Accelerating Real-Time AI Inference

Dachang Li, Shuai Zhang
Vitis AI Technical Marketing
Agenda

- Vitis/Vitis AI Overview
- Design Overview
- Design Implementation
- Summary
Vitis/Vitis AI Overview
Vitis Unified Software Platform

Domain-specific development environments

Vitis accelerated libraries

- Vision & Image Processing
- Math & Linear Algebra
- Quantitative Finance

Vitis core development kit

- Compilers
- Analyzers
- Debuggers

Xilinx runtime library (XRT)

Vitis target platform

- Zynq-7000
- Zynq UltraScale+ MPSoC
- Alveo
- Versal ACAPs

Partners

- Genomics, Data Analytics, And more

Vitis AI

TensorFlow, Caffe

Vitis Video

FFmpeg

© Copyright 2020 Xilinx
Vitis Target Platform
Base Hardware, Software Architecture

- **For PCIe Accelerator Cards, Includes**
 - PCIe® Interface Logic
 - DDR memory interface controllers
 - XDMA logic etc.
 - Hardware Config & Lifecycle Management

- **For Embedded Devices, Includes**
 - Operating System
 - Runtime library (XRT)
 - Runtime drivers (XRT)
 - Firmware & Boot loader

Ready-to-Use Vitis Target Platforms
OR
Build Your Own using Vivado Design Suite

© Copyright 2020 Xilinx
All Developers Can Build and Deploy on All Platforms

Build

Embedded Developers
Enterprise Application Developers
Enterprise Infrastructure Developers
Data & AI Scientists

Deploy

Zynq-7000
Zynq UltraScale+ MPSoC
Alveo
Versal ACAPs
Develop: Use Extensive, Open Source Vitis Libraries

Domain-Specific Libraries
- Vision & Image
- Quantitative Finance
- Data Analytics & Database
- Data Compression
- Data Security

Common Libraries
- Math
- Linear Algebra
- Statistics
- DSP
- Data Management

500+ functions across multiple libraries for performance-optimized out-of-the-box acceleration
Vitis Vision Library

- Performance-optimized kernel and primitive functions for
 - Color and bit-depth conversion, channel extractions, pixel-wise arithmetic ops.
 - Geometric transforms, image statistics, image filters
 - Feature detection and classifiers
 - 3D reconstructions
 - Motion Analysis and Tracking

- Support for color image processing and multi-channel support
- Multiple pixel/clock processing to meet through requirements
- Familiar OpenCV API interface
Vitis AI: ML Inference Solution

Frameworks
- TensorFlow
- Caffe
- PyTorch

Vitis AI models

Vitis AI development kit
- AI Optimizer
- AI Quantizer
- AI Compiler
- AI Profiler
- AI Library

Deep Learning Processing Unit (DPU)
- CNN DPU
- LSTM DPU
- MLP DPU

Features
- 60+ pretrained, optimized reference models
- Supports deploying custom AI models to Xilinx devices
- Optimized "processor-like" IP for groups of AI workloads
Steps to Accelerate Applications with Vitis

1. Profile Applications and Identify Performance-critical Functions

2. Design Accelerated Kernels

3. Build, Analyze & Debug : Validate Performance Goals Met

4. Deploy Accelerated Application on Xilinx Platforms
Independent Development of SW and HW

- x86/ARM Source
 - gcc/g++
 - XRT

- Kernel Source
 - v++ Compiler and Linker
 - XCLBIN FPGA/ACAP DSA

- Accelerated Design

Platform
Design Overview
Basic Idea

- Build a real-time human detection application based on zcu104, Vitis AI model zoo, Vitis AI library, DPU and Vision library.

