
Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

 www.xilinx.com 1

 © Copyright 2016 Xilinx

Exploring AXI Transactions Using the AXI Traffic
Generator

2016.3

Abstract

AXI4 transactions will be explored in this lab with special emphasis on AXI channels,

handshaking, and the most useful signal members within the AXI interface. The AXI Traffic

Generator (ATG) IP example design will serve as the basis of this lab. Simulation of the design

will provide the sample AXI traffic to be studied.

Objectives

After completing this lab, you will be able to:

 Generate an AXI Traffic Generator (ATG) core by using the IP catalog

 Simulate the Xilinx-provided (ATG) core example design

 Explain the purpose of the AXI4 channels and how read/write transactions with their AXI

interface signals behave

Introduction

The main focus of this lab is to introduce you to the AXI4 (memory/full) interface, including:

 All five AXI channels

 Key control interface signals

 Handshaking protocol

 Single and burst data beat read and write transactions

You will examine simulation waveforms to observe the above points. A design is needed to

simulate to accomplish this end. The AXI Traffic Generator (ATG) IP (which can be found in the IP

catalog) has been selected for this lab. The ATG component documentation includes a

Xilinx-provided sample design that will be the basis of this lab.

The ATG IP component acts as a master, generating sample AXI traffic that can be used for both

simulation and synthesis. You can implement this component in actual hardware and generate

master-based AXI transactions. This lab will only demonstrate the simulation abilities of the core,

but one could implement the design, download, and operate it in hardware.

Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

2 www.xilinx.com

 © Copyright 2016 Xilinx

The ATG is a highly configurable block of logic with three basic modes of operation:

 AXI4 Traffic Generator: This mode allows for the creation of custom or protocol (choice of

video, PCIe® interface, Ethernet, USB, or data) AXI (full interface) transactions. The custom

sub-mode uses block RAM supporting programming for up to 1024 reads and writes. This

includes custom address, data, burst length, and other AXI signaling. It is necessary to

program the ATG block RAM with the desired transaction pattern and ordering via a slave

AXI4-Lite port. The example design in this lab uses this mode to generate the AXI4

transactions that will be studied.

 AXI4-Lite Traffic Generator (System Init/Test Mode): This mode allows for the creation of

custom AXI (Lite interface) transactions. The internals of this design contain up to four block

RAM buffers that must be loaded via a bit file using *.coe (coefficient) RAM initialization files.

This ATG mode facilitates up to 256 AXI4-Lite read or write transactions. The example

designs uses a second ATG in this mode to program the full AXI4 ATG described above. This

mode differs from the mode above in that:

 Only AXI4-Lite transactions can be generated (single data beat).

 No external programming is necessary (this is performed via COE block RAM initialization

files)

 Less flexibility in transaction generation

 AXI4-Stream Traffic Generator: This mode generates and receives AXI streaming interface

traffic. This lab does not use this mode.

The ATG is a very complex and flexible IP and its full explanation is beyond the scope of this lab.

Documentation for the ATG is covered in the AXI Traffic Generator Product Guide (PG125), which

is included in the support directory for your reference.

The intention of this lab is to illustrate the use of the Vivado® Design Suite tools to generate

the Xilinx-provided AXI Traffic Generator base example design and demonstrate use of the

Vivado simulator. Although conceptually simple, it is left to the student to perform a detailed

examination of the design RTL and simulation testbench outside of this lab.

The following is the simplified block design for the simulated design. These components are

described below.

Figure 3-1: AXI Traffic Generator Example Design Block Diagram

Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

 www.xilinx.com 3

 © Copyright 2016 Xilinx

The HDL example design contains these items:

 Driver: An instantiation of the ATG in AXI4-Lite mode. This module is used to generate AXI4

Lite transactions to program the DUT module.

 DUT: Device under test. An instantiation of the ATG in AXI4 mode. This module is used to

generate AXI4 transaction to the Responder.

 Responder: An instantiation of a block RAM controller that will accept the generated traffic

from the ATG.

