As databases continue to grow and the immediacy of storage and compute is essential to business operations, Redis has become the most popular in-memory NoSQL database. Due to its sub-millisecond latency and high throughput, Redis enables fast response times for workloads and applications like machine learning and real-time analytics. However, as database scale increases, the infrastructure costs of keeping large amounts of data in DRAM memory can become prohibitive.

Given the desire to use Redis for larger datasets, flash technology such as solid-state drives (SSDs) offers a potentially cost-effective option compared to DRAM. The challenge has been CPU-based software implementations struggle to efficiently store variable length data to fixed-length blocks required by SSDs. The result is read/write inefficiencies, resulting in high latency and inconsistent performance (IOPs)—ultimately reducing the value of Redis.

The Pliops Extreme Data Processor (XDP)—powered by AMD-Xilinx adaptive computing technology—utilizes an optimal approach to deploy Redis using SSDs. By managing variable-length data sets through innovative techniques and data structures, Pliops XDP stores data to SSDs at theoretical limits of read, write, and storage space—extending the life of SSD infrastructure and taking full advantage of storage capacity, all while using far fewer CPU resources.

The result is greater application performance, infrastructure reliability, storage capacity, and compute efficiency. By freeing up CPU cycles and improving the utilization of existing infrastructure, Pliops XDPs can reduce total cost of ownership (TCO) of an entire Redis deployment by up to 84 percent.

HIGHLIGHTS

AMD-Xilinx Technology for High Performance at Low Latency
- Achieves DRAM-like performance with sub-millisecond latency
- Powered by the Xilinx Kintex UltraScale+ FPGA for adaptive hardware acceleration

84% Reduced TCO by Freeing Up CPU and Leveraging Cost-Effective SSDs
- Uses 90% fewer server CPUs compared to software-only solutions
- Lowest $/GB via flash technology, while extending SSD lifetime / usable capacity

Complete Solution Stack for Efficient Deployment
- NVMe block interface and Key-Value API for compatibility with existing applications
- One platform that’s easy to deploy and scale, without software changes
By leveraging Pliops XDP with SSDs in Redis deployments, companies can counter the rising cost of infrastructure as data processing needs grow. For example, consider an implementation that requires 1 million IOPs (input/output operations per second) to access 6TB of Redis data at 1ms average latency. Redis on DRAM would typically require 10 servers with approximately 635GB of data in each server. In contrast, Redis on XDP will achieve virtually identical performance with just one server.

84% Lower Total Cost of Ownership

Redis on XDP dramatically reduces CapEx and OpEx by minimizing server count, SSD count, power, and cooling requirements—delivering an overall TCO reduction of 84 percent.
Uniformly High Performance at Low Latency

Unlike past attempts to use SSDs to reduce DRAM usage for in-memory databases, Pliops XDP does not rely on workload locality or specific hot/cold access patterns to achieve these results. In the use case shown below, a uniform access pattern was used with nearly 90% of the IOs delivered by Pliops-accelerated SSDs. This means a Redis service can be confidently deployed on Pliops, knowing that your users will have a uniformly high-performance experience.

Solution Stack / API for Efficient Deployment

Pliops XDP can use standard NVMe block interface for maximum compatibility with most business applications. A key-value based NVMe interface is recommended for compatibility with RocksDB-like indexing stores. Along with the flexibility of AMD-Xilinx adaptive computing technology, the choice of NVMe interfaces leads to a single solution that works for all workloads and can be deployed at scale to reduce cost up to 5x.
Pliops Extreme Data Processor for Redis Real-Time Databases DRAM-Like Performance with SSD-Like Economics

SOLUTION BRIEF

SPECIFICATIONS

<table>
<thead>
<tr>
<th>PLATFORM FEATURES</th>
<th>Performance</th>
<th>SSD Support</th>
<th>SSD Types</th>
<th>Capacity</th>
<th>In-line Transparent Compression</th>
<th>Key-Value Storage Engine</th>
<th>RAID / Drive Failure Protection</th>
<th>Encryption</th>
<th>Host API</th>
<th>OS Support</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.2 IOPS RR</td>
<td>PCIe Gen 3/4/5</td>
<td>TLC SSD</td>
<td>128TB</td>
<td>Lossless data compression reduces drive space by up to 50% or more over software-based compression</td>
<td>Key-value API bypasses legacy storage stack for greater performance acceleration</td>
<td>Multiple single-drive failures with ultra-fast rebuilds</td>
<td>The encryption and decryption process is supported</td>
<td>Std block</td>
<td>All Linux variants</td>
</tr>
<tr>
<td></td>
<td>1.2M IOPS RW</td>
<td>NVMe</td>
<td>QLC SSD</td>
<td>of user data on 128TB of physical disk with parity protection</td>
<td>Configurable volumes, compression, overhead, and drive fill rate expand user capacity up to 6x</td>
<td>Sorted data is compressed and packed then written 100% sequential to SSD</td>
<td>No loss in capacity from parity storage</td>
<td>No performance degradation and data transfer is not slowed down</td>
<td>KV library API</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30GB/s SR</td>
<td>NVMe-oF</td>
<td>SAS</td>
<td></td>
<td>Configurable</td>
<td>Enables use of high-capacity TLC & QLC SSDs and mitigates blast radius concerns</td>
<td>In-line</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.4GB/s SW</td>
<td></td>
<td></td>
<td></td>
<td>Transparent</td>
<td>Capacity</td>
<td>In-line Transparent Compression</td>
<td>RAID / Drive Failure Protection</td>
<td>Encryption</td>
<td>Host API</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Compression</td>
<td>Performance</td>
<td>RAID / Drive Failure Protection</td>
<td>Encryption</td>
<td>Host API</td>
<td>OS Support</td>
</tr>
</tbody>
</table>

TAKE THE NEXT STEP

Learn about Pliops Extreme Data Processor (XDP) at www.pliops/product
Request a demo at www.pliops.com/request-a-demo