DISCLAIMER
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can be viewed at www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at www.xilinx.com/legal.htm#tos.

Automotive Applications Disclaimer
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

Fedora Information
Xilinx obtained the Fedora Linux software from Fedora (http://fedoraproject.org/), and you may too. Xilinx made no changes to the software obtained from Fedora. If you desire to use Fedora Linux software in your product, Xilinx encourages you to obtain Fedora Linux software directly from Fedora (http://fedoraproject.org/), even though we are providing to you a copy of the corresponding source code as provided to us by Fedora. Portions of the Fedora software may be covered by the GNU General Public license as well as many other applicable open source licenses. Please review the source code in detail for further information. To the maximum extent permitted by applicable law and if not prohibited by any such third-party licenses, (1) XILINX DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE; AND (2) IN NO EVENT SHALL XILINX BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Fedora software and technical information is subject to the U.S. Export Administration Regulations and other U.S. and foreign law, and may not be exported or re-exported to certain countries (currently Cuba, Iran, Iraq, North Korea, Sudan, and Syria) or to persons or entities prohibited from receiving U.S. exports (including those (a) on the Bureau of Industry and Security Denied Parties List or Entity List, (b) on the Office of Foreign Assets Control list of Specially Designated Nationals and Blocked Persons, and (c) involved with missile technology or nuclear, chemical or biological weapons). You may not download Fedora software or technical information if you are located in one of these countries, or otherwise affected by these restrictions. You may not provide Fedora software or technical information to individuals or entities located in one of these countries or otherwise affected by these restrictions. You are also responsible for compliance with foreign law requirements applicable to the import and use of Fedora software and technical information.

© Copyright 2012–2014 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI, PCI Express, PCIe, and PCI-X are trademarks of PCI-SIG. All other trademarks are the property of their respective owners.
Revision History

The following table shows the revision history for this document.

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>06/26/2012</td>
<td>1.0</td>
<td>Initial Xilinx release.</td>
</tr>
<tr>
<td>08/23/2012</td>
<td>1.1</td>
<td>Updated Figure 7, Figure 27, Figure 28, Figure 30, Figure 31, Figure 33, and Figure 35 with v1.1 screen captures. Changed ISE Design Suite Logic Edition Tools “v14.1” to “v14.1 or later” under Hardware Test Setup Requirements. Clarified step 3 through step 6 under Hardware Setup. Clarified step 2 through step 5 and step 3 under Installing Linux Device Drivers. Added Next Steps.</td>
</tr>
<tr>
<td>01/07/2013</td>
<td>2.0</td>
<td>Replaced reference to USB stick with link to design files (under Hardware Test Setup Requirements and Installing Linux Device Drivers). Added Note preceding Hardware Setup. Replaced reference to ISE Design Suite user guide with references to Vivado® Design Suite user guides in Appendix A, Additional Resources.</td>
</tr>
<tr>
<td>04/17/2013</td>
<td>3.0</td>
<td>Updated title page for Vivado Design Suite 2013.1. Changed “32-bit” to “32-bit and 64-bit” in last paragraph under Introduction. Added Notes 2 and 3 following Figure 1. Updated “UG477” to “PG054”, “UG773” to “PG072”, and “UG692” to “PG068” user guide references throughout document.</td>
</tr>
<tr>
<td>11/19/2013</td>
<td>4.0</td>
<td>Updated for Vivado Design Suite 2013.3. Strengthened the description in the power connection caution note on page 18. Revised all links and references in Appendix A, Additional Resources and revised links to websites and documents throughout document to conform to latest linking style convention.</td>
</tr>
<tr>
<td>03/07/2013</td>
<td>4.0.1</td>
<td>Tech pubs update. Technical content not affected.</td>
</tr>
<tr>
<td>05/14/2014</td>
<td>5.0</td>
<td>Updated for Vivado Design Suite 2014.1. The ZIP file name changed to rdf0282-k7-connectivity-trd-2014-1.zip.</td>
</tr>
<tr>
<td>12/16/2014</td>
<td>6.0</td>
<td>Updated for Vivado Design Suite 2014.3. The ZIP file name changed to rdf0282-k7-connectivity-trd-2014-3.zip. Updated Figure 13 and Figure 14.</td>
</tr>
</tbody>
</table>
Table of Contents

