RF Solutions with Zynq® UltraScale+™ RFSoC

Presented By

Glenn Steiner: System Software & SoC Solutions – Product and Technical Marketing
David Brubaker: Product Line Manager – Zynq UltraScale+ RFSoC
RFSoC Introduction
The First Programmable RFSoC

✓ Integrated RF-Class Analog Converters and Error Correction Technology
✓ Delivering 50-75% Power & Footprint Reduction
✓ Full Programmability Across the RF Signal Chain
Part of a Complete System Based on Production-Proven MPSoCs

Monolithically Integrated

Hardened Engines
- PCIe Gen3 & Gen4
- 100G Cores

33G Transceivers
- 33Gb/s
- 28G Backplane Capable

Analog-to-Digital Converters
Up to 4.096 GSPS

Digital-to-Analog Converters
Up to 6.544 GSPS

Soft Decision Forward Error Correction
LDPC & Turbo Support

33G Transceivers
- PCIe Gen4
- UltraRAM
- 100G Cores

Programmable Logic
- 16nm FinFET
- UltraScale+ FPGA Fabric

DSP-Intensive
- 4,272 DSP slices
- 7,612 GMACs

ARM Cortex

Processing System
- Quad-Core A53 (64-bit)
- Dual-Core R5 (32-bit)

33G Transceivers
- 33Gb/s
- 28G Backplane Capable

Analog-to-Digital Converters
Up to 4.096 GSPS

Digital-to-Analog Converters
Up to 6.544 GSPS

Soft Decision Forward Error Correction
LDPC & Turbo Support

© Copyright 2018 Xilinx
Xilinx RF Converters – An Evolution and A Revolution

Full Spectrum Bandwidth = 4GHz
DAC = 6.55GSPS, ADC = 4GSPS

10-bit, 200-kSPS

16nm Test Chip

“Shannon” Test Chip

DAC: 6Gsp
ADC: 2/4Gsp

56G High Speed PAM4
Serial Transceivers

2006 2012 2017
RFSoC Applications
Software Defined Radio on a Chip

Zynq US+ RFSoC

Processing System
- Quad ARM Cortex-A53
- Dual ARM Cortex-R5

Programmable Logic
- 680K – 930K System Logic Cells
- 3168 – 4272 DSP Slices

Digital Baseband

- CPRI, 10GE, 25GE, ..
- ...10010010101010101011010101...
- ...100100101010101011010101...

GTY 28Gb/s

SD FEC

RF I/O (multi-standard, multi-band)

- RF in 0 – 4GHz
- RF out 0 – 4GHz

- PA
- BPF
- AAF
- LNA

- RF DAC
- RF ADC
- DDC
- DUC

© Copyright 2018 Xilinx
Enabling 5G Architectures

RFSoCs Advancing 5G Architectures

SPECTRAL EFFICIENCY • POWER EFFICIENCY • NETWORK DENSIFICATION

Remote Radio for Massive-MIMO
- POWER • FORM FACTOR

Digital Beamforming

CPRI / eCPRI

Fronthaul

Baseband
- THROUGHPUT • POWER EFFICIENCY

Backhaul

Wireless Backhaul
- THROUGHPUT • POWER • FORM FACTOR

Point-to-Point Reach, Reliability, Throughput

Remote Radio for Massive-MIMO
Zynq UltraScale+ RFSoC in 5G New Radio

Digital Beamforming (Digital & RF Domain) Single Processor Control

SDN Control

Up to 16x16 RF Integration

IP for Offloading L1 Closer to Radio Reduces Fronthaul Throughput

Up To 25Gb/s To Baseband

Air Interface

Up To 33G Transceivers w/ RSFEC

© Copyright 2018 Xilinx
Zynq UltraScale+ RFSoC in Wireless Backhaul

- **Processing System**
 - CPU₀: Operation & Maintenance
 - CPU₁: Operation & Maintenance

- **Digital Front-End**
 - 33G Transceivers
 - L₂ Processing
 - SD-FEC
 - Log Likelihood Ratio
 - Mod/Demod
 - Digital Front-End

