Course Description
This course provides a thorough introduction to the Vivado® High-Level Synthesis (HLS) tool.
The focus is on:
- Covering synthesis strategies and features
- Improving throughput, area, interface creation, latency, testbench coding, and coding tips
- Utilizing the Vivado HLS tool to optimize code for high-speed performance in an embedded environment
- Downloading for in-circuit validation

What's New for 2019.2
- Introduction to High-Level Synthesis: Added the RTL black-box feature, which enables the integration of a pre-existing RTL IP into an HLS design
- Introduction to I/O Interfaces: Updated the graphics to make sure they point to proper block-level or port-level interfaces
- Vivado HLS Tool C Libraries: Arbitrary Precision: Added more information on floating-point cores
- HLx Design Flow – System Integration: Added Zynq® UltraScale+™ ZCU104 board support to the lab
- Accelerating OpenCV Applications Using Vivado HLS Video Libraries: Added more information on using OpenCV in FPGA designs

Course Outline
Day 1
- Introduction to High-Level Synthesis
 Overview of the High-level Synthesis (HLS), Vivado HLS tool flow, and the verification advantage. (Lecture)
- Vivado HLS Tool Flow
 Explore the basics of high-level synthesis and the Vivado HLS tool. (Lecture, Demo, Lab)
- Design Exploration with Directives
 Explore different optimization techniques that can improve the design performance. (Lecture)
- Vivado HLS Tool Command Line Interface
 Describes the Vivado HLS tool flow in command prompt mode. (Lecture, Lab)
- Introduction to HLS UltraFast Design Methodology
 Introduces the methodology guidelines covered in this course and the HLS UltraFast Design Methodology steps. (Lecture)
- Introduction to I/O Interfaces
 Explains interfaces such as block-level and port-level protocols abstracted by the Vivado HLS tool from the C design. (Lecture)
- Block-Level I/O Protocols
 Explains the different types of block-level protocols abstracted by the Vivado HLS tool. (Lecture, Lab)
- Port-Level I/O Protocols
 Describes the port-level interface protocols abstracted by the Vivado HLS tool from the C design. (Lecture, Demo, Lab)
- Port-Level I/O Protocols: AXI4 Interfaces
 Explains the different AXI interfaces (such as AXI4-Master, AXI4-Lite (Slave), and AXI4-Stream) supported by the Vivado HLS tool. (Lecture, Demo)
- Port-Level I/O Protocols: Memory Interfaces
 Describes the memory interface port-level protocols (such as block RAM, FIFO) abstracted by the Vivado HLS tool from the C design. (Lecture, Lab)
- Port-Level I/O Protocols: Bus Protocol
 Explains the bus protocol supported by the Vivado HLS tool. (Lecture)
- Pipeline for Performance: PIPELINE
 Describes the PIPELINE directive for improving the throughput of a design. (Lecture, Demo, Lab)

Day 2
- Pipeline for Performance: DATAFLOW
 Describes the DATAFLOW directive for improving the throughput of a design by pipelining the functions to execute as soon as possible. (Lecture, Lab)
- Optimizing Structures for Performance
 Learn the performance limitations caused by arrays in your design. You will also learn some optimization techniques to handle arrays for improving performance. (Lecture, Demo, Lab)
C-based Design: High-Level Synthesis with the Vivado HLx Tool

DSP-HLS (v1.0) Course Specification

- **Data Pack and Data Dependencies**
 Learn how to use DATA_PACK and DEPENDENCE directives to overcome the limitations caused by structures and loops in the design. (Lecture)

- **Vivado HLS Tool Default Behavior: Latency**
 Describes the default behavior of the Vivado HLS tool on latency and throughput. (Lecture)

- **Reducing Latency**
 Describes how to optimize the C design to improve latency. (Lecture)

- **Improving Area and Resource Utilization**
 Describes different methods for improving resource utilization and explains how some of the directives have impact on the area utilization. (Lecture, Lab)

- **HLx Design Flow – System Integration**
 Describes the traditional RTL flow versus the Vivado HLx design flow. (Lecture, Lab)

- **Vivado HLS Tool C Libraries: Arbitrary Precision**
 Describes the Vivado HLS tool support for the C/C++ languages, as well as arbitrary precision data types. (Lecture, Lab)

- **Hardware Modeling**
 Explains hardware modeling with streaming data types and shift register implementation using the ap_shift_reg class. (Lecture)

- **Accelerating OpenCV Applications Using Vivado HLS Video Libraries**
 Explains the OpenCV design flow and the Vivado HLS tool support. (Lecture, Lab)

- **Using Pointers in the Vivado HLS Tool**
 Explains the use of pointers in the design and workarounds for some of the limitations. (Lecture)

Register Today
Visit the Xilinx Customer Training Center to view schedules and register online.