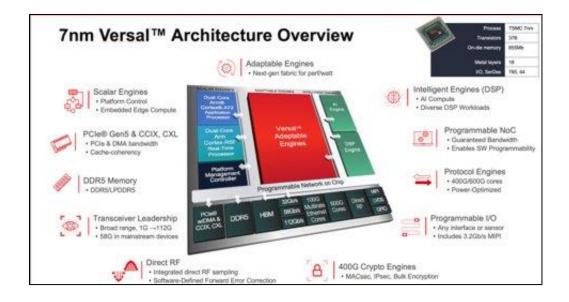


Getting Started with Versal

Software Application Engineer Brian Lay

© Copyright 2021 Xilinx

Outline


ACAP architecture and methodology

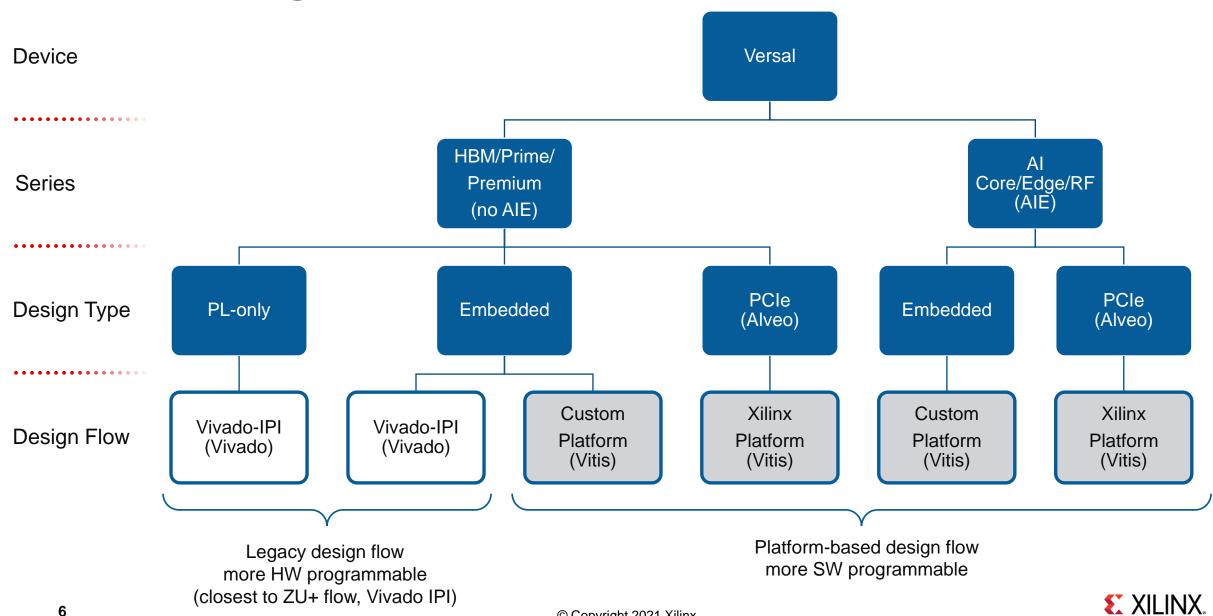
- Versal design flows overview
 - Traditional hardware design
 - Platforms
 - Fixed
 - Extensible
- Versal specific IP
- Simulation and Debug Flows
- Programming

Versal Adaptive Compute Acceleration Platform (ACAP) Overview

- Revolutionary architecture designed to be completely SW programmable:
 - Shared DDR through NoC (no PS DDR)
 - PL Configuration through PMC
 - Debug through PMC
 - System Monitor through PMC
 - SEU through PMC (no more SEM IP)
 - CFI, AXI, NPI interfaces vs. CFI only
 - DRP (GT/MMCM ports) replaced with APB (PS<>AXI)
 - PCIe / CPM / GT-based IP sharing methodology (in new quad)
 - AXI interface for all Hard IP and Soft IP
 - SW-driven AIE processor (vs. HW design w/ DSP block)

