RF Solutions
with Zynq® UltraScale+™ RFSoC

Presented By

Glenn Steiner
Sr. Manager, SoC Technical Marketing - MPSoC Power, Functional Safety & Applications

Oct 16th, 2018
The First Programmable RFSoC

- Integrated RF-Class Analog Converters and Error Correction Technology
- Delivering 50-75% Power & Footprint Reduction
- Full Programmability Across the RF Signal Chain
Zynq UltraScale+ RFSoC
Introduction
Part of a Complete System Based on Production-Proven MPSoCs

Monolithically Integrated

Hardened Engines
- PCIe Gen3
- 100G Cores

33G Transceivers
- 33Gb/s
- 28G Backplane Capable

33G Transceivers
- 33Gb/s
- 28G Backplane Capable

Programmable Logic
- 16nm FinFET
- UltraScale+ FPGA Fabric

DSP-Intensive
- 4,272 DSP slices
- 7,612 GMACs

Analog-to-Digital Converters
Up to 4.096 GSPS

Digital-to-Analog Converters
Up to 6.544 GSPS

Soft Decision Forward Error Correction
LDPC & Turbo Support

Processing System
- Quad-Core A53 (64-bit)
- Dual-Core R5 (32-bit)

33G Transceivers
- 33Gb/s
- 28G Backplane Capable

ADC

DAC

© Copyright 2018 Xilinx
Xilinx RF Converters – An Evolution and A Revolution

Full Spectrum Bandwidth = 4GHz
DAC = 6.55GSPS, ADC = 4GSPS

- 10-bit, 200-kSPS
- DAC: 1.6Gsp
 ADC: 0.6Gsp
- DAC: 6Gsp
 ADC: 2/4Gsp
- 16nm Test Chip
- 56G High Speed PAM4 Serial Transceivers
Zynq UltraScale + RFSoC Applications
Software Defined Radio on a Chip

Zynq UltraScale+ RFSoC

Processing System
- Quad ARM Cortex-A53
- Dual ARM Cortex-R5

Programmable Logic
- 680K – 930K System Logic Cells
- 3168 – 4272 DSP Slices

RF I/O
- (multi-standard, multi-band)

Digital Baseband
- CPRI, 10GE, 25GE, ...
- ..100100101011010110101...
- ..100100101010111010101...

GTY
- 28Gb/s

SD FEC

RF ADC
- 8/16 channels

DDC

RF DAC
- 8/16 channels

DUC

RF out
- 0 – 4GHz

PA

BPF

LNA

AAF

RF in
- 0 – 4GHz

SD FEC
Enabling 5G Architectures

Zynq UltraScale+ RFSoC - Advancing 5G Architectures

SPECTRAL EFFICIENCY • POWER EFFICIENCY • NETWORK DENSIFICATION

Remote Radio for Massive-MIMO
POWER • FORM FACTOR

Wireless Backhaul
THROUGHPUT • POWER • FORM FACTOR

Digital Beamforming
CPRI / eCPRI

Fronthaul
Backhaul

Point-to-Point Reach, Reliability, Throughput

© Copyright 2018 Xilinx
Zynq UltraScale+ RFSoC in 5G New Radio

- **Digital Beamforming (Digital & RF Domain) Single Processor Control**
- **Up to 16x16 RF Integration**
- **SDN Control**
- **IP for Offloading L1 Closer to Radio Reduces Fronthaul Throughput**

Processing System
- CPU_0: Beamforming Control
- CPU_1: RF Calibration
- CPU_2: DPD SW
- CPU_3: Operation & Maintenance

System Monitoring Configuration

Beamforming Control

RF Integration
- Up to 16x16

Air Interface
- Air Interface
- DAC
- ADC
- DPD Feedback

Digital Beamforming (Digital & RF Domain)
- DUC
- DDC
- CFR
- DPD HW

System Control
- CPRI Mapper/De-Mapper
- 33G Transceivers w/ RSFEC
- Air Interface Up To 25Gb/s
- To Baseband

