
GVPR(1) GVPR(1)

NAME
gvpr − graph pattern scanning and processing language
(previously known asgpr)

SYNOPSIS
gvpr [−icqV?] [−o outfile] [−a args] [’prog’ | −f progfile] [files]

DESCRIPTION
gvpr is a graph stream editor inspired byawk. It copies input graphs to its output, possibly transforming
their structure and attributes, creating new graphs, or printing arbitrary information. The graph model is
that provided bylibcgraph(3). Inparticular,gvpr reads and writes graphs using the dot language.

Basically,gvpr traverses each input graph, denoted by$G, visiting each node and edge, matching it with
the predicate-action rules supplied in the input program.The rules are evaluated in order. For each predi-
cate evaluating to true, the corresponding action is performed. During the traversal, the current node or
edge being visited is denoted by$.

For each input graph, there is a target subgraph, denoted by$T, initially empty and used to accumulate cho-
sen entities, and an output graph,$O, used for final processing and then written to output. By default, the
output graph is the target graph.The output graph can be set in the program or, in a limited sense, on the
command line.

OPTIONS
The following options are supported:

−a args The stringargs is split into whitespace-separated tokens, with the individual tokens available as
strings in thegvpr program asARGV[0],...,ARGV[ARGC−1] . Whitespace characters within
single or double quoted substrings, or preceded by a backslash, are ignored as separators. In gen-
eral, a backslash character turns off any special meaning of the following character. Note that the
tokens derived from multiple−a flags are concatenated.

−c Use the source graph as the output graph.

−i Derive the node-induced subgraph extension of the output graph in the context of its root graph.

−o outfile
Causes the output stream to be written to the specified file; by default, output is written tostdout.

−f progfile
Use the contents of the specified file as the program to execute on the input. Ifprogfile contains a
slash character, the name is taken as the pathname of the file. Otherwise,gvpr will use the directo-
ries specified in the environment variableGPRPATH to look for the file. If−f is not given, gvpr
will use the first non-option argument as the program.

−q Turns off warning messages.

−V Causes the program to print version information and exit.

−? Causes the program to print usage information and exit.

OPERANDS
The following operand is supported:

files Names of files containing 1 or more graphs in the dot language. If no−f option is given, the first
name is removed from the list and used as the input program. If the list of files is empty, stdin
will be used.

PROGRAMS
A gvpr program consists of a list of predicate-action clauses, having one of the forms:

BEGIN { action }

BEG_G { action }

N [predicate] { action }

3 July 2009 1

GVPR(1) GVPR(1)

E [predicate] { action }

END_G { action }

END { action }

A program can contain at most one of each of theBEGIN , END_G andEND clauses. Therecan be any
number ofBEG_G, N andE statements, the first applied to graphs, the second to nodes, the third to edges.
These are separated into blocks, a block consisting of an optionalBEG_G statement and allN andE state-
ments up to the nextBEG_G statement, if any. The top-level semantics of agvpr program are:

Evaluate theBEGIN clause, if any.
For each input graphG {

For each block {
SetG as the current graph and current object.
Evaluate theBEG_G clause, if any.
For each node and edge inG {

Set the node or edge as the current object.
Evaluate theN or E clauses, as appropriate.

}
}
SetG as the current object.
Evaluate theEND_G clause, if any.

}
Evaluate theEND clause, if any.

The actions of theBEGIN , BEG_G, END_G andEND clauses are performed when the clauses are evalu-
ated. For N or E clauses, either the predicate or action may be omitted. If there is no predicate with an
action, the action is performed on every node or edge, as appropriate. If there is no action and the predicate
evaluates to true, the associated node or edge is added to the target graph.

The blocks are evaluated in the order in which they occur. Within a block, theN clauses (E clauses, respec-
tively) are evaluated in the order in which the occur. Note, though, that within a block,N or E clauses may
be interlaced, depending on the traversal order.

Predicates and actions are sequences of statements in the C dialect supported by theexpr(3) library. The
only difference between predicates and actions is that the former must have a type that may interpreted as
either true or false. Herethe usual C convention is followed, in which a non-zero value is considered true.
This would include non-empty strings and non-empty references to nodes, edges, etc. However, if a string
can be converted to an integer, this value is used.