- **Up to 4x4 RF Integration**

- **Multi-Level LDPC**
 - Optionally bypass SD-FEC

- **Air Interface**
 - Point-to-Point Communication

© Copyright 2018 Xilinx
DOCSIS 3.1 Remote PHY Node

Distributed Access Architecture

- “Fiber Deep” deployed closer to the home for greater bandwidth & power efficiency
- Remote PHY node moves PHY layer processing closer to the home, increasing network capacity
DOCSIS 3.1 Remote PHY Node

- **Processing System**: • Traffic Management • GCP

- **LDPC for DOCSIS 3.1**

- **Validated DOCSIS 3.1 OFDM IP**

- **DPD IP**

- **RF Integration**
 - For Power and Footprint

- **To/From Headend Office**
 - Optical Fiber

- **To/From Cable Modems**
 - Coaxial Cable (Full Duplex)

- **MAC Packet Processing (MACSEC)**

- **D-UEPI IP**

- **U-DEPI IP**

- **DOCSIS3.0 SCQAM**

- **Downstream LDPC**

- **Upstream LDPC**

- **DDC**

- **ADC**

- **DAC**
Electronically Scanned Array

ZU29DR RFSoC Device
To Implement one 16T/16R Module

4 modules per Panel (64T/64R)

10’s to 100’s Panels in an Array

Image: MIT Lincoln Labs
RFSoc Product Family and Benefits
RFSoC Family Overview

Data Converter Enabled Devices

<table>
<thead>
<tr>
<th></th>
<th>Baseband</th>
<th>Wireless Radio</th>
<th>Backhaul, Remote-PHY</th>
<th>Phased Array Radar / Radio</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Data Converters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft-Decision FEC</td>
<td>ZU21DR</td>
<td>ZU25DR</td>
<td>ZU27DR</td>
<td>ZU28DR</td>
</tr>
<tr>
<td>12-bit, 4GSPS ADC</td>
<td>–</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>12-bit, 2GSPS ADC</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>14-bit, 6.4GSPS DAC</td>
<td>–</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>SD-FEC</td>
<td>8</td>
<td>–</td>
<td>–</td>
<td>8</td>
</tr>
<tr>
<td>Processing System & Programmable Logic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application Processor Core</td>
<td>Quad-core ARM Cortex-A53 MPCore up to 1.5GHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real-Time Processor Core</td>
<td>Dual-core ARM Cortex-R5 MPCore up to 533MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Speed Connectivity</td>
<td>DDR4-2600, PCIe Gen3 x16, PCIe Gen4, 100G Ethernet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic Density (System Logic Cells)</td>
<td>930K</td>
<td>678K</td>
<td>930K</td>
<td>930K</td>
</tr>
<tr>
<td>DSP Slices</td>
<td>4,272</td>
<td>3,145</td>
<td>4,272</td>
<td>4,272</td>
</tr>
<tr>
<td>33G Transceivers</td>
<td>16</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>
Key Benefits of Integrated RF Data Converters

Fully Programmable Direct RF Sampling Radio Platform
- RF-signal processing moved to the digital domain for a fully Programmable Solution
- Software Defined Solution for multi-mode and multi-band radios

Reduced System Power
- Reduces data converter power by using advanced technology and Digitally Assisted Analog
- Elimination of power hungry FPGA-to-Analog interfaces like JESD204

Dramatic System Footprint Reduction
- Eliminates discrete converters and associated JESD PCB area
- Enables increasing channel counts across a range of new radio applications

Shorter Design Cycle
- Simplified HW design with fewer RF components and the elimination of JESD Interfaces
- Simpler Data Converter Subsystem configuration from within Xilinx Vivado tools
Programmable Direct RF Sampling For Radio

> Moving RF Signal Processing into the Digital Domain
 >> Flexible Platform based on Programmable HW and SW addresses a range of radio applications

> Remove less flexible RF signal processing components
 >> Analog/RF components have limited flexibility and performance

> Enable a programmable platform that can be used across radio types
 >> Multiple radio variants required to address global frequency allocations and different bandwidths
 >> Ability to support new and emerging standards such as Carrier Aggregation
Baseband/IF Sampling & RF Signal Processing