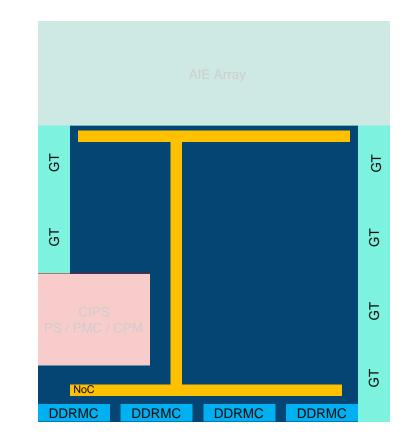
System Design Methodology – Vivado Flow

Paper	Traffic	Data Flow	Data Flow	Power Estimati	on System	Synthesis &
Algorithm	Analysis	Modelling (IPI)	Simulation	& Analysis	Simulation	Implementation
Develop a paper mapping of algorithm/ application to Versal	 Capture traffic flow for NoC Static analysis System C simulation 	 Connect: traffic generators, memories, performance monitors Configure: traffic generators, NoC connectivity, QoS requirements Elaborate: Design and export netlist 	 System Verilog simulation Gather and analyze statistics from performance monitors 	Leverage XPE with output from IP Integrator for accurate power analysis	 Full system simulation; replacing traffic generators Co-simulate with PS VIP and PL blocks 	 Take completed design through back-end tools Timing Closure PDI Generation


Leverage These Steps

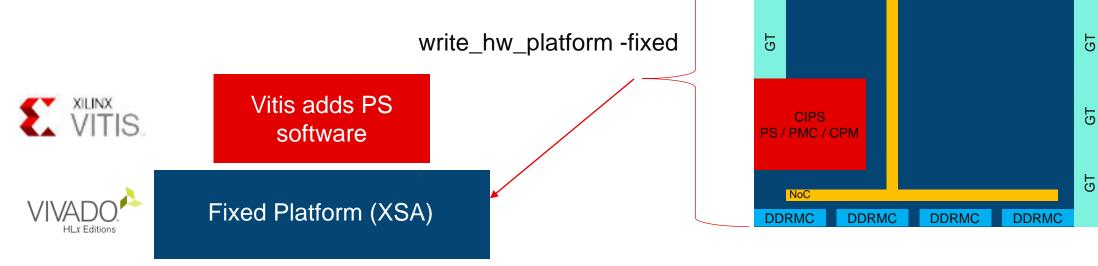
Design Flows

Versal Design Flow


- PMC is required design component for all the flows •
- PLM (PMC software) provided by Xilinx ٠

© Copyright 2021 Xilinx

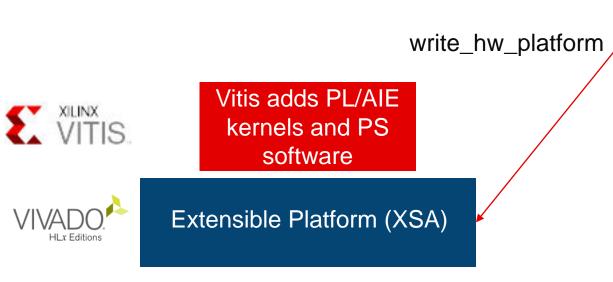
Versal Design Flows (Vivado only)

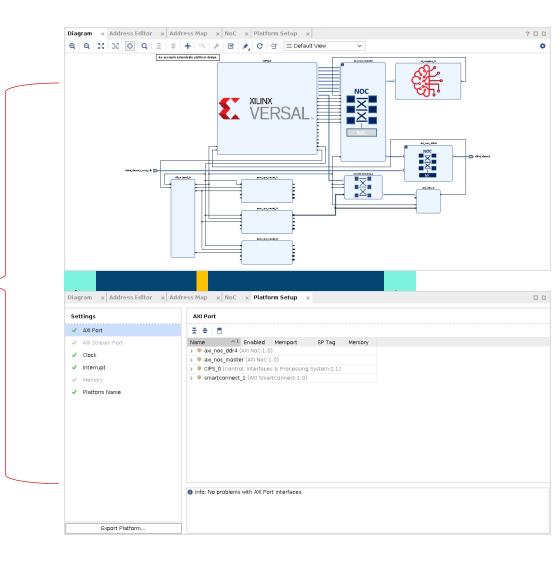

Hardware Design Flow

- Design uses fabric (+ NoC, DDR, GT, PCIe)
- Tools:
 - Vivado to create the PDI directly
- CIPS must be included in the design
- IPI will play a larger part in your design process