The design uses two instances of the ATG, one in AXI4-Lite mode (Driver) and the other in AXI4

mode (DUT). Both are instantiated as IP using the XCI file format. When either component's XCI

source is opened, the component Re-customize IP dialog box launches. Beginning with the

device under test (DUT), you will see how it is customized here:

Figure 3-2: DUT – ATG AXI4 Re-customize IP Dialog Box

The DUT is configured to generate AXI4 traffic based on contents of its internal RAM. Read and

write transactions are both emitted from the master interface that is connected to the

Responder as shown in the block diagram. The ATG in AXI4 custom mode contains internal

block RAMs for storing traffic content and control registers, both of which are accessed over an

AXI4-Lite slave interface. The control registers are configured to generate traffic when the

core_ext_start port is active.

Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

4 www.xilinx.com

 © Copyright 2016 Xilinx

The internal RAM is divided into four sections:

 Command RAM (CMDRAM): Two regions of up to 256 AXI transactions commands each,

one for read and one for writes. See the description below.

 Parameter RAM (PARAMRAM): Two regions of up to 256 parameters to modify

CMDRAM-generated transactions. Not used in this lab.

 Master RAM (MSTRAM): Write and read data buffer. See description below.

 Address RAM (ADDRRAM): Upper address bits for traffic addresses greater than 32 bits. Not

used in this lab.

Each of these block RAM buffers must be filled via the AXI4-Lite slave interface by a processor or

some other mechanism. The slave interface address map is shown below.

Figure 3-3: Slave Interface Address Map

The CMDRAM is where all the work takes place. It is a buffer that contains information to

generate custom AXI transactions. The buffer is organized into two regions of 256 entries of 128

bits, one read and one write for AXI4 transaction generation. The 128-bit control word is the

same for each.

For the purpose of this lab, only the bits of interest will be described. Access to the CMDRAM is

over the AXI4-Lite slave interface with 32-bit data transactions to the slave base address +

region offset (see the above two figures).

Below is the address map of the CMDRAM showing the read and write regions. When the ATG is

enabled, it cycles from the beginning to the end of the buffer, generating an AXI4 transaction

based on the 128 command and its 32-bit modifier in PARAMRAM. Both read and write regions

generate transactions simultaneously.

Figure 3-4: CMDRAM Address Map

Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

 www.xilinx.com 5

 © Copyright 2016 Xilinx

The encoding of the 128 command entry is shown below in 32-bit word chunks, as to be written

and accessed over the AXI4-Lite slave interface. Those entries of interest for this lab are

highlighted. During the course of this lab, you may wish to return to this table for reference.

Figure 3-5: CMDRAM Memory Format

The first 32-bit word is used as the low order 32 bits of the AXI-generated transaction (1). Bit 31

of the second word is used to enable the ATG to begin generating traffic (2), and bits [7:0] set

the transaction burst length (3).

The other block RAM buffer of interest in the DUT is the master RAM (MSTRAM). Data is taken

from this RAM for write transactions and stored during read transactions.

As mentioned earlier, the CMDRAM and MSTRAM buffers must be filled via the ATG AXI4-Lite

slave interface by a processor or some other mechanism. Since this design does not have a

processor involved, the some other mechanism option will be used.

Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

6 www.xilinx.com

 © Copyright 2016 Xilinx

In the block diagram, the Driver is the block that is attached to the AXI4-Lite slave interface of

the DUT and programs the CMDRAM and other block RAM buffers in the DUT. As it turns out,

one of the easiest ways to configure an ATG in a design without a processor is with another

ATG. The Driver component is nothing more than the ATG in AXI4-Lite mode, as show below in

its Re-Customize IP dialog box.

Figure 3-6: Driver – ATG AXI4 Re-customize IP Dialog Box

System Init mode is a special mode where the core provides an AXI4-Lite master interface. This

mode can be used in a system without a processor to initialize the system peripherals with

preconfigured values on system reset or for simple system testing. After the core comes out of

reset in System Init mode, it reads the coefficient (COE) files (address, data, control, and mask)

from the ROM and generates AXI4-Lite transactions. You must provide this COE files for this

mode. Entries in all of the COE files are 32 bits.

A description of the COE files is as follows:

 Address COE file: Provides the sequence of addresses to be issued.

 Data COE file: Provides the sequence of data corresponding to the address specified in the

address COE file.