CPRI 10GE

Baseband Interface

FPGA / DFE

DAC

LPF 100MHz

I

JESD

Q

SPI

Calibration & Control

LO

LO

ADC

LPF 100MHz

I

JESD

Q

ADC

LPF

RFIC

Band Select

BPF

3.5GHz RF Signal

Duplex Filter

Receiver

3.5GHz

LNA

BPF

3.5GHz

Analog Frequency Shifting and Filtering

© Copyright 2018 Xilinx
Direct RF Sampling & Digital Signal Processing

FPGA / DFE

RF-DAC

3.5GHz

Band Select

PA

RF-ADC

3.5GHz

LNA

BPF

PLL

4.9152GHz

Ref Clock 245.76MHz

3.93216GHz

3.5GHz RF Signal

Digital Frequency Shifting and Filtering

CPRI 10GE

Baseband Interface
Discrete Direct RF Sampling Solution Case Study
8T8R 200MHz Band 42 Radio

- Processing System: Quad ARM Cortex-A53, Dual ARM Cortex-R5
- Programmable Logic
- Serial Transceivers
- JESD IP
- Transceivers: 12.5Gb/s
- CPRI 10/40/100 GE

4W+ of power used to implement FPGA JESD Interface

16 lanes of JESD interfacing required to interface to discrete RF ADCs & DACs

Quad packaged external RF Data Converters

8 Tx Channels
2 x 15mm x 15mm

8 Rx Channels
2 x 15mm x 15mm

Discrete RF DC + JESD IP:
Total Power = 30W
Total Area = 2125 mm²

Significant footprint and Power of External Data Converters

© Copyright 2018 Xilinx
RFSoC Integrated Direct RF Sampling Case Study
8T8R 200MHz Band 42 Radio

4W JESD interface is replaced with a 9W 8T8R RF Sampling Data Converter Subsystem

Eliminate the power and PCB area of 16 JESD lanes

Eliminate ~ 26W of discrete RF Data Converter Power and PCB area

Power consumption of Data Converters implemented on 16nm FinFET is greatly reduced by using the latest digitally assisted analog techniques

Integrated RFSoC:
Total Power = 9W
Total Area = 1225 mm²

© Copyright 2018 Xilinx
RFSoC delivering Huge SWaP-C Advantages

Most EW Modules Based on FPGAs or All Programmable SoCs

- Algorithms must be updated as threats change
- RF devices the “only ASIC left” on the board

Discrete RF/Analog a limitation to SWaP-C

Government Programs Need to Scale SWaP-C

- 1000s of modules in a system, 100s of systems in a program
- Systems need modularity and full re-programmability

4x4 Transmit / Receive Channels
Building Blocks for Phased Array Radar

16x16 Transmit / Receive Channels
Building Blocks for Phased Array Radar
Advantages of an Integrated SD-FEC

High Throughput and Compute Bandwidth
- High performance core with robust LPDC and Turbo engines
- Configurable interface to control throughput per design requirements

Flexible Customization and Design Integration
- Dynamically optimize parameters and codes for evolving standards
- Coupled with an HW & SW platform

Reduced System Power
- Hardened 16nm FinFET silicon vs. soft implementation in FPGA fabric
- Meets thermal requirements for key applications
Dramatic Power Reduction vs. Soft Core
Example of 2x LDPC Cores at 2Gb/s Throughput

LDPC FEC Soft Cores
~1M System Logic Cells (425K LUTs)

33% Logic of Device

LDPC #1 LDPC #2

Processing System

~6.4W of Dynamic Power

80% Power Reduction

Integrated SD-FEC
(ZU21DR RFSoC)

~1.2W of Dynamic Power

- 307MHz F_{MAX}
- 150k LUTs
- 258 BRAM Kbits for storage & buffering

- 614MHz F_{MAX}
- No additional resources required
- More flexibility & functionality available vs. soft core
Zynq® UltraScale+™ RFSoC
RF ADC & RF DAC Overview
RF ADC Block 2GS/s Configuration (ZU29DR Only)