Versal Design Flows (Vivado to Vitis)

- Traditional Embedded
 - Fabric + PS
 - Tools:
 - Vivado to create a fixed platform (XSA)
 - Vitis to program the PS

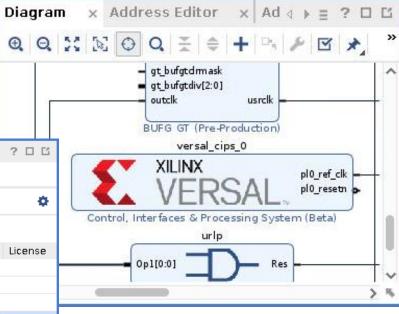

Ч


GЧ

Versal Design Flows (Vivado and Vitis)

Acceleration

- Fabric + PS + AIE
- Tools:
 - Vivado to build extensible platform
 - Vitis to program, PS, AIE, PL accelerators


Versal Specific IP

Versal IP- CIPS

- CIPS- Control, Interfaces, and Processing System
- One IP contains covers many functions
 - PS
 - PMC
 - Debug
 - NoC
 - CPM
 - System monitors
 - SEM
 - Tamper

Cores Inte	erfaces				
Q 🛨 🛊	¥. 4. 1	Ø 0			ø
<u>S</u> earch: Q-C	IPS	(1	match)		
Name		∧ 1	AXI4	Status	License
🗸 📄 Viva do F	Repository				
🗸 📄 Embe	dded Processing				
🗸 📄 Pro	ocessor				
		Drassesing Custors	AVIA AVIA Churches	Pre-Production	Included
Ŧ	Control, Interfaces & I	Processing System	AXI4, AXI4-Stream	Pre-Production	included
¢ Contails	Control, interfaces &	Processing System	Axi4, Axi4-stream	Pre-Production	included >
¢ Details				Pre-Production	included >
<	Control, Interfaces & Control, Interface 2.1			Pre-Production	included >
Cetails Name:	Control, Interface			Pre-Production	>

E XILINX.