Revision History .. 3

Getting Started with the Kintex-7 FPGA Connectivity Kit
 Hardware Setup and Testing with the KC705 Built-in Self-test 8
 Connectivity System Setup with the Targeted Reference Design 13

Appendix A: Additional Resources
 Xilinx Resources ... 41
 Solution Centers .. 41
 References ... 41

Appendix B: Warranty
Getting Started with the Kintex-7 FPGA Connectivity Kit

The Kintex®-7 FPGA connectivity kit provides a comprehensive, high-performance development and demonstration platform using the Kintex-7 FPGA family for high-bandwidth and high-performance applications in multiple market segments. The kit enables designing with DDR3, I/O expansion through FMC, and common serial standards, such as PCI Express® and 10GBASE-R through the FMC interface.

This Getting Started Guide is divided into two sections:

- **Hardware Setup and Testing with the KC705 Built-in Self-test**

 This section on the built-in self-test (BIST) familiarizes users with the KC705 board, the various switch positions, the sequence to program the FPGA, and provides a sanity check on the board’s hardware components.

- **Connectivity System Setup with the Targeted Reference Design**

 This section provides the steps required to setup the connectivity targeted reference design (TRD) hardware, program the FPGA, load the application driver, and become familiar with the GUI.
Hardware Setup and Testing with the KC705 Built-in Self-test

The built-in self-test (BIST) tests many of the features offered by the Kintex-7 FPGA KC705 evaluation kit. The test is stored in the nonvolatile BPI Linear Flash memory, and configures the FPGA when the mode and upper flash address pins on the board are set for Master BPI.

Figure 1 provides an overview of the board features used by the BIST.

Figure 1: KC705 Board Features

Note: For a diagram of all the features on the KC705, see KC705 Evaluation Board for the Kintex-7 FPGA User Guide (UG810) [Ref 1].

Hardware Test Setup Requirements

The prerequisites for testing the design in hardware are:

- KC705 Evaluation board with the Kintex-7 FPGA XC7K325T-2FFG900C device
- USB Type-A to Mini-B cable (for UART)
- AC power adapter (12 VDC)
- TeraTerm Pro terminal program [Ref 2]

Note: The Tera Term Pro program is used for illustrative purposes. Other terminal programs can be used.

- CP210x USB to UART Bridge VCP Drivers from Silicon Labs [Ref 3]

Hardware Test Board Setup Requirements

This section details the hardware setup and use of the terminal program for running the BIST application. It contains step-by-step instructions for board bring-up.
KC705 Evaluation Board Setup

1. Set the jumpers and switches on the KC705 board as follows:
 - The mode switches (SW13) are set for Master BPI mode 010.
 - The upper flash address switches (SW13) are set to 11.

2. Verify the switch and jumper settings are set as shown in Table 1 and Figure 2.

Note: For this application, the board should be set up as a stand-alone system, with power coming from the cord and brick that comes with the KC705 evaluation kit.

<table>
<thead>
<tr>
<th>Switch</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW15</td>
<td>Board Power slide-switch</td>
</tr>
<tr>
<td></td>
<td>N/A Off</td>
</tr>
<tr>
<td>SW11</td>
<td>User GPIO DIP switch</td>
</tr>
<tr>
<td>4</td>
<td>Off</td>
</tr>
<tr>
<td>3</td>
<td>Off</td>
</tr>
<tr>
<td>2</td>
<td>Off</td>
</tr>
<tr>
<td>1</td>
<td>Off</td>
</tr>
<tr>
<td>SW13</td>
<td>Configuration Mode switch</td>
</tr>
<tr>
<td>5</td>
<td>Off</td>
</tr>
<tr>
<td>4</td>
<td>On</td>
</tr>
<tr>
<td>3</td>
<td>Off</td>
</tr>
<tr>
<td>2</td>
<td>On</td>
</tr>
<tr>
<td>1</td>
<td>On</td>
</tr>
</tbody>
</table>

Figure 2: BIST Switch and Jumper Settings
Hardware Bring-Up

This section details the steps for hardware bring-up:

1. With the board switched off, plug a USB-to-Mini-B cable into the UART port of the KC705 board and the PC (see Figure 3).
2. Install the power cable.
3. Switch the KC705 board power to ON.