IP for Offloading L1 Closer to Radio
- Reduces Fronthaul Throughput
Zynq UltraScale+ RFSoC in Wireless Backhaul

Multi-Level LDPC (Optionally bypass SD-FEC)

ARM Processing System

Up to 4x4 RF Integration

Processing System

33G Transceivers

To/From Baseband

Multi-Level LDPC (Bypass SD-FEC)

CPU
Operation & Maintenance

CPU
Operation & Maintenance

Log Likelihood Ratio

Mod/Demod

Digital Front-End

DAC

ADC

Air Interface

Point-to-Point Communication

SD-FEC

L2 Processing

Multi-Level LDPC (Optionally bypass SD-FEC)
DOCSIS 3.1 Remote PHY Node

Distributed Access Architecture

- “Fiber Deep” deployed closer to the home for greater bandwidth & power efficiency
- Remote PHY node moves PHY layer processing closer to the home, increasing network capacity
DOCSIS 3.1 Remote PHY Node

- Processing System
 - Traffic Management
 - GCP

- LDPC for DOCSIS 3.1
- Validated DOCSIS 3.1 OFDM IP
- DPD IP

- RF Integration
 For Power and Footprint

- To/From Headend Office
 Optical Fiber

- To/From Cable Modems
 Coaxial Cable (Full Duplex)

- MAC Packet Processing (MACSEC)
- D-UEPI IP
- U-DEPI IP
- DOCSIS3.0 SCQAM
- Downstream LDPC
- DUC
- DPD
- DDC
- DOCSIS 3.1 OFDM
- DOCSIS 3.1 OFDMA
- DOCSIS3.0 A-TDMA
- Managed by A53
Zynq UltraScale+ RFSoC
Product Family and Benefits
Zynq UltraScale+ RFSoC Family Overview

<table>
<thead>
<tr>
<th></th>
<th>Baseband</th>
<th>Wireless Radio</th>
<th>Backhaul, Remote-PHY</th>
<th>Phased Array Radar / Radio</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Data Converters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft Decision FEC</td>
<td>ZU21DR</td>
<td>ZU25DR</td>
<td>ZU27DR</td>
<td>ZU28DR</td>
</tr>
<tr>
<td>12-bit, 4GSPS ADC</td>
<td>–</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>12-bit, 2GSPS ADC</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>14-bit, 6.4GSPS DAC</td>
<td>–</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>SD-FEC</td>
<td>8</td>
<td>–</td>
<td>–</td>
<td>8</td>
</tr>
<tr>
<td>Processing System & Programmable Logic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application Processor Core</td>
<td></td>
<td></td>
<td></td>
<td>Quad-core ARM Cortex-A53 MPCore up to 1.5GHz</td>
</tr>
<tr>
<td>Real-Time Processor Core</td>
<td></td>
<td></td>
<td></td>
<td>Dual-core ARM Cortex-R5 MPCore up to 533MHz</td>
</tr>
<tr>
<td>High Speed Connectivity</td>
<td></td>
<td></td>
<td></td>
<td>DDR4-2600, PCIe Gen3 x16, 100G Ethernet</td>
</tr>
<tr>
<td>Logic Density (System Logic Cells)</td>
<td>930K</td>
<td>678K</td>
<td>930K</td>
<td>930K</td>
</tr>
<tr>
<td>DSP Slices</td>
<td>4,272</td>
<td>3,145</td>
<td>4,272</td>
<td>4,272</td>
</tr>
<tr>
<td>33G Transceivers</td>
<td>16</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Data Converter Enabled Devices
Key Benefits of Integrated RF Data Converters

Fully Programmable Direct RF Sampling Radio Platform
- RF-signal processing moved to the digital domain for a fully Programmable Solution
- Software Defined Solution for multi-mode and multi-band radios

Reduced System Power
- Reduces data converter power by using advanced technology and Digitally Assisted Analog
- Elimination of power hungry FPGA-to-Analog interfaces like JESD204