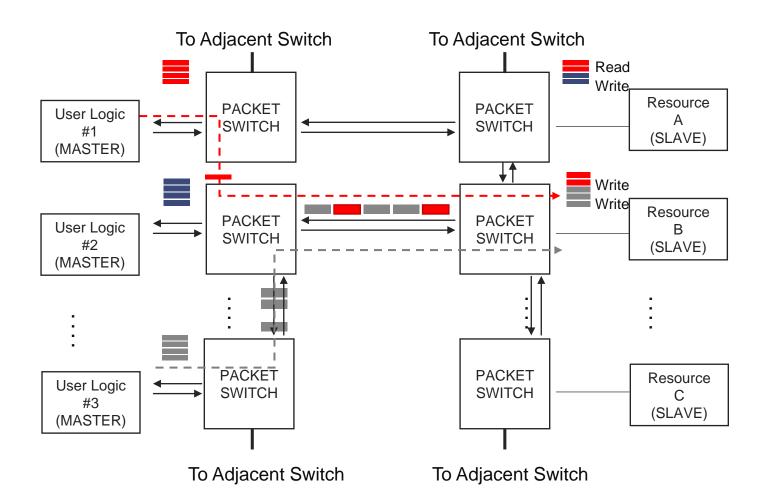
Versal IP- CIPS Configuration

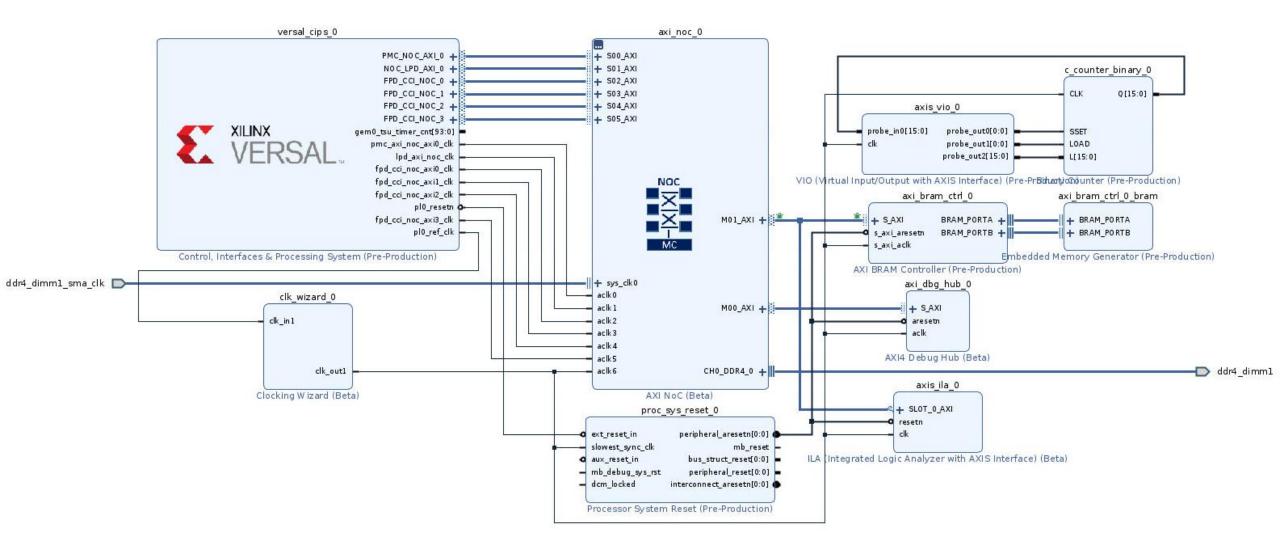
Control,	Interfaces	& Processing	System (2.1)
----------	------------	--------------	--------------

🚯 Documentation 🛛 🚍 IP Location

Component Name versal_cips_0

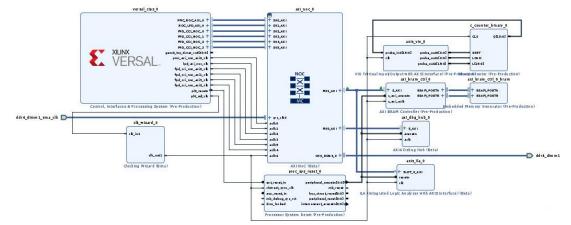
	Security Related Tamper Event	Zeroize BBRAM	AM Tamper Response		
Home Boot Mode	□ JTAG Toggle		SYS INTERRUPT	7	
Debug	Temperature Alarm		SYS INTERRUPT	-	
PS-PMC	Voltage Alarm For VCC_PSLP		SYS INTERRUPT	~	
> CPM4 ~ Device Integrity	Voltage Alarm For VCC_PSFP		SYS INTERRUPT	~	
Sysmon Configuration	Voltage Alarm For VCC_PMC Or VCCAUX_PMC		SYS INTERRUPT	-	
XilSEM Library Configuration Tamper	Voltage Alarm For VCC_SOC		SYS INTERRUPT		
	Voltage Alarm For VCCINT Or VCCAUX Or VCC_RAM		SYS INTERRUPT		
	Voltage Alarm For VCC0_503		SYS INTERRUPT	~	
	Glitch Detector		SYS INTERRUPT	~	
	Tamper Trigger Register		SYS INTERRUPT	7	
	External from MIO		SYS INTERRUPT	~	