Install the UART Driver

1. Run the downloaded executable UART-USB driver file listed in Hardware Test Setup Requirements, page 8. This enables UART-USB communications with a host PC (see Figure 4).
2. Set the USB-UART connection to a known port in the Device Manager as follows:
 - Right-click My Computer and select Properties.
 - Select the Hardware tab, then click the Device Manager button.
 - Find and right-click the Silicon Labs device in the list. Then select Properties.
 - Click the Port Settings tab and the Advanced… button.
 - Select an open COM port between COM1 and COM4.

Figure 5 shows the steps needed to set the USB-UART port.

Note: Steps and diagrams refer to use with a Windows host PC with the Windows XP or Windows 7 operating system.
Run the BIST Application

1. Start the installed terminal program.
2. Press PROG (SW14) on the KC705 board, and view the BIST output on the terminal window (see Figure 6).

3. Select the relevant tests to run, and observe the results.

For more information on the BIST software and additional tutorials, including how to restore the default content of the onboard nonvolatile storage, see the Kintex-7 FPGA KC705 Evaluation Kit website.
Connectivity System Setup with the Targeted Reference Design

Introduction

Figure 7 depicts the block level overview of the Kintex-7 connectivity TRD which delivers up to 20 Gb/s of performance per direction.

Notes:

1. The arrows in Figure 7 indicate AXI interface directions from master to slave. They do not indicate data flow directions.
2. The DMA netlist shipped along with this core is an evaluation netlist. For full version netlist, contact Northwest Logic [Ref 4].
3. The DMA used in the TRD is configured for x8Gen2 PCIe interface. For other supported configurations, contact Northwest Logic [Ref 4].

The design is a dual Network Interface Card (NIC) with an x8 GEN2 PCIe® Endpoint, a multi-channel packet DMA from Northwest Logic, DDR3 memory for buffering, 10-Gigabit Ethernet MAC and 10GBASE-R standard compatible physical layer interface. The PCIe-DMA together is responsible for movement of data between a PC system and FPGA (S2C implies data movement from PC system to FPGA and C2S implies data movement from FPGA to PC system).

DDR3 SDRAM (64-bit, 1,600 Mb/s or 800 MHz) is used for packet buffering – a virtual FIFO layer facilitates the use of DDR3 as multiple FIFOs. The virtual FIFO layer is built using the AXI Stream interconnect and AXI Virtual FIFO controller CoreGEN IPs.
Dual NIC application is built over this by use of 10-Gigabit Ethernet MAC and 10-Gigabit PCS/PMA (10GBASE-R PHY) IPs. The 10G MAC connects to the 10G BASE-R PHY over 64-bit, SDR XGMII parallel interface. Additionally, the design provides power monitoring capability based on a PicoBlaze™ processor engine.

For software, the design provides 32-bit and 64-bit Linux drivers for all modes of operation listed and a graphical user interface (GUI) that controls the tests and monitors the status.

Features

The Kintex-7 FPGA connectivity TRD features these components:

- PCI Express v2.1 compliant GEN2 x8 Endpoint operating at 5 Gb/s per lane per direction
 - PCIe transaction interface utilization engine
 - MSI and legacy interrupt support
- Bus mastering scatter-gather DMA to offload processor
- Multi-channel DMA
- AXI4 streaming interface for data
- AXI4 interface for register space access
- DMA performance engine
- Full duplex operation
 - Independent transmit and receive channels
- 10-Gigabit Ethernet MAC with 10G BASE-R PHY
 - Address filtering
 - Inter-frame gap control
 - Jumbo frame support up to 16,383 bytes in size
 - Ethernet statistics engine
 - Management interface for configuration (MDIO)
- PicoBlaze processor-based PVT monitoring
 - Engine in hardware to monitor power by reading the TI UCD9248 power controller chip on-board KC705
 - Engine in hardware to monitor die temperature via Xilinx analog-to-digital converter
- Application demand driven power management
 - Option to change PCIe link width and link speed for reduced power consumption in lean traffic scenario

Hardware Test Setup Requirements

The prerequisites for testing the design in hardware are:

- KC705 evaluation board with XC7K325T-2FFG900 FPGA
- Design files
 - Design source files
 - Device driver files
 - Board design files
Connectivity System Setup with the Targeted Reference Design

