

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
1

Xilinx Answer 68134

UltraScale and UltraScale+ FPGA Gen3 Integrated Block for PCI Express - Integrated
Debugging Features and Usage Guide

Important Note: This downloadable PDF of an Answer Record is provided to enhance its usability and
readability. It is important to note that Answer Records are Web-based content that are frequently updated as new
information becomes available. You are reminded to visit the Xilinx Technical Support Website and review (Xilinx Answer
68134) for the latest version of this Answer.

Introduction

Prior to Vivado 2016.3 release, a manual insertion of ILA core was required to probe signals and find out the LTSSM
transitions during the link training process. To do an eye scan of a PCI Express link, users had to opt for a manual
approach such as the reference design provided in XAPP1198. Another major issue in debugging PCI express issues in
UltraScale devices was interpreting the scrambled data on a PIPE interface. All of these difficulties have been addressed
in the Vivado 2016.3 release of UltraScale and UltraScale+ PCI Express cores. The core configuration now comes with
the following three integrated debug options.

¶ Enable JTAG Debugger

¶ Enable In system IBERT

¶ Enable Descrambler of Gen3 Mode

This document describes all of these debug features in detail with screenshots to make it easier for users to understand
its implementation and usage.

JTAG Debugger

The JTAG Debugger provides users with a visual representation of the ltssm state transitions during the link training, PHY
reset FSM transitions and the receiver detect status on each lane of a PCI Express link. PHY reset FSM is an internal
state machine that is used by the PCIe core.

Figure 1 shows the architecture of the JTAG debugger implemented in the PCIe core when this option is enabled in the
core configuration GUI. The ltssm transitions, receiver detect status and PHY reset FSM status are stored in the block
rams. The stored data is read through AXI JTAG Debugger via Tcl interface. A tcl script, test_rd.tcl, is provided with the
core generation which is executed in the Vivado Tcl console. The script reads the data stored in the memory and outputs
the following set of files:

¶ pcie_debug_info_trc.dat

¶ pcie_debug_ltssm_trc.dat

¶ pcie_debug_rst_trc.dat

¶ pcie_debug_static_info.dat

¶ rxdet.dat

The following Tcl scripts are generated along with the generation of the PCI Express core.

¶ draw_ltssm.tcl

¶ draw_reset.tcl

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
2

¶ draw_rxdet.tcl

¶ test_rd.tcl

These scripts take in the *.dat files and plot graphs for LTSSM transitions, PHY reset FSM transitions and receiver detect
status.

Figure 1 - JTAG Debugger Architecture

The screenshots below show the step-by-step instruction for using JTAG Debugger in the PCI Express example design
on a KCU105 development board.

Figure 2 ï Create a Vivado project targeting KCU105 Development Board

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
3

Figure 3 ï Select Gen3 link speed, x8 lane width and KCU105 board. Only Gen3 is currently supported; there is
no restriction in lane width

Note: Gen1 and Gen2 link speed support will be enabled in a future release.

Figure 4 ï Enable JTAG Debugger

Note: All three options can be selected in the same design. The options are selected one at a time in this document for
illustration purpose only.

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
4

Figure 5 ï Generate the core and open the example design. The source hierarchy should show debug_wrapper
and axi_jtag instantiation and list of all generated Tcl files.

Figure 6 - The debug window view after synthesis

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
5

Figure 7 ï The Tcl files are located in the óimportsô folder inside the example design project directory

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
6

Figure 8 - Open Hardware Manager and connect to KCU105 board

Figure 9 - Program the device with the generated bit and ltx files

Figure 10 ï After the bit file has been programmed, the Hardware window should list hw_axi_1

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
7

Figure 11 - Source test_rd.tcl in Vivado Tcl Console, located in 'imports' folder

Figure 12 - *dat files are generated after running test_rd.tcl

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
8

Figure 13 ï Error if draw_ltssm.tcl, draw_reset.tcl and draw_rxdet.tcl are sourced in the Vivado Tcl Console

Note: draw_ltssm.tcl, draw_reset.tcl and draw_rxdet.tcl are separate from Vivado.

After the *data files have been generated, double click on the Tcl files in the óimportsô directory to generate the respective
graphs. To generate the graph, users should make sure Tcl/Tk 8.5 package have been installed. Go to the links below to
download the Tcl/Tk packages for the platform that is being used.