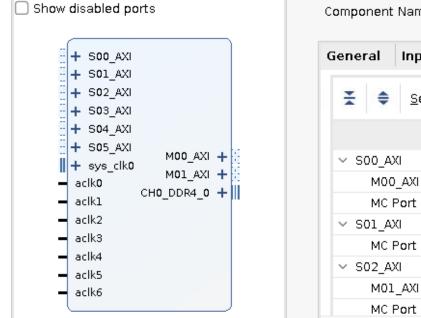

Re-customize IP


 \odot \odot \otimes

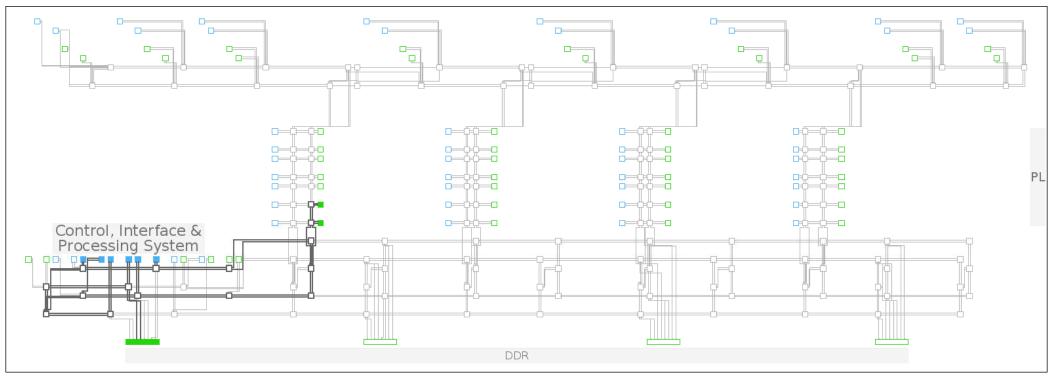
Versal IP – NoC (Network on Chip)

- Shared connectivity to move packetized data around the SoC
- Facilitates communication between
 - Processing system
 - DDR
 - AI Engines
 - Programmable logic
 - Any other hardened components




Versal IP – Using the NoC (Network on Chip)

Versal IP – Using the NoC (Network on Chip)

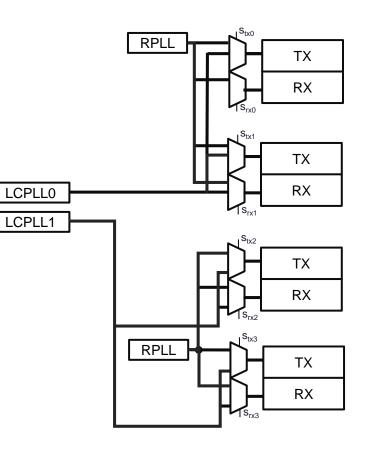


Component Name	axi noc 0

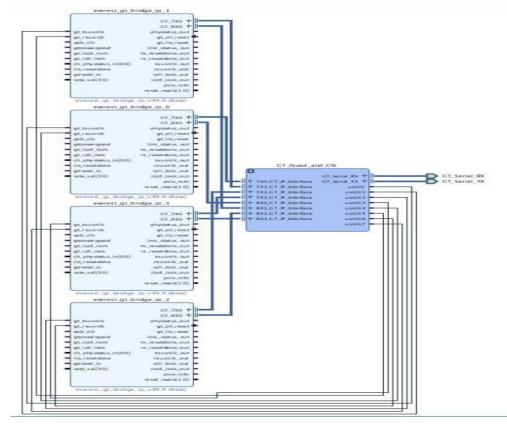
eneral Inputs	3 Outputs	Conr	nectivity QoS	D	DR Basic	DDR Mem	ory DDR A	ud ∢ →
¥ ♦ Searc	:h: Q-				Gbps	Advance	ed Run No	C DRC:
	Read Traffi Class	с	Write Traffic Class			Bandwidth Read (MB/s)	Bandwidth Write (MB/s)	
~ S00_AXI	BEST_EFFORT	~	BEST_EFFORT	\sim				
M00_AXI					yes	5 🖉	5 🖉	
MC Port 0					yes	5 🖉	5 🖉	
✓ S01_AXI	BEST_EFFORT	~	BEST_EFFORT	~				
MC Port 0					yes	5 🖉	5 🖉	
✓ S02_AXI	BEST_EFFORT	~	BEST_EFFORT	~				
M01_AXI					yes	5 🖉	5 🖉	
MC Port 0					yes	5 🖉	5 🖉	