- Documentation
Design files are available at the [Kintex-7 FPGA Connectivity Kit Documentation website](https://www.xilinx.com).
- Vivado® Design Suite Logic Edition Tools 2014.3 or later
- 4-pin to 6-16 12V PCIe adapter cable
- Micro USB cable
- FM-S14 FMC card with 4 SFP+ cages from Faster Technology, LLC [Ref 5]
- Two 10G MMF SFP+ SR optical transceivers from Avago Technologies [Ref 6]
- LC to LC OM3 10G fiber optic patch cable from Amphenol Corporation [Ref 7]
- Fedora 16 LiveCD from Fedora Project [Ref 8]
- PC with PCIe v2.0 slot. Recommended PCI Express Gen2 PC system motherboards are ASUS P5E (Intel X38), ASUS Rampage II Gene (Intel X58) and Intel DX58SO (Intel X58). Note that the Intel X58 chipsets tend to show higher performance. This PC could also have Fedora Core 16 Linux OS installed on it. Note that the PC is not part of the Kintex-7 connectivity kit.

Note: This document refers to the initially released TRD version (v1_0). For subsequent releases, the design version will be upgraded but the change will not be reflected in this document.

Hardware Setup

This section details the hardware setup and use of provided application and control GUI to help the user get started quickly with the hardware. It provides a step-by-step explanation on hardware bring-up, software bring-up, and use of the application GUI.

All procedures listed in the following sections require super user access on a Linux machine. When using Fedora 16 LiveCD provided with the kit, super user access is granted by default due to the way the kernel image is built; if LiveCD is not used, contact the system administrator for super user access.

1. With the power supply turned off, ensure that switches P1 and P2 on the FM-S14 FMC card are in the ON position, as shown in Figure 8.
Figure 8: DIP Switch Position on FMC Card

P1 and P2 must be in ON position.
2. Insert SFP+ connectors to channel 2 and channel 3 positions as shown in Figure 9.
3. Insert the FM-S14 FMC card in the HPC slot of the KC705 board as shown in Figure 10. Remove the cap from the fiber optic cables and connect the fiber optic cables in a loopback fashion as shown in the figure.

4. Connect the 12V ATX power supply 4-pin disk drive type connector to the board. Note that the 6-pin ATX supply cannot be connected directly to the KC705 board and the 6-pin adapter is required.

Caution! Do NOT plug a PC ATX power supply 6-pin connector into J49 on the KC705 board. The ATX 6-pin connector has a different pinout than J49. Connecting an ATX 6-pin connector into J49 will damage the KC705 board and void the board warranty.

5. With the host system powered off, insert the KC705 board in the PCI Express slot through the PCI Express x8 edge connector.

6. Ensure that the connections are secure to avoid loose contact problems. Power on the KC705 board and then the system.

7. The GPIO LEDs are located in the top right corner of the KC705 board. These LED indicators illuminate to provide the following status (LED positions are marked from left to right):
 - LED position 1 – DDR3 link up
 - LED position 2 – 10GBASE-R link 1 ready

Figure 10: Setup with Fiber Optic Cable
LED position 3 – 10GBASE-R link 2 ready
LED position 4 – 156.25 MHz clock heart beat LED
LED position 5 – PCIe x8 link stable
LED position 6 – PCIe 250 MHz clock
LED position 7 – PCIe link up

LED positions on the KC705 board are shown in Figure 11.

8. The LEDs on the FMC card (note that these are on the bottom side) indicate the following status:

 LED position top – FM-S14 is connected on the correct FMC connector on KC705 board
 LED position bottom – indicates clock generator on FMC is programmed to generate 312.5 MHz as required by the TRD
Installing Linux Device Drivers

This sections describes the steps to install the device drivers for the Kintex-7 connectivity TRD after completion of the above hardware setup steps.

1. If Fedora 16 is installed on the PC system's hard disk, boot as a root-privileged user, proceed to step 3. Otherwise continue with step 2.

2. To boot from the Fedora 16 Live DVD provided in the kit, place the DVD in the PC's CD-ROM drive. The Fedora 16 Live Media is for Intel-compatible PCs. The DVD contains a complete, bootable 32-bit Fedora 16 environment with the proper packages installed for the TRD demonstration environment. The PC boots from the CD-ROM drive and logs into a liveuser account. This account has kernel development root privileges required to install and remove device driver modules.

 Note: Users might have to adjust BIOS boot order settings to ensure that the CD-ROM drive is the first drive in the boot order. To enter the BIOS menu to set the boot order, press the DEL or F2 key when the system is powered on. Set the boot order and save the changes. (The DEL or F2 key is used by most PC systems to enter the BIOS setup. Some PCs might have a different way to enter the BIOS setup.)