In addition to the usual C base types (void, int , char, float, long, unsignedanddouble), gvpr provides
string as a synonym for char* , and the graph-based typesnode_t, edge_t, graph_t andobj_t. Theobj_t
type can be viewed as a supertype of the other 3 concrete types; the correct base type is maintained dynami-
cally. Besides these base types, the only other supported type expressions are (associative) arrays.

Constants follow C syntax, but strings may be quoted with either"..." or ’...’ . gvpr accepts C++ comments
as well as cpp-type comments.For the latter, if a line begins with a ’#’ character, the rest of the line is
ignored.

A statement can be a declaration of a function, a variable or an array, or an executable statement. For decla-
rations, there is a single scope. Array declarations have the form:

type array[type0]

where type0 is optional. If it is supplied, the parser will enforce that all array subscripts have the specified
type. If it is not supplied, objects of all types can be used as subscripts. As in C, variables and arrays must
be declared. In particular, an undeclared variable will be interpreted as the name of an attribute of a node,
edge or graph, depending on the context.

Executable statements can be one of the following:
{ [statement ...] }

3 July 2009 2

GVPR(1) GVPR(1)

expression // commonlyvar = expression
if(expression) statement[elsestatement]
for(expression; expression; expression) statement
for(array [var]) statement
forr(array [var]) statement
while(expression) statement
switch(expression) case statements
break [expression]
continue [expression]
retur n [expression]

Items in brackets are optional.

In the second form of thefor statement and theforr statement, the variablevar is set to each value used as
an index in the specified array and then the associatedstatementis evaluated. For numeric and string
indices, the indices are returned in increasing (decreasing) numeric or lexicographic order forfor (forr ,
respectively). This can be used for sorting.

Function definitions can only appear in theBEGIN clause.

Expressions include the usual C expressions. Stringcomparisons using== and != treat the right hand
operand as a pattern for the purpose of regular expression matching.Patterns useksh(1) file match pattern
syntax. (For simple string equality, use thestrcmp function.

gvpr will attempt to use an expression as a string or numeric value as appropriate. Both C-like casts and
function templates will cause conversions to be performed, if possible.

Expressions of graphical type (i.e.,graph_t, node_t, edge_t, obj_t) may be followed by a field reference in
the form of.name. The resulting value is the value of the attribute namednameof the given object. Inaddi-
tion, in certain contexts an undeclared, unmodified identifier is taken to be an attribute name. Specifically,
such identifiers denote attributes of the current node or edge, respectively, in N andE clauses, and the cur-
rent graph inBEG_G andEND_G clauses.

As usual in thelibcgraph(3) model, attributes are string-valued. In addition, gvpr supports certain
pseudo-attributes of graph objects, not necessarily string-valued. These reflect intrinsic properties of the
graph objects and cannot be set by the user.

head: node_t
the head of an edge.

tail : node_t
the tail of an edge.

name: string
the name of an edge, node or graph. The name of an edge has the form
"<tail-name><edge-op><head-name>[<key>]", where<edge-op>is "−>" or "−−" depending on
whether the graph is directed or not. The bracket part [<key>] only appears if the edge has a
non-trivial key.

indegree: int
the indegree of a node.

outdegree: int
the outdegree of a node.

degree: int
the degree of a node.

root : graph_t
the root graph of an object. The root of a root graph is itself.

parent : graph_t
the parent graph of a subgraph. The parent of a root graph isNULL

3 July 2009 3

GVPR(1) GVPR(1)

n_edges: int
the number of edges in the graph

n_nodes: int
the number of nodes in the graph

directed : int
true (non-zero) if the graph is directed

strict : int
true (non-zero) if the graph is strict

BUILT-IN FUNCTIONS
The following functions are built intogvpr. Those functions returning references to graph objects return
NULL in case of failure.