- **m03_axis** (Real or I/Q)
- **m02_axis** (Real or I/Q)
- **m01_axis** (Real or I/Q)
- **m00_axis** (Real or I/Q)

AXI Stream Data Buses
Up to 8 x 16-bit words

AXI Lite
(PS Control)

Control & Status

DDC

ADC 0
2GS/s 12-bits
ADC 1
2GS/s 12-bits
ADC 2
2GS/s 12-bits
ADC 3
2GS/s 12-bits

IP Core

PLL

Sampling Clock

ADC_CLK_P
ADC_CLK_N
SYSREF_P
SYSREF_N
ADC_REXT

BUF

VIN0_P
VIN0_N
VIN1_P
VIN1_N
VIN2_P
VIN2_N
VIN3_P
VIN3_N

VCM01
VCM23

2.49KΩ

(245MHz – 4GHz)

© Copyright 2018 Xilinx
RF ADC Block 4GS/s Configuration (ZU25DR, ZU27DR, & ZU28DR Only)

DDC

- m03_axis (Q)
- m02_axis (I)
- AXI Lite (PS Control)
- m01_axis (Q)
- m00_axis (I)

ADC 23

- 4GS/s 12-bits
- VIN23_P
- VIN23_N
- ADC_CLK_P
- ADC_CLK_N
- ADC_REXT

ADC 01

- 4GS/s 12-bits
- VIN01_P
- VIN01_N
- SYSREF_P
- SYSREF_N

Sampling Clock

- PLL
- (245MHz – 4GHz)

IP Core

- AXI Stream Data Buses
 - Up to 8 x 16-bit words
- AXI Lite
- (PS Control)

Control & Status

- m03_axis (Q)
- m02_axis (I)
- m01_axis (Q)
- m00_axis (I)
RFSoC Product Solutions
Zynq UltraScale+ RFSoC Kits

> Zynq UltraScale+ RFSoC ZCU111 Evaluation Kit
 > XCZU28DR-2FFVG1517E RFSoC
 - 8x 4GSPS 12-bit ADCs
 - 8x 6.5GSPS 14-bit DAC
 - 8 soft-decision forward error correction (SD-FECs)
 > FMC+: 12 x 32.75 Gb/s GTY transceivers and 34 user defined differential I/O signals
 > XM500 RFMC balun transformer card w 4 DACs/ 4 ADCs to baluns 4 DACs/ 4 ADCs to SMAs
 > Price: $8,995
 > Part Number: EK-U1-ZCU111-G

> Zynq UltraScale+ RFSoC ZCU1275 Characterization Kit
 > XCZU29DR RFSoC
 - 16x 2GSPS 12-bit ADCs
 - 16x 6.5GSPS 14-bit DAC
 > Balun Board, Bullseye Cables, Filters
 > Price: $14,995
 > Part Number: CK-U1-ZCU1275-G
RF DC Evaluation Tool Highlights (ZCU111)

> LabVIEW based evaluation GUI running on PC
 ▪ Ethernet Interface to board

> Loopback (DAC to ADC) for multiple channels evaluation
 ▪ Key parameters measurement (i.e. NSD, SFDR, THD, Harmonics, Spurious Performance)
 ▪ 2 tones test (i.e. IM3)

> DAC / ADC standalone evaluation
 ▪ DAC analysis => generate test vectors
 ▪ ADC analysis => FFT spectrum analysis for various input test signals with signal generator

> Advance Features
 ▪ Nyquist zone, DDC/DUC, Mixer, NCO, Looping feature
 ▪ File input / export for customized test vectors / modulation
RF Analyzer Debug Tool Highlights

> Act as a debug tool
 - Support the RFSoC configuration
 - Cross-check features and functionalities
 - Ease of use – no FPGA experience required
 - Not require any additional external resources (i.e. DDR)

> Compatible with any platforms
 - RFSoC performance can be evaluated in any customers’ boards

> JTAG based communication interface
 - JTAG USB cables connected between debug tool & customers’ platforms
 - All communications via JTAG:
 - CTRL: JTAG-to-UART
 - DATA: JTAG-to-AXI

> Features
 - Simplified version of RF DC Evaluation Tool
ZCU111 Power Measurement & Power Advantage Tool