Live Input → ML Inference (Human detection) on the ZCU104 → Real time detection result
System Configuration

- **Camera**
 - E-CON 3.4MP USB camera
 - Input format: UVYV, 2304x1296@30FPS

- **ML Network**
 - Dataset: people class from COCO2014
 - Input format: BGR, 480x360
 - Computation amount: ~120GOP/frame

- **DPU**
 - Dual B4096@300MHz

- **Target Performance**
 - 30FPS end-to-end detection
RefineDet

- **Background**
 - Improved version of SSD with addition of anchor refinement module (ARM), object detection module (ODM) and transfer connection block (TCB) for high accuracy
 - One-stage detection network level speed performance with two-stage network level accuracy

- **Vitis AI Modification**
 - The version provided by [Xilinx model zoo](https://modelzoo.xilinx.com) has been modified based on the use case demand and Vitis AI solution constrain
 - Details can be found in [Vitis In-Depth Tutorial Machine Learning Introduction Module 5](#)
Vitis AI Deployment

- Vitis AI library enables fast deployment for common networks
 - Model specific libraries for released networks
 - Optimized common post-process function (xnnpp)
 - Low-level API for custom model deployment (dpu_task)

- Model library “RefinetDet Detection” will be used in this design to handle ML inference
Pre-processing for ML Inference

- RefineDet requires following image pre-process to be correctly performed
 - Channel order: BGR
 - Image resize: 480x360
 - Mean value subtraction: 104, 117, 123 (B,G,R)
 - Scale: 1

- Vitis AI will take care of mean value and scale value when using model specific library

- Color space conversion and resize need to be implemented by users
Different threads are designed in pipelined style and will run in parallel to maximize throughput.
Detailed Design Implementation
In the baseline implementation, OpenCV will be used for image processing for the simplicity and will run on the ARM processor.

The Decode thread will call resize function two times for 1920x1080 and 480x360 frames respectively.

ML inference will run mainly on DPU in PL with very small portion of Vitis AI library process on the ARM (mean value subtraction in this case).
Easy Implementation of Core Function

- Both image processing and DPU inferencing functions can be implemented with few lines of code

```cpp
if (m_device->getFormat() == V4L2_PIX_FMT_UYVY)
{
    cv::Mat v4l2Mat = cv::Mat(m_device->getHeight(), m_device->getWidth(), CV_BUC2, (void*)buffer);
    cv::Mat src, dst;
    cv::cvtColor(v4l2Mat, src, cv::COLOR_YUV2BGR_UYVY);
    readImage.reserve(2);
    auto size_show = cv::Size(1920, 1080);
    auto size_dpu = cv::Size(480, 360);
    cv::resize(src, src, size_show);
    readImage.emplace_back(src);
    cv::resize(src, dst, size_dpu);
    readImage.emplace_back(dst);
}
```

Function “V4l2Capture::read_images” is implemented by
- “cv::cvtColor”
- “cv::resize”

DPU inferencing is implemented by
- create_dpu_filter
- vitis::ai::RefineDet
Hardware Integration in Software Way

- All the hardware blocks are integrated into the system using the v++ compiler, which looks and feels like a standard SW compiler

- To build a system with kernels, or ".xo"s, we can link with a Makefile

 \[
 \text{ZCU104_XOS}=\text{dpu_b4096_zcu104.xo}
 \]

- To integrate the DPU, just copy/paste the source from the Vitis AI repository and add it to your project – no need to open Vivado!
 - Need two DPUs for your system? Three? Easily configure system topology with version-controllable parameters

 # This project has a lot of ML – add a second DPU!
 nk=DPUCZDX8G:2

- Numerous examples available online and in our Git repositories
Performance Estimation

- We could implement baseline application very easily but how about the performance?

- Rough ML inference estimation
 - Single B4096 DPU core provides around 1200GOP peak performance at 300MHz
 - RefineDet consumes around 120GOP to process one frame
 - In best case (100% efficiency), 10FPS for single core or 20FPS for dual cores which cannot meet the target performance

- Don’t forget the image process has to be taken into consideration too!
 - The overall end-to-end performance will be far from our target

- What if we want to see actual application profiling information?
Vitis Analyzer

- Vitis analyzer is the powerful tool to visualize application profiling information, including SW code running time, kernel compute time, data movement and etc.
- Vitis AI profiler has been integrated into Vitis analyzer latest version to better profile applications based on DPU and Vitis AI library.
Vitis Analyzer Usage – Step 1

