynx SI

Hardware
- Architecture: 7 series FPGAs*
- Demo board: Kintex-7 FPGA KC705 board*

* This course focuses on the 7 series architecture. Check with your local Authorized Training Provider for the specifics of the in-class lab board or other customizations.

After completing this comprehensive training, you will have the necessary skills to:
- Identify the FPGA resources required for memory interfaces
- Describe different types of memories
- Utilize Xilinx tools to generate memory interface designs
- Simulate memory interfaces with the Xilinx Vivado simulator
- Implement memory interfaces
- Identify the board design options for the realization of memory interfaces
- Test and debug your memory interface design
- Run basic memory interface signal integrity simulations

Course Outline
Day 1
- Course Introduction
- 7 Series FPGAs Overview
- Memory Devices Overview

Lab 1: MIG Design Simulation
- Create a DDR3 memory controller using the Memory Interface Generator (MIG) in the Vivado IP catalog. Customize the soft core memory controller for the board.
- Simulate the memory controller created in Lab 1 using the Vivado simulator or Mentor Graphics QuestaSim simulator.
- Implement the memory controller created in the previous labs. Modify constraints, synthesize, implement, create the bitstream, program the FPGA, and check the functionality.
- Debug the memory interface design utilizing the Vivado logic analyzer.
- Use the block design editor to include the MIG IP in a given processor design.
- Learn basic signal analysis options to check waveforms and design optimization (optional).

Lab 2: MIG in IP Integrator
- Use the block design editor to include the MIG IP in a given processor design.

Lab 3: MIG Design Implementation
- Test and debug your memory interface design
- Run basic memory interface signal integrity simulations

Lab 4: MIG Design Debugging
- Debug the memory interface design utilizing the Vivado logic analyzer.
- Use the block design editor to include the MIG IP in a given processor design.
- Learn basic signal analysis options to check waveforms and design optimization (optional).

Lab 5: MIG in IP Integrator
- Use the block design editor to include the MIG IP in a given processor design.
- Learn basic signal analysis options to check waveforms and design optimization (optional).

Lab 6: DDR3 Signal Integrity Analysis
- Learn basic signal analysis options to check waveforms and design optimization (optional).

© 2014 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

MEM21000-ILT (v1.0) updated July 15, 2014

www.xilinx.com
1-800-255-7778