 Control COE file: Provides various transaction fetch control, error checking enabling, and

read/write commands. For the context of this lab, you will only be concerned if the bit

signifies a read or write.

 Mask COE file: Used only for ready to indicate which bits of returning read data should be

checked against the Data COE file.

Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

 www.xilinx.com 7

 © Copyright 2016 Xilinx

Each entry in the corresponding COE file generates a single AXI4-Lite transaction. The number of

entries in all COE files must be the same. The number of entries in the COE file are user

programmable. Allowed values are 16, 32, 64, 128, and 256. You can insert NOP (No Operation)

defined by address (0xFFFFFFFF) in the middle of a COE address file. The core stops generating

further transactions (including the current NOP address of 0xFFFFFFFF) after the NOP address is

present. You need to ensure that at least one NOP address is present in the address COE file.

Operation:

1. After AXI Traffic Generator comes out of reset, it reads the ADDR and DATA ROMs.

2. It initiates AXI4-Lite write transactions to a specified address and data in the COE files.

3. The core goes to an idle state after AXI4-Lite transactions are issued.

Your design is configured so that the COE files are set up to program the DUT AXI4 ATG to

enable it to generate AXI4 traffic to the Responder, which is a block RAM controller (including

the associated block RAM), as shown below in its Re-Customize IP dialog box.

Figure 3-7: Responder - AXI4 Block RAM Re-customize IP Dialog Box

To summarize, the example design is a structural design consisting of two ATGs and a block

RAM controller—no other RTL is needed.

General Flow

Step 1:

Creating the

Placeholder

Project

Step 2:

Generating

the Core

and Design

Step 3:

Simulating &

Analyzing

Transactions

Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

8 www.xilinx.com

 © Copyright 2016 Xilinx

Creating the Vivado Design Suite Placeholder Project Step 1

Many pieces of IP have their own reference design. Since you will be working with

the example design for the AXI Traffic Generator, you will create a "placeholder"

project that does nothing more than enable you to access the specific piece of IP

and launch another version of the Vivado Design Suite with the example ATG

design.

While the ZC702 or ZedBoard board will be selected for this lab as a hardware

design target, any board (or part) could be used, as the FPGA fabric is common to

all. There is no synthesis or implementation of this design (even though the

design is capable of synthesis and implementation) in this lab, only simulation.

There are a number of ways to launch the Vivado Design Suite. The two most

popular mechanisms are shown here.

1-1. Launch the Vivado Design Suite.

This can be done in two standard ways, use your preferred method.

1-1-1. Select Start > All Programs > Xilinx Design Tools > Vivado 2016.3 > Vivado 2016.3.

Figure 3-8: Launching the Vivado Design Suite from the Start Menu

-- OR --

Double-click the Vivado Design Suite shortcut icon () on the desktop.

Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

 www.xilinx.com 9

 © Copyright 2016 Xilinx

The Vivado Design Suite opens to the Welcome window. From the Welcome window you

can create a new project, open an existing project, or enter Tcl commands directly into

the Vivado Design Suite as well as access documentation and examples.

Figure 3-9: Vivado Design Suite Welcome Screen

"Create New Project" is the starting point for all designs. Projects contains

sources, settings, graphics, IP, and other elements that are used to build a final

bitstream and analyze a design. The Create New Project Wizard in the Vivado

Design Suite allows you to specify HDL and other project resource files that will

be included in the project.

1-2. Create a new blank Vivado Design Suite project.

1-2-1. Click Create New Project to begin the process (1).

Figure 3-10: Creating a New Vivado Design Suite Project

This will launch the New Project Wizard.

1-2-2. Click Next to exit the introductory dialog box and begin entering in project-specific

information (2).

Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

10 www.xilinx.com

 © Copyright 2016 Xilinx

1-3. You will now encounter a series of dialog boxes asking you to enter

different pieces of information describing the project.

1-3-1. Enter ip_placeholder in the Project name field.

1-3-2. Enter C:\training\AXItransactions\lab in the Project location field.

Alternatively, you can use the browse feature to navigate to where you want the project

to reside.