Versal IP – NoC (Network on Chip)

- The NoC physically spans the SoC
 - Blue NMUs (NoC master units)
 - Green NSUs (NoC slave units)
 - White NPS (NoC packet switch)



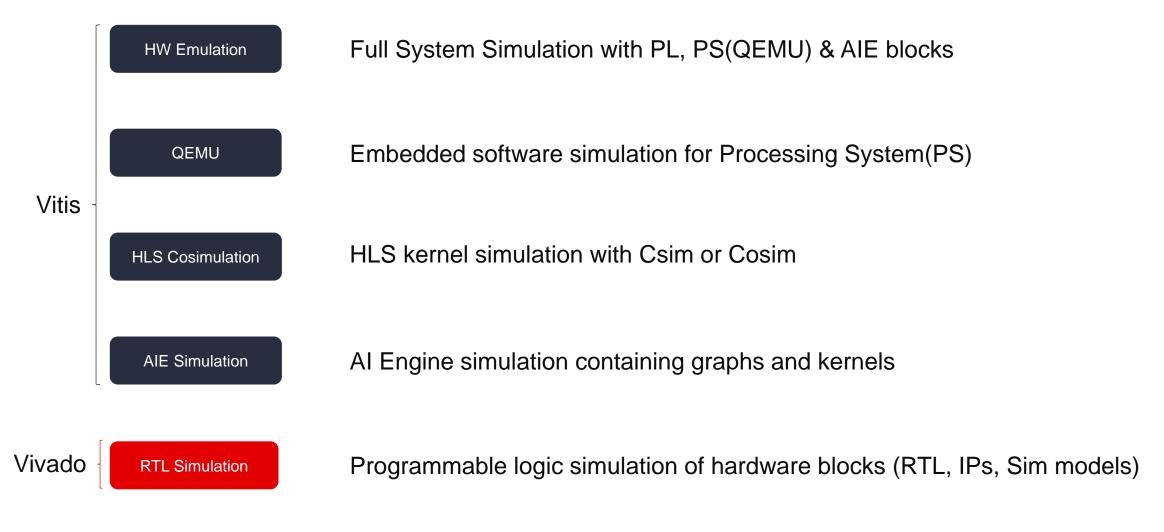
GT Wizard Features


• GTs inherit values from the parent IPs

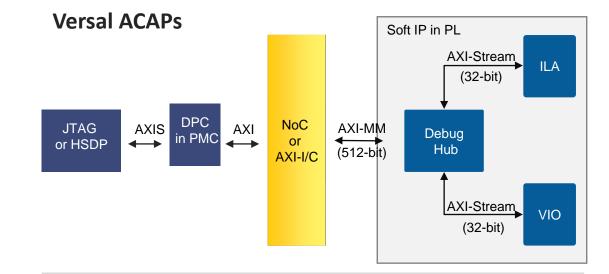
- Makes it easier to split up the GT Quad
- Configure the GT through the parent without ever having to open the Wizard
- Parent IP is packaged without the GT
- Flow is primarily IPI based
 - RTL flow is possible but multi-IP flow not integrated into wizard
 - Allows more intelligent sharing of PLL resources, validation of use cases at run time
- Pin Planning now part of Vivado, not IP generation
 - New GT tab similar to the Memory flow
 - Only full Quad pin planning allowed, no lane swapping allowed