Dramatic System Footprint Reduction
- Eliminates discrete converters and associated JESD PCB area
- Enables increasing channel counts across a range of new radio applications

Shorter Design Cycle
- Simplified HW design with fewer RF components and the elimination of JESD Interfaces
- Simpler Data Converter Subsystem configuration from within Xilinx Vivado tools
Programmable Direct RF Sampling For Radio

- **Moving RF Signal Processing into the Digital Domain**
 - Flexible Platform based on Programmable HW and SW addresses a range of radio applications

- **Remove less flexible RF signal processing components**
 - Analog/RF components have limited flexibility and performance

- **Enable a programmable platform that can be used across radio types**
 - Multiple radio variants required to address global frequency allocations and different bandwidths
 - Ability to support new and emerging standards such as Carrier Aggregation
Direct RF Sampling & Digital Signal Processing

- **RF-DAC**: 3.5GHz
- **RF-ADC**: 3.5GHz
- **PLL**: 4.9152GHz, 3.93216GHz
- **Ref Clock**: 245.76MHz
- **CPRI 10GE**: Baseband Interface
- **Digital Frequency Shifting and Filtering**
- **Band Select BPF**
- **PA**
- **Duplex Filter**
- **Receiver**

ZYNQ RFSoC

FPGA / DFE

DUC

DDC
Discrete Direct RF Sampling Solution Case Study
8T8R 200MHz Band 42 Radio

Processing System
Quad ARM Cortex-A53
Dual ARM Cortex-R5

Programmable Logic

Serial Transceivers

JESD IP

Transceivers
12.5Gb/s

Quad packaged external RF Data Converters

12W

8 Tx Channels

2 x 15mm x 15mm

Discrete RF DC + JESD IP:
Total Power = 30W
Total Area = 2125 mm²

4W+ of power used to implement FPGA JESD Interface

16 lanes of JESD interfacing required to interface to discrete RF ADCs & DACs

4W

JESD

CPRI
10/40/100 GE

Significant footprint and Power of External Data Converters

14W

8 Rx Channels

2 x 15mm x 15mm

© Copyright 2018 Xilinx
Integrated Direct RF Sampling Case Study
8T8R 200MHz Band 42 Radio

4W JESD interface is replaced with a 9W 8T8R RF Sampling Data Converter Subsystem

Eliminate the power and PCB area of 16 JESD lanes

Eliminate ~ 26W of discrete RF Data Converter Power and PCB area

Power consumption of Data Converters implemented on 16nm FinFET is greatly reduced by using the latest digitally assisted analog techniques

Integrated ZU+ RFSoC:
Total Power = 9W (70% savings)
Total Area = 1225 mm² (42% savings)
Advantages of an Integrated SD-FEC

High Throughput and Compute Bandwidth
- High performance core with robust LPDC and Turbo engines
- Configurable interface to control throughput per design requirements

Flexible Customization and Design Integration
- Dynamically optimize parameters and codes for evolving standards
- Coupled with an HW & SW platform

Reduced System Power
- Hardened 16nm FinFET silicon vs. soft implementation in FPGA fabric
- Meets thermal requirements for key applications
Dramatic Power Reduction vs. Soft Core
Example of 2x LDPC Cores at 2Gb/s Throughput

LDPC FEC Soft Cores
~1M System Logic Cells (425K LUTs)

- 33% Logic of Device

 LDPC #1

 LDPC #2

 Processing System

~6.4W of Dynamic Power

Integrated SD-FEC
(ZU21DR RFSoC)

80% Power Reduction

~1.2W of Dynamic Power

- 307MHz F_{MAX}
- 150k LUTs
- 258 BRAM Kbits for storage & buffering

- 614MHz F_{MAX}
- No additional resources required
- More flexibility & functionality available vs. soft core

© Copyright 2018 Xilinx
Zynq® UltraScale+™ RFSoC
RF ADC & RF DAC Overview
RF ADC Block 2GS/s Configuration (ZU29DR Only)

- m03_axis (Real or I/Q)
- m02_axis (Real or I/Q)
- m01_axis (Real or I/Q)
- m00_axis (Real or I/Q)