1-3-3. Deselect the Create Project Subdirectory option as leaving this checked will create an

unnecessary level of hierarchy for this lab.

Figure 3-11: Entering the Project Name and Location

1-3-4. Click Next to advance to the next dialog box.

Here you will choose between an RTL project or a post-synthesis project. Simply put, an

RTL project enables you to add or create new HDL files and synthesize them, whereas the

post-synthesis project requires pre-synthesized files. When an empty design is created,

an RTL project is used.

1-3-5. Select RTL Project (1).

1-3-6. Select Do not specify sources at this time (2), which creates a blank project.

While existing sources could be entered at this time, you will enter them later so that you

can move through this portion of the project creation process more quickly.

Figure 3-12: Selecting Project Type

1-3-7. Click Next to advance to the target device/platform selection (3).

Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

 www.xilinx.com 11

 © Copyright 2016 Xilinx

1-4. Select the target part by first filtering by board and then by family. If you

are not using a supported board, you will need to filter by part.

1-4-1. Select Boards from the Select area to filter by board rather than by the specific part (1).

1-4-2. Select All from the Vendor drop-down list in the Filter area (2).

This limits the number of boards seen to those manufactured by the specified vendor.

1-4-3. Select ZC702 or ZedBoard from the board list.

Alternatively you can select the board directly from the list at any time while in this

dialog box.

Figure 3-13: Selecting the Board for the Project

1-4-4. Click Next to advance to the summary (3).

A summary of your project is displayed. If you want to change any of the information

that you entered, you can do so now by clicking Back until you reach the correct dialog

box and making the correction, or you can create the project now and edit the project

properties, add or remove files, etc. later.

1-4-5. Click Finish to accept these settings and build the project.

Your project is constructed and leaves you in the operational portion of the Vivado

Design Suite GUI.

Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

12 www.xilinx.com

 © Copyright 2016 Xilinx

1-5. Verify that the Vivado Design Suite project language default, Verilog, is

selected for this lab example. Verilog is the native language for the example

design. Selecting VHDL, while valid, would generate another hierarchical

wrapper layer to the underlying Verilog RTL.

1-5-1. Select Tools > Project Settings to open the Project Settings dialog box.

Figure 3-14: Selecting Project Settings

1-5-2. If necessary, select Verilog from the Target language drop-down list to select it as the

base HDL language used for template creation.

Figure 3-15: Selecting VHDL

1-5-3. Click OK to accept the changes.

Question 1

Why was a board chosen (as opposed to an FPGA part), when the Vivado Design Suite project

was created?

Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

 www.xilinx.com 13

 © Copyright 2016 Xilinx

Generating the ATG Core and Example Design Step 2

The ATG IP core needs to be added to the empty project in order to generate the

Xilinx-provided example design. The IP catalog wizard will be used to create and

parameterize the AXI Traffic Generator core and add it to the placeholder project.

While you are generating the core, the default parameters will be accepted since

the values do not matter (the core just needs to exist in the project). Once the

ATG core has been added, the Xilinx example design for this core can be

generated. At that point a second Vivado Design Suite project, containing the

ATG example design, will be created and opened.

2-1. Open the IP catalog and add the AXI Ethernet Subsystem core to the empty

Vivado Design Suite project.

2-1-1. Under the Flow Navigator, select Project Manager > IP Catalog to open the catalog.

Figure 3-16: Opening the IP Catalog

Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

14 www.xilinx.com

 © Copyright 2016 Xilinx

2-1-2. Expand the Embedded Processing > Debug & Verification > Debug folders to locate

the IP core of interest.

2-1-3. Double-click AXI Traffic Generator to both select the IP and open its re-customization

IP dialog box.

Figure 3-17: Selecting the AXI Traffic Generator IP Core

The Customize IP wizard opens for the AXI Traffic Generator.

Figure 3-18: ATG Customization Dialog Box

Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

 www.xilinx.com 15

 © Copyright 2016 Xilinx

2-1-4. Click OK to add the ATG IP to the design using the default settings.

The Generate Output Products dialog appears.

Figure 3-19: Generate Output Products Dialog Box

2-1-5. Click Skip because output products are not needed at this time.

Question 2

In what form is the ATG IP added to the ip_placeholder Vivado Design Suite project?

Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

16 www.xilinx.com

 © Copyright 2016 Xilinx

2-2. Generate the Xilinx-provided example design for the AXI Traffic Generator.

2-2-1. From the Sources > Hierarchy pane, select the axi_traffic_gen_0 component to begin

the process to generate the Xilinx-provided Vivado IDE design for this IP.

2-2-2. Right-click axi_traffic_gen_0 to open the context menu.

2-2-3. Select Open IP Example Design.

Figure 3-20: Generating the Example Design

The Open IP Example Design dialog box opens.

2-2-4. Click the icon to select the C:/training/AXItransactions/lab directory (1).

This is the folder where the example design will be placed.

Figure 3-21: Open IP Example Design

2-2-5. Click OK to begin generating the design (2).

2-2-6. Click OK again to accept creation of the example project directory.

The example design may take a couple of minutes to build. The completion of the build

will be indicated when a new Vivado Design project opens containing the example

design.

Question 3

How many Vivado IDE projects are now open? How do they differ?

Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

 www.xilinx.com 17

 © Copyright 2016 Xilinx

2-3. The Vivado Design Suite ip_placeholder project is not required anymore.

2-3-1. Select the ip_placeholder project.

Be careful not to accidentally close the ATG example design project.

2-4. Close the project.

2-4-1. Select File > Close Project to close the project.

The Close Project dialog box opens.

Figure 3-22: Close Project Dialog Box

2-4-2. Click OK.

2-5. Study the structure of the ATG example design that was opened as a Vivado

Design Suite project during the example design creation process. View the

source hierarchy of the example design.

2-5-1. Click the Expand All icon () in the Sources > Hierarchy pane to expand the source tree.

2-5-2. Identify the location of the top-level RTL and simulation testbench sources.

Figure 3-23: Example Design Source Hierarchy

Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

18 www.xilinx.com

 © Copyright 2016 Xilinx

Question 4

Why does the synthesizable design source RTL show up in two places in the hierarchy?

2-5-3. Double-click the design top-level RTL component, axi_traffic_gen_0_exdes, to open it.

2-5-4. Examine the RTL structure.

Note: The Re-Customize IP dialog box for each of the IP catalog XCI components can be

opened by double-clicking them.

Question 5

List the three major components of the top-level RTL design. (Reference the block diagram at

the beginning of this lab along with the source hierarchy.)

Question 6

Which of the three components are really just ATG cores?

Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

 www.xilinx.com 19

 © Copyright 2016 Xilinx

2-6. Open a COE file to examine its contents.

Note that the data format will be in binary format, which is difficult to read.

You will replace these files with the ones provided in hexadecimal format.

This will make them easier to modify later in this lab.

2-6-1. From the Sources window, expand the Coefficient Files folder.

2-6-2. Double-click addr.coe to open the default binary-formatted file in the editor.

Figure 3-24: Binary COE File

2-6-3. Click the X next to the file name on the tab to close the file.

COE files can also be written in hexadecimal, which is much easier to read. New COE files

have been prepared for you to replace the binary versions so that it is easier for you to

modify.

2-6-4. Using the Sources pane, right-click addr.coe and select Remove File from Project to

delete it.

Figure 3-25: Deleting the COE Files

2-6-5. When the Remove Sources dialog box opens, click OK to confirm deletion.

Figure 3-26: Confirming Deletion

2-6-6. Multi-select ctrl.coe, data.coe, and mask.coe.

2-6-7. Press the <Delete> key to delete these files.

2-6-8. Click OK to confirm the deletion.

Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

20 www.xilinx.com

 © Copyright 2016 Xilinx

2-7. Add the new hexadecimal formatted COE files.

2-7-1. From the Sources pane, right-click the driver component to open the context menu.

2-7-2. Select Re-customize IP to open the IP configuration dialog box.

2-7-3. For each of the four files that were deleted, browse to C:\training\AXItransactions\

support and replace the existing COE files.

2-7-4. Click OK to accept these new COE files.

Figure 3-27: Replacing the COE Files for the Driver ATG

2-7-5. Accept the values and click OK to close the dialog box.

The Generate Output Products dialog box opens.

Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

 www.xilinx.com 21

 © Copyright 2016 Xilinx

2-7-6. Click Skip because output products are not needed at this time.

Figure 3-28: Skip Generating Output Products

2-7-7. Return to the Sources window.

2-7-8. Expand the Coefficient Files folder.

2-7-9. Double-click addr.coe to open the coefficients file in the editor.

Figure 3-29: Hexadecimal COE File

2-7-10. Click the X next to the file name on the tab to close the file.

Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

22 www.xilinx.com

 © Copyright 2016 Xilinx

The following instruction will have you modify some of the COE files. These

hexadecimal-formatted COE files have been modified from the original to

enhance the lab experience.

A modified simulation waveform file has been provided. The modified waveform

file includes added signals to view that were not in the original.

HDL simulation files can be added to the design at any time.

2-8. Add simulation files to the design.

2-8-1. Select Add Sources under Project Manager in the Flow Navigator.

Figure 3-30: Selecting Add Sources

2-8-2. Select Add or create simulation sources.

2-8-3. Click Next.

Figure 3-31: Add Sources Dialog Box

2-8-4. Click the Plus () icon to open the pop-up menu.

2-8-5. Select Add Files to open the Add Source Files dialog box which allows you to browse to

the desired directory.

2-8-6. Browse to the C:\training\AXItransactions\support directory if it is not open already.

2-8-7. Select axi_traffic_gen_0_tb_top_behav.wcfg.

2-8-8. Click OK in the Add Source Files dialog box.

2-8-9. Click Finish to add the file(s) to the project.

Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

 www.xilinx.com 23

 © Copyright 2016 Xilinx

Simulating the Design and Analyzing the AXI Transactions Step 3

Now that the example design is complete, it can be simulated and AXI

transactions studied. The testbench provides clock, reset, and Driver start

signaling stimuli.

A brief overview and block diagram of the design can be found in the

Introduction section of this lab. The Driver is an ATG that generates AXI4-Lite

traffic based on the contents of the four COE files. The Driver AXI4-Lite master

port attaches to the DUT ATG slave AXI port and is used to configure its block

RAM-based controller/traffic generator logic. After the DUT has been configured,

the last write to its control register (bit 20 ='1') enables traffic generation.

The base design will be simulated first and then you will modify the Driver ATG

COE files to modify the AXI traffic generation in the ATG DUT.

3-1. When the COE files are updated, it is necessary to reset the project

simulation output products, else the simulation will run with the old COE

files. Since the COE files are only used for the Driver ATG component, only

that one needs to reset. Note that every IP catalog-generated component

has its own set of output products.

3-1-1. Using the Sources pane, right-click the driver- atg_lite_agent component to select it.

3-1-2. Select Reset Output Products.

Figure 3-32: Reset Driver ATG Component Output Products

The Reset Output Products dialog box appears.

3-1-3. Click Reset to reset the output products.

Figure 3-33: Confirming Output Products Reset

Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

24 www.xilinx.com

 © Copyright 2016 Xilinx

3-2. Run behavioral simulation using the Vivado simulator.

3-2-1. Select Run Simulation > Run Behavioral Simulation from the Flow Navigator under

Simulation.

The simulation window opens and simulation runs for the length of time specified in the

Simulation Settings (1 us default).

Note: If the simulator fails to start (reported problem in 2016.3), you can alternatively

start the the Vivado simulator by entering launch_simulation in the Tcl Console.

3-2-2. After the waveform opens after approximately 1 to 2 minutes, click the Run All icon

() to execute the entire simulation.

When done, the simulation will terminate at the last line of code executed.

3-2-3. Select the axi_traffic_gen.xcfg tab to return to the waveform view.

Note that double-clicking the tab will enlarge the view to full screen so that you can

more easily navigate the design.

3-2-4. Click the Zoom All icon () to see the entire simulation.

3-2-5. Optional: Use the various controls to zoom and position the waveform cursor. Also, feel

free to float the waveform window () and maximize to full screen (), and adjust the

column width for maximum waveform exposure.

Note: If you are unfamiliar with the Vivado simulator, hovering the mouse pointer over

an icon will describe its functionality.