- Create cfg.json used to profile DPU, common libraries and custom functions
 - Common libraries: vitis-ai-library, opencv, vart and xnnpp_post_process
 - Custom function: DecodeThread::run, DpuThread::run and etc

```json
{
  "options": {
    "runmode": "normal"
  },
  "trace": {
    "enable_trace_list": ["vitis-ai-library", "opencv", "vart", "xnnpp_post_process", "custom"]
  },
  "trace_custom": ["read_images_with_kernel",
    "DecodeThread::run",
    "DpuThread::run",
    "GuiThread::run",
    "SortThread::run"]
}
```

Add custom function name for profiling
Vitis Analyzer Usage – Step2

- Create xrt.ini
 - Profiling of HLS kernel needs the “xrt.ini” file to specified mode parameters
 - Place it in the same directory as the application

- The config file format is shown as below:

```
[Debug]
Profile=true
xrt_profile=true
vitis_ai_profile=true
lop_trace=true
data_transfer_trace=coarse
```
Vitis Analyzer Usage – Step 3

- Use “vaitrace” to run the application with config file
 - `vaitrace -c cfg.json ./<application_name><model_name> 0 -t <thread_num>`

- The meta data will be generated after the application is stopped.

```
hal_host_trace.csv
profile_summary.csv
vart_trace.csv
vitis_ai_profile.csv
xclbin.ex.run_summary
```
Vitis Analyzer Usage – Step 4

- Inspect summary files on the host machine with Vitis Analyzer
 - Transfer meta files from step 3 to host machine
 - On the host, run the command `vitis_analyzer`
 - Click `File -> Open Summary`
 - Select and open the summary file
 - Check execution time of each component
 - Find performance bottleneck for improvement
Custom Functions Hierarchy

- Vitis Analyzer will give time information based on function names
 - In this design, the hierarchy of custom functions is as below
 - DecodeThread and DpuThread are two main components

```
DecodeThread::run
  cv::resize
  cv::cvtColor

DpuThread::run
  vitis::ai::RefineDetImp::run
    vitis::ai::ConfigurableDpuTaskImp::setInputImageBGR
    vitis::ai::ConfigurableDpuTaskImp::run
      vitis::ai::DpuTaskImp::run
        xir::XrtCu::run
          subgraph_Elt3
          subgraph_Elt3

SortingThread::run
GuiThread::run
```
Baseline Application Profiling

- Baseline application runs at 10.2 FPS
 - DecodeThread takes 101 ms/frame, i.e., 10 FPS
 - DPU core takes 110 ms/frame, i.e., 9 FPS for single core and 18 FPS for dual cores

```
root@xilinx-zcu104-2020_1:~# vaitrace -c cfg.json
./usb_input_multi_threads_refinedet_drm refinedet_baseline 0 -t 3
Setting env
INFO:root:VART will run xmodel in [NORMAL] mode
......
INFO:root:Generating VTF
INFO:root:Overall FPS:10.20
```

```
Thread name | Decode | DPU | SORT | GUI
---|-------|-----|------|-----
Parallel Thread Num | 1 | 3 | 1 | 1
Thread Latency (ms) | 101 | 305 | 102 | 102
```

- Decode Thread latency 101 ms
- DPU Thread latency 305 ms
- CVT and Resize execution 34 + 30 + 30 = 94 ms
- DPU execution time: 112 ms
Baseline Application Bottleneck

- **Profile result**
 - Camera is capable of generating data frames at 30FPS
 - DecodeThread is only capable of processing frames at 10FPS
 - DPUs are only capable of inferencing baseline model at 20FPS

- **Bottlenecks**
 - DecodeThread has to be faster than 30FPS
 - Optimize software code efficiency – cannot get 3x performance boost
 - Accelerate by programming logic – promising
 - DPU inference performance has to be faster than 30FPS too
 - Increase DPU core computation ability – not feasible, already using largest core
 - Reduce network computation amount – feasible way with Vitis AI
Vitis AI optimizer (vai_p) is capable of reducing redundant connections and the overall operations of networks in iterative way

- Automatically analysis and prune the network models to desired sparsity
- Significantly reduce the OPs and parameters of networks without losing much accuracy