Graphs and subgraph
graph(s : string, t : string) : graph_t

creates a graph whose name iss and whose type is specified by the stringt. Ignoring case, the
charactersU, D, S, N have the interpretation undirected, directed, strict, and non-strict, respec-
tively. If t is empty, a directed, non-strict graph is generated.

subg(g : graph_t, s : string) : graph_t
creates a subgraph in graphg with names. If the subgraph already exists, it is returned.

isSubg(g : graph_t, s : string) : graph_t
returns the subgraph in graphg with names, if it exists, orNULL otherwise.

fstsubg(g : graph_t) : graph_t
returns the first subgraph in graphg, or NULL if none exists.

nxtsubg(sg: graph_t) : graph_t
returns the next subgraph aftersg, or NULL .

isDirect(g : graph_t) : int
returns true if and only ifg is directed.

isStrict(g : graph_t) : int
returns true if and only ifg is strict.

nNodes(g : graph_t) : int
returns the number of nodes ing.

nEdges(g : graph_t) : int
returns the number of edges ing.

Nodes
node(sg: graph_t, s : string) : node_t

creates a node in graphg of names. If such a node already exists, it is returned.

subnode(sg: graph_t, n : node_t) : node_t
inserts the noden into the subgraphg. Returns the node.

fstnode(g : graph_t) : node_t
returns the first node in graphg, or NULL if none exists.

nxtnode(n : node_t) : node_t
returns the next node aftern in the root graph, orNULL .

nxtnode_sg(sg: graph_t, n : node_t) : node_t
returns the next node aftern in sg, or NULL .

isNode(sg: graph_t, s : string) : node_t
looks for a node in (sub)graphsgof names. If such a node exists, it is returned. Otherwise,NULL
is returned.

3 July 2009 4

GVPR(1) GVPR(1)

isSubnode(sg: graph_t, n : node_t) : int
returns non-zero if noden is in (sub)graphsg, or zero otherwise.

indegreeOf(sg: graph_t, n : node_t) : int
returns the indegree of noden in (sub)graphsg.

outdegreeOf(sg: graph_t, n : node_t) : int
returns the outdegree of noden in (sub)graphsg.

degreeOf(sg: graph_t, n : node_t) : int
returns the degree of noden in (sub)graphsg.

Edges
edge(t : node_t, h : node_t, s : string) : edge_t

creates an edge with tail nodet, head nodeh and names in the root graph. If the graph is undi-
rected, the distinction between head and tail nodes is unimportant. If such an edge already exists,
it is returned.

edge_sg(sg: graph_t, t : node_t, h : node_t, s : string) : edge_t
creates an edge with tail nodet, head nodeh and names in (sub)graphsg (and all parent graphs).
If the graph is undirected, the distinction between head and tail nodes is unimportant.If such an
edge already exists, it is returned.

subedge(g : graph_t, e : edge_t) : edge_t
inserts the edgee into the subgraphg. Returns the edge.

isEdge(t : node_t, h : node_t, s : string) : edge_t
looks for an edge with tail nodet, head nodeh and names. If the graph is undirected, the distinc-
tion between head and tail nodes is unimportant. If such an edge exists, it is returned. Otherwise,
NULL is returned.

isEdge_sg(sg: graph_t, t : node_t, h : node_t, s : string) : edge_t
looks for an edge with tail nodet, head nodeh and names in (sub)graphsg. If the graph is undi-
rected, the distinction between head and tail nodes is unimportant. If such an edge exists, it is
returned. Otherwise,NULL is returned.

isSubedge(g : graph_t, e : edge_t) : int
returns non-zero if edgee is in (sub)graphsg, or zero otherwise.

fstout(n : node_t) : edge_t
returns the first outedge of noden in the root graph.

fstout_sg(sg: graph_t, n : node_t) : edge_t
returns the first outedge of noden in (sub)graphsg.

nxtout(e : edge_t) : edge_t
returns the next outedge aftere in the root graph.

nxtout_sg(sg: graph_t, e : edge_t) : edge_t
returns the next outedge aftere in graphsg.

fstin(n : node_t) : edge_t
returns the first inedge of noden in the root graph.

fstin_sg(sg: graph_t, n : node_t) : edge_t
returns the first inedge of noden in graphsg.

nxtin (e : edge_t) : edge_t
returns the next inedge aftere in the root graph.

nxtin_sg(sg: graph_t, e : edge_t) : edge_t
returns the next inedge aftere in graphsg.