AXI Stream Data Buses
Up to 8 x 16-bit words

AXI Lite
(PS Control)
RF ADC Block 4GS/s Configuration (ZU25DR, ZU27DR, & ZU28DR Only)

AXI Stream Data Buses
Up to 8 x 16-bit words

m03_axis (Q)

m02_axis (I)

AXI Lite
(PS Control)

Control & Status

ADC 23
4GS/s 12-bits

Sampling Clock

(245MHz – 4GHz)

ADC_CLK_P
ADC_CLK_N
SYSREF_P
SYSREF_N
ADC_R/ext

DDC

ADC 01
4GS/s 12-bits

m01_axis (Q)

m00_axis (I)

VIN23_P
VIN23_N
VIN01_P
VIN01_N
VCM23
VCM01

© Copyright 2018 Xilinx
RF DAC Block Diagram
(ZU25DR, ZU27DR, ZU28DR, & ZU29DR)

- **AXI Stream Data Buses**: Up to 16 x 16-bit words
- **Control & Status**
- **DAC**
 - 6.55GS/s 14-bit
- **PLL**
- **DAC_CLK_P**
- **DAC_CLK_N**
- **SYSREF_P**
- **SYSREF_N**
- **VOUT0_P**
- **VOUT0_N**
- **VOUT1_P**
- **VOUT1_N**
- **VOUT2_P**
- **VOUT2_N**
- **VOUT3_P**
- **VOUT3_N**
- **DAC_REXT**
- **HSDAC_AVTT**

© Copyright 2018 Xilinx
Zynq UltraScale+ RFSoC
Product Solutions
Zynq UltraScale+ RFSoC Kits

> Zynq UltraScale+ RFSoC ZCU111 Evaluation Kit
 ➢ XCZU28DR-2FFVG1517E RFSoC
 - 8x 4GSPS 12-bit ADCs
 - 8x 6.5GSPS 14-bit DAC
 - 8 soft-decision forward error correction (SD-FECs)
 ➢ FMC+: 12 x 32.75 Gb/s GTY transceivers and 34 user defined differential I/O signals
 ➢ XM500 RFMC balun transformer card w 4 DACs/4 ADCs to baluns 4 DACs/4 ADCs to SMAs
 ➢ Price: $8,995
 ➢ Part Number: EK-U1-ZCU111-G

> Zynq UltraScale+ RFSoC ZCU1275 Characterization Kit
 ➢ XCZU29DR RFSoC
 - 16x 2GSPS 12-bit ADCs
 - 16x 6.5GSPS 14-bit DAC
 ➢ Balun Board, Bullseye Cables, Filters
 ➢ Price: $14,995
 ➢ Part Number: CK-U1-ZCU1275-G
RF DC Evaluation Tool Highlights (ZCU111)

> **LabVIEW based evaluation GUI running on PC**
 - Ethernet Interface to board

> **Loopback (DAC to ADC) for multiple channels evaluation**
 - Key parameters measurement (i.e. NSD, SFDR, THD, Harmonics, Spurious Performance)
 - 2 tones test (i.e. IM3)

> **DAC / ADC standalone evaluation**
 - DAC analysis => generate test vectors
 - ADC analysis => FFT spectrum analysis for various input test signals with signal generator

> **Advance Features**
 - Nyquist zone, DDC/DUC, Mixer, NCO, Looping feature
 - File input / export for customized test vectors / modulation
RF Analyzer Debug Tool Highlights

> **Act as a debug tool**
 - Support the ZU+ RFSoC configuration
 - Cross-check features and functionalities
 - Ease of use – no FPGA experience required
 - Not require any additional external resources (i.e. DDR)

> **Compatible with any platforms**
 - ZU+ RFSoC performance can be evaluated in any customers’ boards

> **JTAG based communication interface**
 - JTAG USB cables connected between debug tool & customers’ platforms
 - All communications via JTAG:
 - CTRL: JTAG-to-UART
 - DATA: JTAG-to-AXI

