Accelerating ADAS Computer Vision Application Development at Ford using SDSoC

Presented By

Vijay Nagasamy
Research Scientist – Autonomous Vehicles
October 2, 2018
Accelerating ADAS Computer Vision Application Development at Ford using SDSoC

Vijay Nagasamy
Research Scientist – Autonomous Vehicles
Ford Greenfield Labs, Palo Alto
Ford Motor Company

© Copyright 2018 Ford Motor Company
Agenda

• Background
• Project Challenges
• Design Approach
• Project Results
• What we liked/what could be improved
Driver Assistance Trends

- Warnings -> active control -> fully auton.
- Cameras are important
 - 1 camera -> 10+ cameras
- Machine vision technology is critical
- Vision application -> deep learning
My Background

• 25+ years of industry experience
 • Top-Down Design Methodology, High Level Synthesis (HLS)
• Developed early HLS tools and environment for ASIC design at LSI Logic
 • Co-inventor of several Patents in this field
• Managed ASIC/FPGA teams at Fortune 500 companies and startups
• Expertise in several domains
 • Computer Vision, Image Processing, Machine Learning, IoT, Telecom
• Consulted initially at Ford Research & Innovation Center in 2017
• Currently, Research Scientist in the Autonomous Vehicles group at Ford
Ford Driver Assistance System Project

Development Team
- Diverse group of research engineers and scientists with software background; limited FPGA development expertise

Initial implementation
- Team developed Machine Vision algorithms for a Driver Assist application
- Running at 30 frames/sec on a Linux PC platform

Hardware Platform Selection
- Team selected Xilinx but had not yet selected a device or design approach
FUNCTIONS
• Capture image from camera
• Correct for lens distortion
• Detect and track objects in view
• Compute and communicate results to the vehicle ECU

GOAL
Implement application on a Zynq MPSoC device
• Accelerate OpenCV library blocks
 - Corner Detection
 - Optical Flow

© Copyright 2018 Ford Motor Company
Project Goals and Challenges

Speed/Performance
- Meet performance of at least 10-15 fps on the hardware

Flexible and Versatile
- Hardware needs to run and accelerate other Driver Assist functions as well

Hardware Platform Selection
- Determine hardware implementation feasibility within 2 months
- Develop overall “Concept Ready” solution within 10 months
- Train research engineer to write efficient C++ code targeting Zynq MPSoC
Design Approach

• Selected Xilinx ZU9EG device and ZCU-102 board for development
• Selected SDSoC as the best tool/environment for the project
• Used OpenCV libraries and high level design methodology
• Used a top-down design implementation approach
Top-Down Iterative Design Methodology

1. **Algorithm Developer**
 - **C/C++ Application running on ARM**
 - Profile application
 - **Mark functions for HW acceleration**
 - Estimate performance
 - **Build application to generate software and hardware**
 - SD Card Image
 - Run on the board
 - **Analyze performance**
 - **Optimize data transfer and parallelism using SDSoc guidelines**
 - **Optimize accelerator code**

2. **Existing C++ Algorithm**
 - **Tune algorithm on a PC platform**
 - **Modify C++ for ARM using OpenCV Library**
 - Replace identified OpenCV SW functions with Xilinx accelerated HW functions
 - **Cross-compile for target ARM platform using SDSoc Environment & Libraries on a Windows/Linux PC**
 - **SD Card Image**
 - **Run on Xilinx ZCU-102 development platform**
 - **Analyze Performance Profile**
 - **Optimize Application**
 - **Analyze Performance**

3. **Embedded SW developer**

© Copyright 2018 Ford Motor Company
Results: Time to Process a Frame

Time budget per frame for 15 FPS = 66ms
Time budget per frame for 10FPS = 100ms

- Initially ran application on Zynq Ultrascale device
- Too far from performance target
- Insufficient PL resources to accelerate critical functions

© Copyright 2018 Ford Motor Company
Results: Time to Process a Frame

Time budget per frame for 15 FPS = 66ms
Time budget per frame for 10 FPS = 100ms

• Moved to Zynq Ultrascale+ device family
• Achieved ~4x performance improvement running in software mode

© Copyright 2018 Ford Motor Company
Results: Time to Process a Frame

Time budget per frame for 15 FPS = 66ms
Time budget per frame for 10FPS = 100ms

- 4x Speed-up in software Execution!
- Speed-up using Xilinx accelerated OpenCV libraries

- Moved Corner Detection function to PL using “Fast Corner” block from the Xilinx reVISION library
Results: Time to Process a Frame

- Time budget per frame for 15 FPS = 66ms
- Time budget per frame for 10 FPS = 100ms

- Moved Optical Flow function to PL using the Xilinx reVISION library
- Optimized frame pre-process in software

<table>
<thead>
<tr>
<th>Device</th>
<th>Iteration</th>
<th>FPS</th>
<th>Core ARM</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZC-702</td>
<td></td>
<td>~0.5</td>
<td>2-Core</td>
<td>@667Mhz</td>
</tr>
<tr>
<td>ZCU-102</td>
<td>Iter1</td>
<td>~3</td>
<td>4-Core</td>
<td>@1.2Ghz</td>
</tr>
<tr>
<td></td>
<td>Iter2</td>
<td>~5</td>
<td>4-Core</td>
<td>@1.2Ghz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>~1.7</td>
<td>Core</td>
<td>@1.2Ghz</td>
</tr>
</tbody>
</table>

© Copyright 2018 Ford Motor Company
Results: Time to Process a Frame

Time budget per frame for 15 FPS = 66ms
Time budget per frame for 10FPS = 100ms

- Optimized Algorithm - Process smaller ROIs
- Achieved target of 12 frames/sec!

© Copyright 2018 Ford Motor Company
Project Results

- Completed initial setup and profiling within 1 month
- Succeeded in handing off project to Ford engineering team
 - 2 Algorithm/Research eng., 1 FPGA implementation and 2 embedded SW dev’s
- Achieved target frame rate of 12 fps
- Overall project using Xilinx FPGA completed in 10 months, on schedule
 - Algorithm implementation portion on the FPGA was completed in 4 months
- Passed 1st gate of multi-year production release process
What We Liked

• SDSoC tool & environment was easy to use
• Familiar C/C++ development environment
• Short learning curve for an embedded software engineer
• Relevant examples from Xilinx to help learn the environment
• Xilinx support for early access OpenCV libraries was instrumental to a successful project implementation
• Excellent field support from Xilinx
What Could Be Improved

• Expand support for more OpenCV library functions accelerated in hardware

• Make it easier to import C/C++ algorithms developed on a PC to Xilinx SDSoC environment
Acknowledgments

The FORD Project Team

- Vidya Murali
- Bindu Sairamesh
- Nikhil Rao
- Bruno Costa
- Yi Zhang
- Dongran Liu

The Xilinx Team

- Alvin Clark
- Quang Nguyen
- Kamran Khan
- Varun Santhaseelan
- David Lam
Summary

• SDSoC-based top-down flow was used successfully by embedded SW developers with limited FPGA design experience

• Key to success was setting up the platform and training developers on design methodology

• Early access to Accelerated OpenCV libraries and Xilinx support were essential