3 July 2009 5

GVPR(1) GVPR(1)

fstedge(n : node_t) : edge_t
returns the first edge of noden in the root graph.

fstedge_sg(sg: graph_t, n : node_t) : edge_t
returns the first edge of noden in graphsg.

nxtedge(e : edge_t, node_t) : edge_t
returns the next edge aftere in the root graph.

nxtedge_sg(sg: graph_t, e : edge_t, node_t) : edge_t
returns the next edge aftere in the graphsg.

Graph I/O
write (g : graph_t) : void

printsg in dot format onto the output stream.

writeG (g : graph_t, fname: string) : void
printsg in dot format into the filefname.

fwriteG (g : graph_t, fd : int) : void
printsg in dot format onto the open stream denoted by the integerfd.

readG(fname: string) : graph_t
returns a graph read from the filefname. The graph should be in dot format. If no graph can be
read,NULL is returned.

freadG(fd : int) : graph_t
returns the next graph read from the open streamfd. ReturnsNULL at end of file.

Graph miscellany
delete(g : graph_t, x : obj_t) : void

deletes objectx from graphg. If g is NULL , the function uses the root graph ofx. If x is a graph
or subgraph, it is closed unlessx is locked.

isIn(g : graph_t, x : obj_t) : int
returns true ifx is in subgraphg.

cloneG(g : graph_t, s : string) : graph_t
creates a clone of graphg with name ofs. If s is "", the created graph has the same name asg.

clone(g : graph_t, x : obj_t) : obj_t
creates a clone of objectx in graphg. In particular, the new object has the same name/value
attributes and structure as the original object.If an object with the same key as x already exists, its
attributes are overlaid by those ofx and the object is returned. If an edge is cloned, both endpoints
are implicitly cloned. If a graph is cloned, all nodes, edges and subgraphs are implicitly cloned.If
x is a graph,g may beNULL , in which case the cloned object will be a new root graph. In this
case, the call is equivalent tocloneG(x,"") .

copy(g : graph_t, x : obj_t) : obj_t
creates a copy of objectx in graphg, where the new object has the same name/value attributes as
the original object. If an object with the same key as x already exists, its attributes are overlaid by
those ofx and the object is returned. Note that this is a shallow copy. If x is a graph, none of its
nodes, edges or subgraphs are copied into the new graph. Ifx is an edge, the endpoints are created
if necessary, but they are not cloned.If x is a graph,g may beNULL , in which case the cloned
object will be a new root graph.

copyA(src : obj_t, tgt : obj_t) : int
copies the attributes of objectsrc to objecttgt, overwriting any attribute valuestgt may initially
have.

induce(g : graph_t) : void
extendsg to its node-induced subgraph extension in its root graph.

3 July 2009 6

GVPR(1) GVPR(1)

hasAttr (src : obj_t, name: string) : int
returns non-zero if objectsrc has an attribute whose name isname. It returns 0 otherwise.

isAttr (g : graph_t, kind : string, name: string) : int
returns non-zero if an attributenamehas been defined ing for objects of the given kind. For nodes,
edges, and graphs,kindshould be "N", "E", and "G", respectively. It returns 0 otherwise.

aget(src : obj_t, name: string) : string
returns the value of attributenamein objectsrc. This is useful for those cases whennameconflicts
with one of the keywords such as "head" or "root". If the attribute has not been declared in the
graph, the function will initialize it with a default value of "". To avoid this, one should use the
hasAttr or isAttr function to check that the attribute exists.

aset(src : obj_t, name: string, value: string) : int
sets the value of attribute namein objectsrc to value. Returns 0 on success, non-zero on failure.
Seeagetabove.

getDflt(g : graph_t, kind : string, name: string) : string
returns the default value of attributenamein objects ing of the given kind. For nodes, edges, and
graphs,kind should be "N", "E", and "G", respectively. If the attribute has not been declared in the
graph, the function will initialize it with a default value of "". To avoid this, one should use the
isAttr function to check that the attribute exists.

setDflt(g : graph_t, kind : string, name: string, value: string) : int
sets the default value of attributenameto valuein objects ing of the given kind. For nodes, edges,
and graphs,kind should be "N", "E", and "G", respectively. Returns 0 on success, non-zero on
failure. SeegetDflt above.