Five functions to optimize model

- ana – run sensitivity analysis
- prune – prune the network according to config
- finetune – finetune the network to recovery accuracy
- transform – transform the pruned model to regular model
- stat – get flops and the number of parameters of a model
The computation amount of RefineDet could be efficiently reduced by optimizer

- Latency is reduced and maximum throughput is increased
- Use 80% pruning ratio model could meet our target with big margin (76FPS vs 30FPS)

<table>
<thead>
<tr>
<th>Model</th>
<th>Pruning Ratio</th>
<th>Operation (GOP)</th>
<th>Latency (ms)*</th>
<th>Throughput (FPS)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>RefineDet</td>
<td>-</td>
<td>123</td>
<td>115</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>25</td>
<td>31</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>92%</td>
<td>10</td>
<td>16</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>96%</td>
<td>5</td>
<td>12</td>
<td>228</td>
</tr>
</tbody>
</table>

* Latency is measured with single thread
** Throughput is measured on ZCU104 dual B4096 cores
*** Optimized models are also release in model zoo
ML Enhanced Application Profiling

- ML enhanced application runs at 11.23FPS
 - DPU takes 30ms/frame and is mostly idle according to profiling result – not bottleneck anymore!
 - DecodeThread takes 91ms/frame, i.e., 11FPS – let’s boost it!

```
root@xilinx-zcu104-2020_1:~# vaitrace -c cfg.json
/usb_input_multi_threads_refinedet_drm refine%et_pruned_0_8 0 -t 3
```

```
Setting env INFO:root:VART will run xmodel in [NORMAL] mode
```

```
INFO:root:Generating VTF
INFO:root:Overall FPS 11.23
```

<table>
<thead>
<tr>
<th>Thread name</th>
<th>Decode</th>
<th>DPU</th>
<th>SORT</th>
<th>GUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel Thread Num</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Thread Latency(ms)</td>
<td>89</td>
<td>270</td>
<td>91</td>
<td>91</td>
</tr>
</tbody>
</table>

- Decode Thread latency 91ms
- DPU Thread latency 270ms
- CVT and Resize execution: 32+26+26=84ms
- DPU execution time: 29ms
In the final implementation, HLS kernel will be used for image processing and will run on the programming logic.

ML inference will still run on DPU with very small portion of Vitis AI library process on the ARM (mean value subtraction in this case).
The pre-processor kernel is implemented based on Vitis Vision library pre-built functions
- array2xfMat
- uyvy2bgr
- resize
- xfMat2array

It’s straightforward to convert OpenCV function into PL accelerated xfOpenCV function
Kernel Design Optimization

- Each FPGA kernel represents a single thread, so we leverage parallelism within that thread

- Pipelining

- Loop Unrolling

- Dataflow Streaming

```c
void F(...) {
  ...
  add: for (i=0;i<=3;i++) {
    b = a[i] + b;
  }
  ...
}
```
Kernel Design Optimization

- Without Streaming

Latency = A + B + C + D + 8 * DDR Latency

- With Streaming

Latency = \sim A + 2 * DDR Latency
And lower resource utilization, too!
HLS Kernel Definition

```c
extern "C" {
void PREPROCESSOR(ap_uint<AXI_WIDTH> *image_in, ap_uint<AXI_WIDTH> *image_out,
ap_uint<AXI_WIDTH> *image_out_full, int width_in, int height_in,
int width_out, int height_out);
}
```

- image_in: The data from USB camera
- image_out: The resized image output for ML
- Image_out_full: The 1920x1080 image output for display
- Width_in: The input width of the usb camera
- Height_in: The input height of the usb camera
- Width_out: the width of the resized image
- Height_out: the height of the resized image
Kernel Implementation