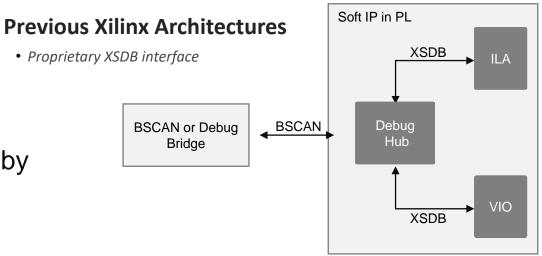
GT Wizard Features

- Resource sharing is now a lot easier
 - Split up the Quad as you see fit
 - Let the tools give you a best fit
- Simplify rate changes
 - GT wizard can generate multiple ELF configuration files through GT Quad customization options
 - DRP-like functionality is natively incorporated into the Quad (APB AXI bus)
- Bridge IP
 - For third party solutions
 - Acts as an interface between GT Quad and custom logic



Simulation and Debug

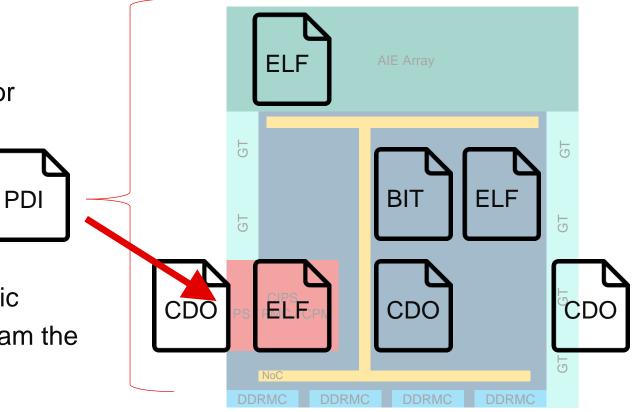

Simulation



Versal IP - HW Debug

- Versal Debug Cores Use AXI-Streaming Infrastructure
- Familiar Debug IP
 - Integrated Logic Analyzer (AXIS-ILA)
 - Virtual Input/Output (AXIS-VIO)
 - Memory Calibration Debug Interface
- New Debug IP
 - PCI Express Link Debug
 - Hardened Integrated Bit Error Ratio Test (IBERT)
- HSDP (hardened part of XPIPE)- performance benefits – loading the linux kernel into memory by JTAG is slow (12.8Gb Smart link plus 10Gb vs. JTAG 100Mb)

Device Programming



Programmable Device Image Demystified

- A PDI is essentially the Versal equivalent of a "bitstream"
- PDI contents
 - CDO files Configuration register writes for hardened IP
 - BIT file Fabric CFrame data
 - ELF files AIE/PS/uB software

PMC uses

- Cframe interface (CFI) to program the fabric
- NoC programming interface (NPI) to program the NoC interconnect
- AXI interface to load the AIE

Conclusion / Resources

Three recommended design entry flows used for Versal

- New Versal Hard IP
- Simulation and debug
- PDI
- Resources
 - AM011 Versal Technical Reference Manual
 - UG1273 Versal ACAP Design Guide
 - PG352 CIPS IP
 - PG313 NoC IP
 - PG331 Transceiver Wizard
 - Versal online documentation

Versal ACAP Design Proce	ess Documentation		
Xilinx documentation is organized around a set of us process of interest for more information.	ser design processes to help you find relevant conte	ent for your design needs. The high-level design proc	esses are displayed below. Click on the design
System and Solution Planning: Provides guidance for and AI Engine.	or identifying the components, performance, I/O, an	d data transfer requirements at a system level. Inclu	des application mapping for the solution to PS, PI
System and Solution	Board System Design	Hardware, IP, and	Embedded Software
System Integration and	⊣oo ⊣oo		
Guided Pre-Fil	tered		
Overview	+	Overview	
Identify Xilinx Device for the Design	+	Ider	tify performance and power requirements
Map Applications (to PS, PL and AI Engine)	+	for the Design	tify and define memory requirements
		Map Applications (to PS, PL, and Al Engine)	and data transfer)
Versal Product Page	Design Hubs	Home Page	Send Feedback