¶ http://www.activestate.com/activetcl/downloads

¶ https://www.tcl.tk/software/tcltk/download.html

http://www.activestate.com/activetcl/downloads
https://www.tcl.tk/software/tcltk/download.html

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
9

Figure 14 ïDouble click on draw_ltssm.tcl to generate LTSSM graph

Note: Use the following commands in Linux

¶ wish draw_ltssm.tcl &

¶ wish draw_reset.tcl &

¶ wish draw_rxdet.tcl &

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
10

Figure 15 ï Generated LTSSM graph

Note on generated LTSSM graph:

¶ The orange color indicates the last ltssm state of the capture window of the ltssm signal.

¶ The red arrow indicates the last transition of ltssm state in the capture window.

¶ The green color indicates the states that ltssm transitioned to during the capture window.

¶ The number on the arrow between the ltssm states shows the number of times the transition took place between
the two ltssm states in the direction pointed to by the arrow.

¶ The blue color in the arrows in Figure 15 can be ignored. It should be black; it will be corrected in a future release
of the IP.

Figure 16 ï Double click on draw_reset.tcl to generate PHY reset FSM graph

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
11

Figure 17 - PHY Reset FSM Graph

Figure 18 - Double Click on draw_rxdet.tcl to check the status of receiver detect on each lane

Figure 19 ï Receiver successfully detected on all 8 lanes

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
12

In-System IBERT

In-System IBERT is a powerful feature, integrated into the Vivado 2016.3 core. This allows users to capture an eye
diagram in real-time without any additional effort. An in-system eye scan is valuable in PCI express applications because
placing a PCI Express link in loopback is not practical and generally not possible.

The screenshots below show the step-by-step instruction for using In-System IBERT in PCI Express Example design on a
KCU105 development board.

Figure 20 - Enable In-System IBERT

Figure 21 ï IBERT instantiation in the generated example design

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
13

Figure 22 - IBERT instantiation in the synthesized design

Figure 23 - Before programming the device execute set_param xicom.enable_isi_pcie fix 1

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
14

Figure 24 ï In-System IBERT instantiation in Hardware Manager after programming the device

Figure 25 ï óAuto-detect linksô and óCreate linksô in óSerial I/O Linksô tab of the Hardware Manager

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
15

Figure 26 - Create link by clicking on óCreate linksô in óSerial I/O Linksô

Figure 27 ï In System IBERT x8 link

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
16

Figure 28 ï Serial I/O Links

Figure 29 ï Scan link

Figure 30 ï Default scan options

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
17

Figure 31 - For better results, try Horizontal and Vertical increment by 2 instead of the default value

Figure 32 - Scan in progress

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
18

Figure 33 - Generated Eye Diagram

Note: óEnable In-System IBERTô should not be used with the óFalling Edge Receiver Detectô option in the GT Settings tab.

Descrambler Module

The data on the PIPE interface is scrambled and hence the incoming and outgoing data cannot be read on this interface.
The ability to interpret the data on this interface is especially useful where packets presented by the endpoint user
application do not show up at the host or vice versa. Being able to identify the corresponding packets on the PIPE
interface confirms whether the ingress packets definitely made it into the FPGA and whether the egress packets were
definitely presented to the transceiver (PHY) by the PCIe MAC Hard IP.

In Vivado 2016.3, a new feature has been added where the user has an option to enable descrambler module to
descramble the PIPE data. Figure 34 shows where the descrambler module sits. The descrambled data is read through
an ILA. The instantiated descrambler module is encrypted and only provides a way for hardware-only support to debug
Gen3 designs on the board; simulation with the descrambler module is not supported.

Figure 34 ï Descrambler Module

The screenshots below show the step-by-step instruction for enabling the Descrambler Module and viewing the
descrambled data on the ILA waveform in the PCI Express Example design on a KCU105 development board.

Figure 35 - Enable Descrambler for Gen3 Mode

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
19

Figure 36 - TX Descrambler and RX Descrambler instantiation

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
20

Figure 37 ï After synthesizing the design, run óSet Up Debugô

Figure 38 ï Search cfg_ltssm_state signal

© Copyright 2016 Xilinx

 Xilinx Answer 68134 ï UltraScale and UltraScale+ PCIe Integrated Debugging Features and Usage Guide
21

Figure 39 - Add cfg_ltssm_state to Debug

Figure 40 - Select the same clock domain for all signals