> **Features**
 - Simplified version of RF DC Evaluation Tool
Tool Measures & Displays All Rails, SysMon Voltages & Temperature
 Including ZU+ RFSoC Converter Power

Text, Plots, & Data Logging Included

Currently supported on ZCU102, ZCU106 and NOW ZCU111

Works with Customer Designs Without Impact
 Less temperature unless R5 code included

Separate GUI Enables More to Be Seen
Documentation

> PG269 – RF-ADC/DAC Product Guide
 > driver/API – Appendix C
 > HTML driver docs in XSDK build
 (system.mss file Documentation link, GitHub)
 > Xilinx linux/baremetal wikis

> PG256 – SD-FEC Product Guide
 > bare-metal driver/API – Appendix C
 > Linux driver/API from source files via Doxygen
 > HTML driver docs in XSDK build
 (system.mss file Documentation link, GitHub)
 > Xilinx linux wiki

Also very helpful to new ZU+ users:
 > UG1209 – ZU+ MPSoC Embedded Design Tutorial
 > UG1228 – ZU+ Embedded Design Methodology Guide
 > UG1087 – ZU+ MPSoC Register Reference Guide
Zynq® UltraScale+™ RFSoC Hardware & Software Design Flow
Zynq UltraScale+ RFSoC Design Flow Overview

Xilinx tools support the configuration and integration of the complete RF Data Converter Subsystem.

Up to 6 TMACs of customizable DSP

Complete Solution

Tool Suite

System Generator

IP Integrator

IP Portfolio

DSP

SSR IP

DPD

DOCSIS 3.x

DOCSIS FDx*

Evaluation Platforms

ZCU111

ZC1275

© Copyright 2018 Xilinx
Super Sample Rate Support & IP

> **Super Sample Rate – Processing multiple samples per clock**

 >> Data into FPGA @ much higher sample rate than the FPGA clock

 – Sample rate into FPGA greater than PL clock rate

 >> Need to parallelize the input and process multiple samples per FPGA clock cycle

 >> Requested by A&D customers where RF-ADC/DACs do not meet there DUC/DDCs needs

> **SysGen has developed an SSR programmatical library of 26 SSR IP blocks**

 >> Including FIR, Complex Mult, Mult, DDS and others (2018.3)

 >> SysGen provides additional Super Rate Support
RF-ADC/DAC Implementation Steps

1. Add an RF-ADC/DAC instance using IPI
 • Single instance
2. Use GUI to configure and customize the IP
 • Right click IP to generate example design and testbench, plus DAC HW stimulus generator and ADC HW sink
 • Use BSPs for HW examples per board
3. Connect the RF-ADC/DAC instance to the PS, additional logic, RTL, outside world...
4. Implement (Synthesis, PnR…)
5. Generate the bitstream, export the HDF
6. Implement your Software Project
 • XSDK, Petalinux, 3rd party…
SD-FEC Implementation Steps

1. Add SD-FEC instance using IPI
 - SD-FEC requires a license – but it’s free
 xilinx.com/products/intellectual-property/sd-fec.html
 - Place SD-FEC IP instances
 (see PG256 for placement constraints)

2. Use GUI to configure and customize the IP
 - Includes Optional Example Designs
 1) Testbench simulation
 2) PS-based example design

3. Connect SD-FEC instances to the PS,
 additional logic IP, RTL, outside world…

4. Implement (Synthesis, PnR…)

5. Generate the bitstream, export the HDF

6. Implement your Software Project
 - XSDK, Petalinux, 3rd party…
Drivers & Software
The Processing System is identical to a ZU+ MPSoC, except:

- No GPU,
- Quad Cortex-A53 APU only (no dual)
- All other PS blocks remain the same

A portion of the PL of a ZU+ MPSoC device has been replaced with the SD-FEC, RF-ADC/DAC blocks

No change to peripheral interfaces or drivers (I2C, QSPI...)