- Tool Measures & Displays All Rails, SysMon Voltages & Temperature
 - Including RFSoC Converter Power

- Text, Plots, & Data Logging Included

- Currently supported on ZCU102, ZCU106 and NOW ZCU111

- Works with Customer Designs Without Impact
 - Less temperature unless R5 code included

- Separate GUI Enables More to Be Seen
Documentation

> PG269 – RF-ADC/DAC Product Guide
 > driver/API – Appendix C
 > HTML driver docs in XSDK build (system.mss file Documentation link, GitHub)
 > Xilinx linux/baremetal wikis

> PG256 – SD-FEC Product Guide
 > bare-metal driver/API – Appendix C
 > Linux driver/API from source files via Doxygen
 > HTML driver docs in XSDK build (system.mss file Documentation link, GitHub)
 > Xilinx linux wiki

Also very helpful to new ZU+ users:
 > UG1209 – ZU+ MPSoC Embedded Design Tutorial
 > UG1228 – ZU+ Embedded Design Methodology Guide
 > UG1087 – ZU+ MPSoC Register Reference Guide
Zynq® UltraScale+™ RFSoC Hardware & Software Design Flow
RFSoC Design Flow Overview

Xilinx tools support the configuration and integration of the complete RF Data Converter Subsystem

Up to 6 TMACs of customizable DSP

Complete Solution

Tool Suite

System Generator

SDK

SDx

Environments

IP Integrator

VIVADO

HLx Editions

IP Portfolio

DSP

SSR IP

DPD

DOCSIS 3.x

DOCSIS FDx*

Evaluation Platforms

ZCU111

ZC1275

Custom DSP

Processing System

Quad ARM Cortex-A53

Dual ARM Cortex-R5

Control & Configuration

AXI Stream

DUC

RF DAC

RF ADC

8 – 16 Tx Channels

8 – 16 Rx Channels

© Copyright 2018 Xilinx
Super Sample Rate Support & IP

> Super Sample Rate – Processing multiple samples per clock
 >> Data into FPGA @ much higher sample rate than the FPGA clock
 – Sample rate into FPGA greater than PL clock rate
 >> Need to parallelize the input and process multiple samples per FPGA clock cycle
 >> Requested by A&D customers where RF-ADC/DACs do not meet their DUC/DDCs needs

> SysGen has developed an SSR programmatical library of 26 SSR IP blocks
 >> Including FIR, Complex Mult, Mult, DDS and others (2018.3)
 >> SysGen provides additional Super Rate Support
RF-ADC/DAC Implementation Steps

1. Add an RF-ADC/DAC instance using IPI
 • Single instance

2. Use GUI to configure and customize the IP
 • Right click IP to generate example design and testbench, plus DAC HW stimulus generator and ADC HW sink
 • Use BSPs for HW examples per board

3. Connect the RF-ADC/DAC instance to the PS, additional logic, RTL, outside world…

4. Implement (Synthesis, PnR…)

5. Generate the bitstream, export the HDF

6. Implement your Software Project
 • XSDK, Petalinux, 3rd party…
SD-FEC Implementation Steps

1. Add SD-FEC instance using IPI
 - SD-FEC requires a license – but it’s free
 xilinx.com/products/intellectual-property/sd-fec.html
 - Place SD-FEC IP instances
 (see PG256 for placement constraints)

2. Use GUI to configure and customize the IP
 - Includes Optional Example Designs
 1) Testbench simulation
 2) PS-based example design

3. Connect SD-FEC instances to the PS,
 additional logic IP, RTL, outside world…

4. Implement (Synthesis, PnR…)

5. Generate the bitstream, export the HDF

6. Implement your Software Project
 - XSDK, Petalinux, 3rd party…
Drivers & Software
The Processing System is identical to a ZU+ MPSoC, except:

- No GPU,
- Quad Cortex-A53 APU only (no dual)
- All other PS blocks remain the same

A portion of the PL of a ZU+ MPSoC device has been replaced with the SD-FEC, RF-ADC/DAC blocks

No change to peripheral interfaces or drivers (I2C, QSPI...)