The PC should boot from the CD-ROM drive. The images in Figure 12 are seen on the monitor during boot up. (Booting from the Fedora 16 Live DVD takes few minutes and the user needs to wait for until the Fedora 16 menu pops up on the screen as shown in Figure 12.)

![First Screen](image1.png) ![Last Boot Screen](image2.png) ![Booted](image3.png)

Figure 12: Fedora 16 LiveCD Boot Sequence

3. Copy the k7_connectivity_trd_v1_0 folder to the home directory (or a folder of choice). Note that the user must be a root-privileged user. Connectivity kit design files are available at the [Kintex-7 FPGA Connectivity Kit Documentation website](https://www.xilinx.com).
4. Double-click the copied k7_connectivity_trd_v1_0 folder. The screen capture in Figure 13 shows the content of the k7_connectivity_trd_v1_0 folder. The user needs to browse through the “Activities” tab after Fedora 16 boots up to access the “Home” directory.

![Figure 13: Directory Structure of k7_connectivity_trd](image)

5. Ensure that the TRD package has the proper “execute” permission. Double-click quickstart.sh script (see Figure 14). This script invokes the driver installation GUI. Click Run in Terminal.

![Figure 14: Running the Quickstart Script](image)
6. The GUI with driver installation option pops up as shown in Figure 15. The next steps demonstrate all modes of design operation by installing and un-installing various drivers.

Select **GEN/CHK** performance mode driver mode as shown in Figure 15 and click **Install**.

![Image](Kintex-7 Connectivity TRD)

Figure 15: Landing Page of Kintex-7 Connectivity TRD

Installing the Windows Device Driver

PC requirements for installing the Windows device drivers:

- Operating System: Windows 7 (32-bit or 64-bit)
- Java installation: Java SE Development Kit 7u5 [Ref 9] and Java SE Runtime Environment 7u5 [Ref 10]
- **Hardware Setup, page 15** has been completed
To install the drivers:

1. Restart the computer. During bootup, select **Windows 7** from the boot menu, and press the **F8** key to go to the Advanced Boot Options menu (Figure 16).

2. Select **Disable Driver Signature Enforcement** (Figure 16) and press **Enter** to boot Windows.

3. Download rdf0282-k7-connectivity-trd-2014-3.zip from the Kintex-7 FPGA Connectivity Kit Documentation website to the desktop (or a folder of choice).

4. Double-click the rdf0282-k7-connectivity-trd-2014-3.zip file and unzip and navigate to the k7_connectivity_trd folder.

5. Execute the quickstart.bat file using administrative privileges by selecting **Run as Administrator** in the right-click menu.
6. When the User Account Control window opens, select **YES** to invoke the InstallShield wizard shown in Figure 17.

7. Click **Next** (Figure 17) to open the Customer Information window (Figure 18).

![InstallShield Wizard First Window](UG929_117_103113)

Figure 17: InstallShield Wizard First Window

8. Enter your user name and organization. Click **Next** (Figure 18) to open the Destination Folder window (Figure 19).

![Customer Information Window](UG929_118_103113)

Figure 18: Customer Information Window
9. Do one of the following:
 a. Click **Next** (Figure 19) to copy the driver files, Java GUI, user guides, and source files to their default installation locations:
 - C:\ProgramFiles(x86)\Xilinx\K7_PCIE_CONNECTIVITY_TRD (for 64-bit machines)
 - C:\ProgramFiles\Xilinx\K7_PCIE_CONNECTIVITY_TRD (for x86 machines)
 b. Click **Change...** (Figure 19) to copy the driver files, Java GUI, user guides, and source files to a custom installation directory.

![Figure 19: Destination Folder Window](Image)
10. Click **Install** (Figure 20) to begin installation.

![Figure 20: Install Button](image)

11. When the Windows Security Window opens, Select **Install this driver software anyway** (Figure 21). This warning is seen because the drivers are unsigned.
 Note: This step is repeated two more times because this driver package contains three drivers.

![Figure 21: Windows Security Window](image)
12. When the installation is complete, Figure 22 is displayed. Click Finish to close the wizard.