- Software users coming from a ZU+ design already know how to use the RFSoC PS

© Copyright 2018 Xilinx
Zynq UltraScale+ RFSoC Drivers

> **RF-ADC/DAC – rfdc_v* (3.2) (PG269 – Appendix C)**
 - Bare-Metal – XSDK build, GitHub, Linux – GitHub (embeddedsw)
 - Linux and bare-metal APIs are identical
 - Control plane manipulation, avoiding registers
 - 77 APIs total (as of 2018.1)

> **SD-FEC – sd_fec_v* (1.0) (PG256 – Appendix C)**
 - Bare-Metal – In the XSDK build, GitHub
 Linux – GitHub (linux-xilinx) – linked from Xilinx linux drivers wiki
 - Linux and bare-metal APIs differ
 - Control plane manipulation, data table updates, register manipulation option via API
 - 7 main bare-metal APIs, plus 84 specialized register/table API calls (as of 2018.1)

> **Three of the four driver combinations use libmetal library**

.../Xilinx/embeddedsw/XilinxProcessorIPLib/drivers

<table>
<thead>
<tr>
<th>Driver</th>
<th>Type</th>
<th>Uses Libmetal?</th>
</tr>
</thead>
<tbody>
<tr>
<td>rfdc</td>
<td>Bare-metal</td>
<td>Yes</td>
</tr>
<tr>
<td>rfdc</td>
<td>Linux</td>
<td>Yes</td>
</tr>
<tr>
<td>sd_fec</td>
<td>Bare-metal</td>
<td>No</td>
</tr>
<tr>
<td>sd_fec</td>
<td>Linux</td>
<td>Yes</td>
</tr>
</tbody>
</table>
A Simple RF-ADC/DAC Example Explained

> Set the RF-ADC/DAC instance

> Populate the data structures per the initial Vivado settings

> Two nested loops checking which blocks are enabled
 >> The first runs through each Tile
 >> The second runs through each Block within each Tile

> Modify Mixer Settings from initial configuration

> Write new Mixer Settings

> Modify QMC Settings from initial configuration

> Write new QMC Settings

Software changes can have drastic effects on the hardware (example: setting the wrong data rate will generate a FIFO overflow)
The PMU/CSU initialize as in a ZU+

The FSBL (First Stage Boot Loader) loads the bitstream including the SD-FEC and/or RF-ADC/DAC blocks

In parallel the PMU/CSU/APU/RPU finish initialization and the SD-FEC and/or RF-ADC/DAC blocks initialize via on-board state machines (no user interaction)

Software access to the IP is optionally started through *_Lookup then *_CfgInitialize API commands

Application code can then optionally interact with the SD-FECs or RF-ADC/DAC as needed through APIs

The RF-ADC/DAC initialize and can operate without software interaction
See The RF Evaluation Tool Demonstration During The Break
RF Data Converter Evaluation Tool - Overview

NI Labview GUI
ADC Results & Analysis
and
DAC stimuli building

ZYNQ
RFSoC

On-Chip Mem.
Tx I/Q vectors

RF DAC

On-Chip Mem.
Rx I/Q vectors

DAC Results & Analysis (optional)

USB to UART
Gigabit Ethernet

Tx

Rx

LPF path

HPF path

© Copyright 2018 Xilinx
Beta RF DC Evaluation Tool Measurement simple set-up

- DAC outputs to Spectrum Analyzer (optional)
- DAC channel output to Spectrum Analyzer
- DAC to ADC loopback FFT results on TRD
- DAC to ADC loopback with BPF in between
- USB / Ethernet cable connected to PC

DAC outputs to Spectrum Analyzer

DAC channel output to Spectrum Analyzer
Summary

- Integrated RF Data Converter Subsystem addresses a wide range of applications
- Significantly reduces the Power and Footprint of high channel count systems
- Enables adaptable Radio HW platforms
- Full support in Vivado accelerates development time versus discrete solutions
- Data Converter Evaluation Board, Design, and Evaluation Tools
Adaptable.
Intelligent.
RF Solutions with Zynq ® UltraScale+ ™ RFSoC