fstAttr (g : graph_t, kind : string) : string
returns the name of the first attribute of objects ing of the given kind. For nodes, edges, and
graphs,kind should be "N", "E", and "G", respectively. If there are no attributes, the string "" is
returned.

nxtAttr (g : graph_t, kind : string, name: string) : string
returns the name of the next attribute of objects ing of the given kind after the attributename. The
argumentnamemust be the name of an existing attribute; it will typically be the return value of an
previous call tofstAttr or nxtAttr . For nodes, edges, and graphs,kind should be "N", "E", and
"G", respectively. If there are no attributes left, the string "" is returned.

compOf(g : graph_t, n : node_t) : graph_t
returns the connected component of the graphg containing noden, as a subgraph ofg. The sub-
graph only contains the nodes. One can useinduceto add the edges. The function fails and returns
NULL if n is not ing. Connectivity is based on the underlying undirected graph ofg.

kindOf (obj : obj_t) : string
returns an indication of what kind of graph object is the argument. For nodes, edges, and graphs,
it returns should be "N", "E", and "G", respectively.

lock(g : graph_t, v : int) : int
implements graph locking on root graphs. If the integerv is positive, the graph is set so that future
calls todeletehave no immediate effect. If v is zero, the graph is unlocked. If there has been a call
to delete the graph while it was locked, the graph is closed.If v is negative, nothing is done. In all
cases, the previous lock value is returned.

Strings
sprintf (fmt : string, ...) : string

returns the string resulting from formatting the values of the expressions occurring afterfmt
according to theprintf (3) format fmt

gsub(str : string, pat : string) : string

3 July 2009 7

GVPR(1) GVPR(1)

gsub(str : string, pat : string, repl : string) : string
returnsstr with all substrings matchingpatdeleted or replaced byrepl, respectively.

sub(str : string, pat : string) : string

sub(str : string, pat : string, repl : string) : string
returnsstr with the leftmost substring matchingpat deleted or replaced byrepl, respectively. The
characters ’ˆ’ and ’$’ may be used at the beginning and end, respectively, of pat to anchor the pat-
tern to the beginning or end ofstr.

substr(str : string, idx : int) : string

substr(str : string, idx : int , len : int) : string
returns the substring ofstr starting at positionidx to the end of the string or of lengthlen, respec-
tively. Indexing starts at 0. Ifidx is negative or idx is greater than the length ofstr, a fatal error
occurs. Similarly, in the second case, iflen is negative or idx + len is greater than the length ofstr,
a fatal error occurs.

strcmp(s1: string, s2: string) : int
provides the standard C functionstrcmp(3).

index(s : string, t : string) : int

rindex(s : string, t : string) : int
returns the index of the character in strings where the leftmost (rightmost) copy of string t can be
found, or −1 ift is not a substring ofs.

match(s : string, p : string) : int
returns the index of the character in strings where the leftmost match of patternp can be found, or
−1 if no substring ofs matchesp.

toupper(s : string) : string
returns a version ofs with the alphabetic characters converted to upper-case.

tolower(s : string) : string
returns a version ofs with the alphabetic characters converted to lower-case.

canon(s : string) : string
returns a version ofs appropriate to be used as an identifier in a dot file.

html (g : graph_t, s : string) : string
returns a ‘‘magic’’ version ofs as an HTML string. This will typically be used to attach an
HTML-lik e label to a graph object. Note that the returned string lives in g. In particular, it will be
freed wheng is closed, and to act as an HTML string, it has to be used with an object ofg. In addi-
tion, note that the angle bracket quotes should not be part ofs. These will be added ifg is written
in concrete DOT format.

xOf(s : string) : string
returns the string "x" i f s has the form "x,y", where bothx andy are numeric.

yOf(s : string) : string
returns the string "y" i f s has the form "x,y", where bothx andy are numeric.

llOf (s : string) : string
returns the string "llx,lly" i f s has the form "llx,lly,urx,ury", where all ofllx, lly, urx, and ury are
numeric.

urOf(s)
urOf (s : string) : string returns the string "urx,ury" i f s has the form "llx,lly,urx,ury", where all of
llx, lly, urx, andury are numeric.

sscanf(s : string, fmt : string, ...) : int
scans the strings, extracting values according to thesscanf(3) formatfmt. The values are stored
in the addresses following fmt, addresses having the form& v, wherev is some declared variable of
the correct type. Returns the number of items successfully scanned.