- Implement preprocess kernel based on Vision library building blocks

```c
// Read in data
xf::cv::Array2xMat<AXI_WIDTH, XF_16UC1, MAX_IN_HEIGHT, MAX_IN_WIDTH, NPC>(
    image_in, in_mat);

// Color Space Converter
xf::cv::uyvy2bgr<XF_16UC1, XF_8UC3, MAX_IN_HEIGHT, MAX_IN_WIDTH, NPC>(
    in_mat, in_rgb);

// Duplicate the input image to get two images of different sizes
xf::cv::DuplicateMat_xyrp<XF_8UC3, MAX_IN_HEIGHT, MAX_IN_WIDTH, NPC>(in_rgb,
    in_rgb_copy0, in_rgb_copy1);

// Resize the first image
xf::cv::resize<XF_INTERPOLATION_AREA, XF_8UC3, MAX_IN_HEIGHT, MAX_IN_WIDTH,
    MAX_IN_HEIGHT, MAX_IN_WIDTH, NPC, MAX_DOWN_SCALE>(in_rgb_copy0, out_rgb0);

// Resize the second image
xf::cv::resize<XF_INTERPOLATION_AREA, XF_8UC3, MAX_IN_HEIGHT, MAX_IN_WIDTH,
    MAX_IN_HEIGHT, MAX_IN_WIDTH, NPC, MAX_DOWN_SCALE>(in_rgb_copy1, out_rgb1);

// Output the first image
xf::cv::xFMat2Array<AXI_WIDTH, XF_8UC3, MAX_OUT_HEIGHT, MAX_OUT_WIDTH, NPC>(
    out_rgb0, image_out);

// Output the second image
xf::cv::xFMat2Array<AXI_WIDTH, XF_8UC3, MAX_OUT_HEIGHT, MAX_OUT_WIDTH, NPC>(
    out_rgb1, image_out_full);
```

For complete design, please refer to Vitis In-Depth Tutorial Machine Learning Introduction Module 7
SW Function Migration

- Software migration from OpenCV to HLS kernel is not difficult with OpenCL API
 - Initialize
 - Allocate buffer
 - Load kernel
 - Set parameter
 - Move data to kernel
 - Execution
 - Get data from kernel

```c
if (in_device->getFormat() == V4L2_PIX_FMT_JPYY)
    if (!xocl_initialized)
        
        q = xocl.get_command_queue();
        imgToDevice = xocl.create_buffer(size, CL_MEM_READ_ONLY);
        resizeFromDevice = xocl.create_buffer(resize.size, CL_MEM_WRITE_ONLY);
        fullFromDevice = xocl.create_buffer(full.size, CL_MEM_WRITE_ONLY);
        krun = xocl.get_kernel("pre_processor");
        krun.setArg(0, imgToDevice);
        krun.setArg(1, resizeFromDevice);
        krun.setArg(2, fullFromDevice);
        krun.setArg(3, IN_WIDTH);
        krun.setArg(4, IN_HEIGHT);
        krun.setArg(5, OUT_RESIZE_WIDTH);
        krun.setArg(6, OUT_RESIZE_HEIGHT);
        xocl_initialized = true;
    
    q.enqueueWriteBuffer(imgToDevice, CL_TRUE, 0, size, (void *)&buffer);
    q.enqueueTask(krun, NULL, &event_sp);
    clWaitForEvents(1, (const cl_event *)&event_sp);
    q.enqueueWriteBuffer(resizeFromDevice, CL_TRUE, 0, resize.size, outbuf_0);
    q.enqueueReadBuffer(fullFromDevice, CL_TRUE, 0, full.size, outbuf_1);
    cv::Mat roi_mat0(OUT_RESIZE_HEIGHT, OUT_RESIZE_WIDTH, CV_BUC3, outbuf_0);
    cv::Mat roi_mat1(OUT_HEIGHT, OUT_WIDTH, CV_BUC3, outbuf_1);
    readImageemplace_back(roi_mat1);
    readImageemplace_back(roi_mat0);
    printf("DONE\n");
```
Final Design Architecture

Application

Vitis AI
- Vitis AI Library
- Pruned Models
- Post-Processing

Pre-Processing

VART

OpenCL

Image Process Function

XRT

Hardware Overlay
- Pre-processor
- DPU B4096 #1
- DPU B4096 #2

Pruned Models
HLS Kernel Performance

- HLS kernel execution information and time can be inspected in Vitis Analyzer
 - Average execution time per frame is about 17ms, i.e., 58FPS
 - One preprocess kernel is capable of handling camera input in real time
 - Part of time will even be idle because of waiting for camera data
Final Application Profiling