![Figure 22: Finish Button](image)

Figure 22: Finish Button

Verify Installation

After the installation is successful, verify the installed drivers are properly mapped as described here:

1. Open Device Manager (Figure 23). Click Start, click **Control Panel**, and then click **Device Manager**.
2. Right-click on the computer name and select **Scan for hardware changes** (Figure 23).

Figure 23: Initiating Scan for Hardware Changes in Device Manager
3. Figure 24 shows that the Xilinx devices associated with the design have been detected after the scan.

Figure 24: Xilinx XDMA Adapter and Two Block Driver Devices are Detected
4. Open a command terminal with administrative privileges. Click **Start**, enter **cmd**, and press **Enter**.

5. Navigate to the installation directory, and then to the **gui** directory. Execute **rungui.bat** to invoke the GUI (Figure 25).

![Image of command terminal and GUI](image)

Figure 25: Invoking the GUI
6. If **application mode** is selected in the GUI, two new local area networks are displayed in device manager, and the NDIS drivers in place of the Xilinx block drivers (Figure 26).

![Diagram showing device manager with NDIS 6.20 Ethernet Drivers for the KC705 Design]

Figure 26: NDIS 6.20 Ethernet Drivers for the KC705 Design
GEN/CHK Performance Mode

1. After installing the GEN/CHK performance mode driver, the control and monitor user interface pops up as shown in Figure 27. The control pane shows control parameters such as test mode (loopback, generator, or checker) and packet length. The user can select PCIe link width and speed while running a test if the host machine supports link width and speed configuration capability. The System Monitor tab in the GUI also shows system power and temperature. DDR3 ready status and 10GBASE-R link status are displayed on the top left corner of the GUI.

Figure 27: GEN/CHK Performance Mode
2. Click **Start** on both Data Path-0 and Data Path-1. Go to the Performance Plots tab. The Performance Plots tab shows the system-to-card and card-to-system performance numbers for a specific packet size. The user can vary packet size and see performance variation accordingly (see Figure 28).

![Figure 28: GEN/CHK Performance Mode Plots](image_url)
3. Close the GUI. A pop up message asks whether you want to un-install the drivers. Click on Yes. This process opens the landing page of the Kintex-7 Connectivity TRD. (Driver un-installation requires the GUI to be closed first.)

4. Select **Raw Ethernet** performance as shown in Figure 29. Click **Install**.

Figure 29: Raw Ethernet Driver Installation
5. The GUI for raw Ethernet mode driver is invoked. The user can configure packet size in raw Ethernet mode and can control PCIe link width and speed change if the host machine supports this. The System Monitor tab monitors system power and temperature (see Figure 30).

![Raw Ethernet Driver GUI](image)

Figure 30: Raw Ethernet Driver GUI
6. Click **Start** on both Data Path-0 and Data Path-1. Navigate to the Performance Plots tab to see performance on system-to-card and card-to-system (see **Figure 31**).

Figure 31: Raw Ethernet Driver Performance Plots
7. Close the GUI. This un-installs driver and opens the Kintex-7 connectivity TRD landing page. Note that driver un-installation requires the GUI to be closed first.

8. Select the Application mode driver as shown in Figure 32. For using the peer to peer option, refer to Appendix 8 of Kintex-7 FPGA Connectivity Targeted Reference Design User Guide (Vivado Design Suite) (UG927) [Ref 11]. Click Install.

![Figure 32: Application Mode Driver Installation](image)
9. The GUI is invoked after the driver is installed. However, in application mode, the user cannot start or stop a test – the traffic is generated by the networking stack. The system monitor shows the system power and temperature (see Figure 33).

Figure 33: Application Mode Driver GUI
10. Open another terminal on the host machine and run ping (see Figure 34) using the following command:

$ ping 10.60.0.1
$ ping 10.60.1.1

Note: In the Windows operating system, only peer to peer mode can be enabled. For enabling peer to peer mode, two PCIe-compatible host PCs are required.
The user can click the Block Diagram option to view the design block diagram as shown in Figure 35.

11. Close the GUI. This un-installs the driver and opens the Kintex-7 connectivity TRD landing page. Note that driver un-installation requires the GUI to be closed first.

Next Steps

With the steps in this getting started guide completed, the user has achieved a simple hardware bring-up of the Kintex-7 connectivity TRD and initial hands-on experience with the connectivity kit.

Users can refer to the *Kintex-7 FPGA Connectivity Targeted Reference Design User Guide (Vivado Design Suite)* (UG927) [Ref 11] to learn how to use this design as a platform to develop their own system.
Appendix A

Additional Resources

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see the Xilinx Support website.