3 July 2009 8

GVPR(1) GVPR(1)

split(s : string, arr : array , seps: string) : int

split(s : string, arr : array) : int

tokens(s : string, arr : array , seps: string) : int

tokens(s : string, arr : array) : int
The split function breaks the strings into fields, while thetokens function breaks the string into
tokens. Afield consists of all non-separator characters between two separator characters or the
beginning or end of the string. Thus, a field may be the empty string. A token is a maximal, non-
empty substring not containing a separator character. The separator characters are those given in
the sepsargument. Ifsepsis not provided, the default value is " \t\n".The functions return the
number of fields or tokens.

The fields and tokens are stored in the argument array. The array must bestring-valued and, if an
index type is specified, it must beint . The entries are indexed by consecutive integers, starting at
0. Any values already stored in the array will be either overwritten, or still be present after the
function returns.

I/O
print (...) : void

print(expr, ...) prints a string representation of each argument in turn ontostdout, followed by a
newline.

printf (fmt : string, ...) : int

printf (fd : int , fmt : string, ...) : int
prints the string resulting from formatting the values of the expressions following fmt according to
the printf (3) format fmt. Returns 0 on success.By default, it prints onstdout. If the optional
integerfd is given, output is written on the open stream associated withfd.

scanf(fmt : string, ...) : int

scanf(fd : int , fmt : string, ...) : int
scans in values from an input stream according to thescanf(3) formatfmt. The values are stored
in the addresses following fmt, addresses having the form& v, wherev is some declared variable of
the correct type. By default, it reads fromstdin. If the optional integer fd is given, input is read
from the open stream associated withfd. Returns the number of items successfully scanned.

openF(s : string, t : string) : int
opens the files as an I/O stream. The string argumentt specifies how the file is opened. The argu-
ments are the same as for the C functionfopen(3). It returns an integer denoting the stream, or −1
on error.

As usual, streams 0, 1 and 2 are already open asstdin, stdout, and stderr, respectively. Since
gvpr may usestdin to read the input graphs, the user should avoid using this stream.

closeF(fd : int) : int
closes the open stream denoted by the integer fd. Streams 0,1 and 2 cannot be closed. Returns 0
on success.

readL(fd : int) : string
returns the next line read from the input streamfd. It returns the empty string "" on end of file.
Note that the newline character is left in the returned string.

Math
exp(d : double) : double

returns e to thedth power.

log(d : double) : double
returns the natural log ofd.

3 July 2009 9

GVPR(1) GVPR(1)

sqrt(d : double) : double
returns the square root of the doubled.

pow(d : double, x : double) : double
returnsd raised to thexth power.

cos(d : double) : double
returns the cosine ofd.

sin(d : double) : double
returns the sine ofd.

atan2(y : double, x : double) : double
returns the arctangent ofy/x in the range −pi to pi.

MIN (y : double, x : double) : double
returns the minimum ofy andx.

MAX (y : double, x : double) : double
returns the maximum ofy andx.

Associative Arrays
arr : int

returns the number of elements in the arrayarr.

idx in arr : int
returns 1 if a value has been set for indexidx in the arrayarr. It returns 0 otherwise.

unset(v : array , idx) : int
removes the item indexed by idx. It returns 1 if the item existed, 0 otherwise.

unset(v : array) : void
re-initializes the array.

Miscellaneous
exit(v : int) : void

causesgvpr to exit with the exit codev.

system(cmd: string) : int
provides the standard C functionsystem(3). It executescmd in the user’s shell environment, and
returns the exit status of the shell.

rand() : double
returns a pseudo-random double between 0 and 1.

srand() : int

srand(v : int) : int
sets a seed for the random number generator. The optional argument gives the seed; if it is omitted,
the current time is used. The previous seed value is returned.srand should be called before any
calls torand.

colorx(color : string, fmt : string) : string
translates a color from one format to another. Thecolor argument should be a color in one of the
recognized string representations. Thefmt value should be one of "RGB", "RGBA", "HSV", or
"HSVA". An empty string is returned on error.

