
1 
 

Xilinx AML Application Userguide 
(Version 1.0) 

1. Introduction 
Xilinx AML Application is designed for anti-money laundering solution to help users quickly and easily 

accelerate watch list management. And the Watch List fields can be direct string matched, substring 

matched and edit distance matched. 

Now the application can be run on both on-premises Alveo cards and in FPGA instances in the cloud with 

Alveo U50/U200/U250. 

2. Application Usage 

 

Figure 1. Diagram of AML Design 

The application accelerates SWIFT MT103 transaction checking against given watch lists. For each 

transaction, this checker will return its match results for every comparing field.  

Now the application is containerized and can be easily run in a few minutes in the cloud or on premises. 

Details can be found at link https://www.xilinx.com/products/acceleration-solutions/anti-money-

laundering-application.html. 

 

2.1 Sample  

Sample 1. Try the demo case on U250 

 $  /opt/xilinx/apps/vt_data_analytis/aml/bin/vt_ data_analytis_aml.exe  --demo 

By the end of the license message print, it will ask for user’s input “yes/no” to acknowledge the 

agreement.Type “yes” to acknowlege the licence agreement. Parameter “--accept-EULA” can be used to 

bypass the license message. 

https://www.xilinx.com/products/acceleration-solutions/anti-money-laundering-application.html
https://www.xilinx.com/products/acceleration-solutions/anti-money-laundering-application.html


2 
 

 

Figure 2. Startup Screen of AML App 

Note: when run in a NUMA machine, suggest installing and using “numactl” command to make 

performance stable. 

When the execution is done, it will print results shown in Figure 1. 

 

Figure 3. Output result for Demo Mode 

Sample 2. Run test cases on U250 with CPU checker 

$  /opt/xilinx/apps/vt_data_analytis/aml/bin/vt_ data_analytis_aml.exe  --accept-EULA -i 

/home/nimbix/demo_data/ -m 2 

When the job is completed, it prints the statistic report of execution time below. And all checked results 

will be saved in /home/nimbix/results. And final output will print “Check Passed!”. 

 

Figure 4. Output Result for FPGA&CPU mode 

 

 



3 
 

2.2 Prerequisites 

2.2.1 Device and Software 

This application supports Xilinx FPGA Alveo U50/U200/U250 card. To run this application on users’ 

machines, please make sure: 

• For Alveo U50, Xilinx FPGA Alveo U50 (shell xilinx_u50_gen3x16_xdma_201920_3) card is installed 

correctly. (default device id is 0) 

• For Alveo U200, Xilinx FPGA Alveo U200 (shell xilinx_u200_xdma_201830_2) card is installed 

correctly. (default device id is 0) 

• Foor Alveo U250, Xilinx FPGA Alveo U250 (shell xilinx_u250_xdma_201830_2) card is installed 

correctly. (default device id is 0) 

• Docker (with sudo access) 

When deployed in Nimbix, PushToCompute flow will deploy the application in an instance with 

ubuntu18.04, U50/U200/U250, and XRT 2020.1. 

2.2.2 Datasets 

The application provides demo watch lists inside the docker images. As details, people.csv and 

entities.csv has 6 million and 9474 records, respectively. 

2.3 Run Application 

The application provides 2 task modes, demo and normal mode.  

In demo mode, one demo watch list and transaction list are given as default input. 

In normal mode, both watch list and transaction list (-i) can be assigned by user. The name of each list 

must be same as demo. And the output result will be written into your home directory. 

Table 1. list the options in this application. 

Command Default value Function 

--accept-

EULA  

False acknowledge the license agreement and skip printing license 

acknowledgement. 

If false, it will print out license file to user console and ask for user’s 

input “yes/no” to acknowledge the agreement 

--demo False If true, run demo case 

-i, --in-dir “” Normal mode, the directory of user’s watch and transaction list 

-m, --mode 0 Mode setting, 0 for FPGA-only, 1 for CPU-only, 2 for both and 

comparing results 

 

2.4 Performance Specification 

In demo watch list, people.csv and entities.csv has 6 million and 9474 records, respectively. For given 

100 transaction as example, the performance is: 

• On U50, 2 fuzzy match kernels, achieved 6.7ms per record. 

• On U200, 2 fuzzy match kernels, achieved 8.2ms per record. 

• On U250, 4 fuzzy match kernels, achieved 4.7ms per record. 



4 
 

3 Limitation 

• Current kernel will only handle input field string whose length is less than 36 and greater than 0. 

Longer field string will be truncated to 35 characters. 

• Nested double quote is forbidden in the field of input transaction CSV file. 