Software users coming from a ZU+ design already know how to use the RFSoC PS
RFSoC Drivers

RF-ADC/DAC – rfdc_v\(^*\) (3.2) (PG269 – Appendix C)
- Bare-Metal – XSDK build, GitHub, Linux – GitHub (embeddedsw)
- Linux and bare-metal APIs are identical
- Control plane manipulation, avoiding registers
- 77 APIs total (as of 2018.1)

<table>
<thead>
<tr>
<th>Driver</th>
<th>Type</th>
<th>Uses Libmetal?</th>
</tr>
</thead>
<tbody>
<tr>
<td>rfdc</td>
<td>Bare-metal</td>
<td>Yes</td>
</tr>
<tr>
<td>rfdc</td>
<td>Linux</td>
<td>Yes</td>
</tr>
<tr>
<td>sd_fec</td>
<td>Bare-metal</td>
<td>No</td>
</tr>
<tr>
<td>sd_fec</td>
<td>Linux</td>
<td>Yes</td>
</tr>
</tbody>
</table>

SD-FEC – sd_fec_v\(^*\) (1.0) (PG256 – Appendix C)
- Bare-Metal – In the XSDK build, GitHub
 - Linux – GitHub (linux-xlnx) – linked from Xilinx linux drivers wiki
- Linux and bare-metal APIs differ
- Control plane manipulation, data table updates, register manipulation option via API
- 7 main bare-metal APIs, plus 84 specialized register/table API calls (as of 2018.1)

- Three of the four driver combinations use libmetal library

```bash
./Xilinx/embeddedsw/XilinxProcessorIPLib/drivers
```
A Simple RF-ADC/DAC Example Explained

- Set the RF-ADC/DAC instance
- Populate the data structures per the initial Vivado settings
- Two nested loops checking which blocks are enabled
 - The first runs through each Tile
 - The second runs through each Block within each Tile
- Modify Mixer Settings from initial configuration
- Write new Mixer Settings
- Modify QMC Settings from initial configuration
- Write new QMC Settings

Software changes can have drastic effects on the hardware (example: setting the wrong data rate will generate a FIFO overflow)
A Simplified Linux RFSoC Boot Example

>> The PMU/CSU initialize as in a ZU+
>> The FSBL (First Stage Boot Loader) loads the bitstream including the SD-FEC and/or RF-ADC/DAC blocks
>> In parallel the PMU/CSU/APU/RPU finish initialization and the SD-FEC and/or RF-ADC/DAC blocks initialize via on-board state machines (*no user interaction*)
>> Software access to the IP is optionally started through *_Lookup then *_CfgInitialize API commands
>> Application code can then optionally interact with the SD-FECs or RF-ADC/DAC as needed through APIs

• The SD-FECs and/or RF-ADC/DAC initialize and can operate without software interaction
See The RF Evaluation Tool Demonstration During The Break
RF Data Converter Evaluation Tool - Overview

NI Labview GUI
ADC Results & Analysis and DAC stimuli building

On-Chip Mem.
Tx I/Q vectors

On-Chip Mem.
Rx I/Q vectors

RF DAC

USB to UART
Gigabit Ethernet

DAC Results & Analysis (optional)

Gigabit Ethernet
LPF path
HPF path

LPF path
HPF path

Gigabit Ethernet

Gigabit Ethernet
Beta RF DC Evaluation Tool Measurement simple set-up

- DAC outputs to Spectrum Analyzer (optional)
- DAC channel output to Spectrum Analyzer
- DAC to ADC loopback FFT results on TRD
- DAC to ADC loopback with BPF in between
- USB / Ethernet cable connected to PC
Summary

> Integrated RF Data Converter Subsystem addresses a wide range of applications

> Significantly reduces the Power and Footprint of high channel count systems

> Enables adaptable Radio HW platforms

> Full support in Vivado accelerates development time versus discrete solutions

> Data Converter Evaluation Board, Design, and Evaluation Tools
Adaptable. Intelligent.
RF Solutions with Zynq® UltraScale+™ RFSoC

Presented By

Glenn Steiner
David Brubaker
Xilinx