Figure 3-34: ATG Design Simulation Waveform

Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

 www.xilinx.com 25

 © Copyright 2016 Xilinx

The testbench writes operational activities and messages to the Tcl Console. These will

also aid in understanding the design.

Figure 3-35: Simulation Console Messages

3-3. Use the various zoom and pan controls to view the waveform and answer

the questions below.

3-3-1. Examine the various names of the waveform signal group dividers.

Question 7

What do the waveform signal group dividers represent?

Question 8

How many AXI ports are indicated? Which components are their masters?

Question 9

Examine the signal names under each channel and their related waveform activity. What two

signal names are common to each channel? How do they seem to operate?

Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

26 www.xilinx.com

 © Copyright 2016 Xilinx

3-3-2. Use the waveform controls to zoom into the region from 1.5 us to 1.7 us.

3-3-3. Examine the first two Driver AXI4-Lite transactions.

Question 10

How is the beginning of a transaction identified? What is the first transaction?

Question 11

What is the second transaction?

Note that there are many Driver write transactions that are configuring the DUT to

generate AXI traffic to the Responder. The DUT does not start generating transactions

until it has been configured and its Master Control register (0x00000000) start command

(bit 20 equal '1') has been written to.

3-3-4. Use the waveform controls to zoom to 13.535 us to examine this transaction.

Figure 3-36: Enabling DUT – ATG to Begin Traffic Generation

Note that the rising edge valid signal is a great way to locate when a channels

information is good.

Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

 www.xilinx.com 27

 © Copyright 2016 Xilinx

3-3-5. Use the waveform controls to pan to 14 us.

You will see the Driver ATG polling the DUT ATG until Driver indicates that all the traffic

has been generated. Note the flexibility of the ATG is these different modes.

Figure 3-37: DUT – ATG Indicating Completion of Traffic Generation

You will now turn your attention to the AXI4 full traffic generated by the DUT to the

Responder.

3-3-6. Pan to starting at 13.645 us, the address of the first DUT transaction, and examine the

remaining DUT transactions.

Question 12

How many AXI4 full transactions are generated by the DUT ATG? What type are they?

These transactions make up the entire DUT traffic program that is to be generated. This

was based on how the Driver configured the DUT from the information in the COE files.

Notice that after the traffic generation is completed the Driver, which monitors a

competition bit in the DUT Error Status register, asserts a Done and Status signal. The

testbench program also monitors these signals and ends the simulation with the

appropriate console message.

Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

28 www.xilinx.com

 © Copyright 2016 Xilinx

Question 13

What seems to be different about the Driver transactions compared to the DUT transactions?

(Hint: Look at the data channels.)

The DUT write (or read) address channel has a signal, m_axi_awlen[7:0] (arlwen for reads),

that indicates the number of data beats that will occur on the data channel for the

transaction.

3-3-7. Using the wready, wvalid, rready, and rvalid signals, determine how many data beats

there are for each of the five DUT-based transactions.

Question 14

What values of awlen and arlwen are driven, as burst length, for each DUT transaction? How

many data beats are there in each transaction's data channel? What is the relationship between

the number of data beats and the length? Fill the values in the table below.

Transaction Type Address
Number

Data Beats

Burst Length

awlen or arlen

1

2

3

4

5

3-3-8. Examine the second write and read transactions (transactions two and five).

Note that the Responder component is block RAM (memory).

Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

 www.xilinx.com 29

 © Copyright 2016 Xilinx

Question 15

What address is being written to and read from? Is the same data being read that was written?

3-4. Unload or exit the simulation but do not exit from the Vivado Design Suite

itself.

This was just a demonstration of how to launch, use, and close the

simulator.

3-4-1. Select File > Close Simulation to exit from the simulator.

3-4-2. Click Yes to confirm if needed.

Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

30 www.xilinx.com

 © Copyright 2016 Xilinx

3-5. Change the AXI traffic that the DUT generates.

This is performed by altering the COE files that are used by the Driver

component to configure the DUT. You will begin by examining the contents

of the address COE file to see some of the configuration addressing. The

data COE file will then be opened and you will change the DUT ATG

configuration settings regarding burst length.