BUILT-IN VARIABLES
gvpr provides certain special, built-in variables, whose values are set automatically bygvpr depending on
the context. Except as noted, the user cannot modify their values.

$: obj_t
denotes the current object (node, edge, graph) depending on the context. It is not available in
BEGIN or END clauses.

3 July 2009 10

GVPR(1) GVPR(1)

$F : string
is the name of the current input file.

$G : graph_t
denotes the current graph being processed. It is not available inBEGIN or END clauses.

$O : graph_t
denotes the output graph. Before graph traversal, it is initialized to the target graph. After traversal
and any END_G actions, if it refers to a non-empty graph, that graph is printed onto the output
stream. Itis only valid inN, E andEND_G clauses. Theoutput graph may be set by the user.

$T : graph_t
denotes the current target graph. It is a subgraph of$G and is available only inN, E andEND_G
clauses.

$tgtname: string
denotes the name of the target graph. By default, it is set to"gvpr_result" . If used multiple
times during the execution ofgvpr, the name will be appended with an integer. This variable may
be set by the user.

$tvroot : node_t
indicates the starting node for a (directed or undirected) depth-first traversal of the graph (cf.
$tvtype below). Thedefault value isNULL for each input graph.

$tvedge: edge_t
For BFS and DFS traversals, this is set to the edge used to arrive at the current node or edge. At
the beginning of a traversal, or for other traversal types, the value isNULL .

$tvtype : tvtype_t
indicates how gvpr traverses a graph. It can only take one of the constant values with the previx
"TV_" described below. TV_flat is the default.

In the underlying graph librarycgraph(3), edges in undirected graphs are given an arbitrary direc-
tion. This is used for traversals, such asTV_fwd , requiring directed edges.

ARGC : int
denotes the number of arguments specified by the−a argscommand-line argument.

ARGV : string array
denotes the array of arguments specified by the−a argscommand-line argument. Theith argument
is given by ARGV[i].

BUILT-IN CONSTANTS
There are several symbolic constants defined bygvpr.

NULL : obj_t
a null object reference, equivalent to 0.

TV_flat : tvtype_t
a simple, flat traversal, with graph objects visited in seemingly arbitrary order.

TV_ne : tvtype_t
a traversal which first visits all of the nodes, then all of the edges.

TV_en : tvtype_t
a traversal which first visits all of the edges, then all of the nodes.

TV_dfs : tvtype_t
TV_postdfs : tvtype_t
TV_prepostdfs : tvtype_t

a traversal of the graph using a depth-first search on the underlying undirected graph.To do the
traversal,gvpr will check the value of$tvroot. If this has the same value that it had previously (at
the start, the previous value is initialized toNULL .), gvpr will simply look for some unvisited
node and traverse its connected component. On the other hand, if$tvroot has changed, its

3 July 2009 11

GVPR(1) GVPR(1)

connected component will be toured, assuming it has not been previously visited or, if $tvroot is
NULL , the traversal will stop. Note that usingTV_dfs and$tvroot, it is possible to create an infi-
nite loop.

By default, the traversal is done in pre-order. That is, a node is visited before all of its unvisited
edges. For TV_postdfs, all of a node’s unvisited edges are visited before the node. For TV_pre-
postdfs, a node is visited twice, before and after all of its unvisited edges.

TV_fwd : tvtype_t
TV_postfwd : tvtype_t
TV_prepostfwd : tvtype_t

A traversal of the graph using a depth-first search on the graph following only forward arcs.The
choice of roots for the traversal is the same as described forTV_dfs above. The different order of
visitation specified byTV_fwd , TV_postfwd andTV_prepostfwd are the same as those specified
by the analogous traversalsTV_dfs, TV_postdfsandTV_prepostdfs.

TV_r ev : tvtype_t
TV_postrev : tvtype_t
TV_prepostrev : tvtype_t

A traversal of the graph using a depth-first search on the graph following only reverse arcs.The
choice of roots for the traversal is the same as described forTV_dfs above. The different order of
visitation specified byTV_r ev, TV_postrev andTV_prepostrev are the same as those specified
by the analogous traversalsTV_dfs, TV_postdfsandTV_prepostdfs.