For continual updates, add the Answer Record to your myAlerts.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual property at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting tips.

References

The most up to date information related to the Kintex-7 FPGA connectivity kit and its documentation is available on these websites:

- Kintex-7 FPGA KC705 Evaluation Kit
- Kintex-7 FPGA Connectivity Kit Documentation
- Kintex-7 FPGA Connectivity Kit (AR 50555)

These Xilinx documents and sites provide supplemental material useful with this guide:

1. *KC705 Evaluation Board for the Kintex-7 FPGA User Guide* ([UG810](#))
2. **Ayeria Technologies**
 - Tera Term Pro Enhanced Telnet/SSH2 Client terminal program
3. **Silicon Labs**
 - CP2103 VCP Drivers
4. **Northwest Logic**
 - PCI Express® Solution IP, including DMA Back-End Core
5. **Faster Technology, LLC**
 - FM-S14 Quad SFP/SFP+ transceiver VITA 57 FMC module
6. **Avago Technologies**
 - AFBR-703SDZ 10 Gb/s Ethernet, 850 nm, 10GBASE-SR, SFP+ Transceiver
7. **Amphenol Corporation**
 - LC-LC Duplex 10 Gb/s Multimode 50/125 OM3 Fiber Optic Patch Cable - 2 x LC Male to 2 x LC Male
8. **Fedora Project**
 - Fedora operating system information and downloads
Appendix A: Additional Resources

9. Java SE Development Kit 7u5
10. Java SE Runtime Environment 7u5
15. 7 Series FPGAs Integrated Block for PCI Express v2.2 Product Guide (PG054)
17. Understanding Performance of PCI Express Systems (WP350)
18. 7 Series FPGAs GTX Transceivers User Guide (UG476)
19. 7 Series FPGAs Memory Interface Solutions User Guide (UG586)
22. LogiCORE IP 10-Gigabit Ethernet PCS/PMA Product Guide (PG068)
23. LogiCORE IP AXI4-Stream Interconnect Product Guide (PG035)
24. LogiCORE IP AXI Virtual FIFO Controller Product Guide (PG038)
25. Xilinx AXI Interconnect IP
 AXI Interconnect IP product page
Warranty

THIS LIMITED WARRANTY applies solely to standard hardware development boards and standard hardware programming cables manufactured by or on behalf of Xilinx (“Development Systems”). Subject to the limitations herein, Xilinx warrants that Development Systems, when delivered by Xilinx or its authorized distributor, for ninety (90) days following the delivery date, will be free from defects in material and workmanship and will substantially conform to Xilinx publicly available specifications for such products in effect at the time of delivery. This limited warranty excludes: (i) engineering samples or beta versions of Development Systems (which are provided “AS IS” without warranty); (ii) design defects or errors known as “errata”; (iii) Development Systems procured through unauthorized third parties; and (iv) Development Systems that have been subject to misuse, mishandling, accident, alteration, neglect, unauthorized repair or installation. Furthermore, this limited warranty shall not apply to the use of covered products in an application or environment that is not within Xilinx specifications or in the event of any act, error, neglect or default of Customer. For any breach by Xilinx of this limited warranty, the exclusive remedy of Customer and the sole liability of Xilinx shall be, at the option of Xilinx, to replace or repair the affected products, or to refund to Customer the price of the affected products. The availability of replacement products is subject to product discontinuation policies at Xilinx. Customer may not return product without first obtaining a customer return material authorization (RMA) number from Xilinx.

THE WARRANTIES SET FORTH HEREIN ARE EXCLUSIVE. XILINX DISCLAIMS ALL OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, AND ANY WARRANTY THAT MAY ARISE FROM COURSE OF DEALING, COURSE OF PERFORMANCE, OR USAGE OF TRADE. (2008.10)

Do not throw Xilinx products marked with the “crossed out wheeled bin” in the trash. Directive 2002/96/EC on waste electrical and electronic equipment (WEEE) requires the separate collection of WEEE. Your cooperation is essential in ensuring the proper management of WEEE and the protection of the environment and human health from potential effects arising from the presence of hazardous substances in WEEE. Return the marked products to Xilinx for proper disposal. Further information and instructions for free-of-charge return available at: http:\\www.xilinx.com\ehs\weee.htm.