- Final application runs at 26FPS in profiling mode
 - DPU core takes 28ms/frame, from profiling result cores are idle in most time – not bottleneck!
 - DecodeThread shrinks to 38ms/frame, i.e., 26.3FPS
 - Profiling mode slightly affects overall performance

```
root@xilinx-zcu104-2020_1:~# vaitrace -c cfg.json
./usb_input_multi_threads_refinedet_his_drm refinedet_pruned_0_8 0 -t 3
Setting env
INFO:root:VART will run xmodel in [NORMAL] mode
....... INFO:root:Generating VTF
INFO:root:Overall FPS 26.02
```

<table>
<thead>
<tr>
<th>Thread name</th>
<th>Decode</th>
<th>DPU</th>
<th>SORT</th>
<th>GUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel Thread Num</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Thread Latency(ms)</td>
<td>38</td>
<td>116</td>
<td>38</td>
<td>42</td>
</tr>
</tbody>
</table>

```
Thread name                 | Decode | DPU     | SORT | GUI |
----------------------------|--------|---------|------|-----|
Parallel Thread Num          | 1      | 3       | 1    | 1   |
Thread Latency(ms)            | 38     | 116     | 38   | 42  |
```

- DPU execution time: 28ms
- Decode Thread latency: 38ms
- Kernel execution: 17ms
- DPU execution time: 28ms
Final Application Performance

- Final application runs at 30FPS and achieve the target.

```
root@xilinx-zcu104-2020_1:~/usb_input_multi_threads_refinedet_hls_drm refinedet_pruned_0_8 0-t3
Setting env
INFO:root:VART will run xmodel in [NORMAL] mode
......
I1111 05:07:30.497097 3812 guithread.cpp:101] screen [1920 x 1080]; r = [1920 x 1080 from (0, 0)]
I1111 05:07:30.497117 3812 dpdrm.hpp:563] fb_size [1920 x 1080] fb_roi [1920 x 1080 from (0, 0)] image_size [1920 x 1080] image_roi [1920 x 1080 from (0, 0)]
I1111 05:07:30.497143 3812 dpdrm.hpp:569] from = [1920 x 1080]
I1111 05:07:30.497645 3812 dpdrm.hpp:571] to = [1920 x 1080]
I1111 05:07:30.512209 3812 dpdrm.hpp:569] from = [1920 x 1080]
I1111 05:07:30.512209 3812 dpdrm.hpp:569] to = [1920 x 1080]
I1111 05:07:30.521747 3808 mythread.cpp:90] thread [DedodeThread-0] is stopped.
I1111 05:07:30.521984 3808 mythread.cpp:90] thread [SORT-0] is stopped.
I1111 05:07:30.522648 3812 guithread.cpp:133] Gui duration :31ms
I1111 05:07:30.523404 3815 dputhread.cpp:48] dpu queue size 0
I1111 05:07:30.523440 3815 dputhread.cpp:56] DPU in single thread duration :96ms
I1111 05:07:30.523458 3815 dputhread.cpp:68] thread [DPU-2] is ended
I1111 05:07:30.523782 3816 sortthread.cpp:58] Sort thread duration :2025 ms
I1111 05:07:30.524152 3816 sortthread.cpp:73] thread [SORT-0] frame id 243 sorting queue size 0 FPS: 30.1235
I1111 05:07:30.524201 3816 mythread.cpp:68] thread [SORT-0] is ended
DONE
```
Reference

- https://github.com/Xilinx/Vitis-AI
- https://github.com/Xilinx/Vitis_Libraries
- https://github.com/Xilinx/Vitis-In-Depth-Tutorial
 - Introduction 03-Basic contains full design used in this presentation
- https://github.com/Xilinx/Vitis_Embedded_Platform_Source
Summary

- Vitis provides unified development environment across all platforms and enables hardware development in a software way.

- Vitis AI provides whole stack AI inference acceleration solution, including model optimization, toolchain and high-efficiency DPU processor.

- Vitis library could help to accelerate pre/post-process components in the system and boost whole application performance.
Thank You