TV_bfs : tvtype_t
A traversal of the graph using a bread-first search on the graph ignoring edge directions. See the
item onTV_dfs above for the role of$tvroot.

EXAMPLES
gvpr −i ’N[color=="blue"]’ file.gv

Generate the node-induced subgraph of all nodes with color blue.

gvpr −c ’N[color=="blue"]{color = "red"}’ file.gv

Make all blue nodes red.

BEGIN { int n, e; int tot_n = 0; int tot_e = 0; }
BEG_G {
n = nNodes($G);
e = nEdges($G);
printf ("%d nodes %d edges %s0, n, e, $G.name);
tot_n += n;
tot_e += e;

}
END { printf ("%d nodes %d edges total0, tot_n, tot_e) }

Version of the programgc.

gvpr −c ""

Equivalent tonop.

BEG_G { graph_t g = graph ("merge", "S"); }
E {
node_t h = clone(g,$.head);
node_t t = clone(g,$.tail);
edge_t e = edge(t,h,"");
e.weight = e.weight + 1;

}
END_G { $O = g; }

Produces a strict version of the input graph, where the weight attribute of an edge indicates how many

3 July 2009 12

GVPR(1) GVPR(1)

edges from the input graph the edge represents.

BEGIN {node_t n; int deg[]}
E{deg[head]++; deg[tail]++; }
END_G {
for (deg[n]) {
printf ("deg[%s] = %d0, n.name, deg[n]);

}
}

Computes the degrees of nodes with edges.

BEGIN {
int i, indent;
int seen[string];
void prInd (int cnt) {
for (i = 0; i < cnt; i++) printf (" ");

}
}
BEG_G {

$tvtype = TV_prepostfwd;
$tvroot = node($,ARGV[0]);

}
N {
if (seen[$.name]) indent--;
else {
prInd(indent);
print ($.name);

seen[$.name] = 1;
indent++;

}
}

Prints the depth-first traversal of the graph, starting with the node whose name isARGV[0] , as an indented
list.

ENVIRONMENT
GPRPATH

Colon-separated list of directories to be searched to find the file specified by the −f option.

BUGS AND WARNINGS
Scripts should be careful deleting nodes duringN{} andE{} blocks using BFS and DFS traversals as these
rely on stacks and queues of nodes.

When the program is given as a command line argument, the usual shell interpretation takes place, which
may affect some of the special names ingvpr. To avoid this, it is best to wrap the program in single quotes.

If string constants contain pattern metacharacters that you want to escape to avoid pattern matching, two
backslashes will probably be necessary, as asingle backslash will be lost when the string is originally
scanned. Usually, it is simpler to usestrcmp to avoid pattern matching.

As of 24 April 2008,gvpr switched to using a new, underlying graph library, which uses the simpler model
that there is only one copy of a node, not one copy for each subgraph logically containing it. This means
that iterators such as InxtnodeP cannot traverse a subgraph using just a node argument. For this reason, sub-
graph traversal requires new functions ending in "_sg", which also take a subgraph argument. The versions
without that suffix will always traverse the root graph.

There is a single global scope, except for formal function parameters, and even these can interfere with the
type system. Also, the extent of all variables is the entire life of the program. It might be preferable for

3 July 2009 13

GVPR(1) GVPR(1)

scope to reflect the natural nesting of the clauses, or for the program to at least reset locally declared vari-
ables. For now, it is advisable to use distinct names for all variables.

If a function ends with a complex statement, such as an IF statement, with each branch doing a return, type
checking may fail. Functionsshould use a return at the end.

The expr library does not support string values of (char*)0. This means we can’t distinguish between ""
and (char*)0 edge keys. For the purposes of looking up and creating edges, we translate "" to be (char*)0,
since this latter value is necessary in order to look up any edge with a matching head and tail.

Related to this, strings converted to integers act like char pointers, getting the value 0 or 1 depending on
whether the string consists solely of zeroes or not. Thus, the ((int)"2") evaluates to 1.

The language inherits the usual C problems such as dangling references and the confusion between ’=’ and
’==’.

AUTHOR
Emden R. Gansner <erg@research.att.com>

SEE ALSO
awk(1), gc(1), dot(1), nop(1), expr(3), cgraph(3)

3 July 2009 14