3-5-1. From the Sources window, expand the Coefficient Files folder.

3-5-2. Double-click addr.coe to open it.

The address COE file contains a list of address that the Driver ATG will write or read. A

read or write operation coding is determined by the corresponding location in the

ctrl.coe file (beyond the scope of this lab). Likewise write data (or predicted read results)

is contained in the corresponding location in the data.coe file. You will not be modifying

anything in the address COE file.

Do note, as shown below, that the DUT is being configured to generate the five AXI4

transactions. Each transaction requires 128 bits, written by four dword writes by the

Driver. There are two identical data structures in the DUT ATG. The one beginning at

0x00008000 is for read and the one at 0x00009000 is for writes. There are two read

entries and three write entries.

Note that the coding of each entry is beyond the scope of this lab. Additional

information for this can be found through DocNav in the Traffic Generator Product Guide

(PG125).

Figure 3-38: Driver Address COE File

Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

 www.xilinx.com 31

 © Copyright 2016 Xilinx

3-5-3. From the Sources window, expand the Coefficient Files folder and double-click

data.coe to open it.

Each entry in the data COE file corresponds to the address entry in the address COE file.

Figure 3-39: Unmodified Driver Data COE File

Question 16

Line three in the address and data COE files represent the first AXI4-Lite transaction that was

emitted by the Driver. What does it represent? (Hint: It is encoded as a read.)

Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

32 www.xilinx.com

 © Copyright 2016 Xilinx

3-5-4. Change the following lines in the data.coe file:

o Line 4: 0x00000040 – Address of first read transaction

o Line 8: 0x00000080 – Address of second read transaction

o Line 9: 0x80002404 – Burst length, m_axi_arlen, of second read transaction

o Line 13: 0x80002403 – Burst length, m_axi_awlen, of first write transaction

o Line 17: 0x80002401 – Burst length, m_axi_awlen, of second write transaction

o Line 21: 0x80002404 – Burst length, m_axi_awlen, of third write transaction

Figure 3-40: Modified Driver Data COE File

3-5-5. Select File > Save File to save the changes to data.coe.

3-6. Reset the output products and rerun the simulation.

3-6-1. These processes are outlined in instructions 1 and 2 of this step.

Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

 www.xilinx.com 33

 © Copyright 2016 Xilinx

3-7. Study the resulting traffic from the DUT ATG.

3-7-1. Examine the DUT write and read addresses.

Question 17

Fill in the values of the table below, comparing the results to those in the previous table that you

completed.

Transaction Type Address
Number

Data Beats

Burst Length

awlen or arlen

1

2

3

4

5

3-7-2. Zoom in to around 13 us.

3-7-3. Observe the second DUT write.

Note the DUT write transaction to address 0x00000040 with a burst awlen of 0x01.

3-7-4. Study the write data channel data, ready, and valid.

Figure 3-41: Second DUT – ATG Write

Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

34 www.xilinx.com

 © Copyright 2016 Xilinx

Question 18

How many data beats are there on the write data channel? How can you tell? What is the

significance of the ATG dropping ready for a clock cycle?

Since the Responder (driver by the DUT) is a block RAM memory controller, one would

expect data written to a memory location would be the same when read back from that

location.

3-7-5. Examine the DUT address and data channels, paying attention to the actual address and

data values.

Question 19

Examine the DUT write and read transactions. Is the read data consistent with what was written

to those transaction addresses?

Note that the burst length of writes and reads to the same addresses are different.

Question 20

Do different burst lengths of the reads and writes affect the data value outcomes?

3-8. Exit from the Vivado Design Suite.

3-8-1. Select File > Exit to close the Vivado Design Suite.

3-8-2. Click OK.

Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

 www.xilinx.com 35

 © Copyright 2016 Xilinx

Summary

You used the Vivado Design Suite IP catalog to generate an example design for the AXI Traffic

Generator core. The design was simulated and AXI transactions were studied. You then changed

the generated AXI traffic by modifying the contents of the COE files that drive the ATG core.

With this limited exposure to the ATG core features, you are now in a position to further explore

use of this core in your own applications.

Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

36 www.xilinx.com

 © Copyright 2016 Xilinx

Answers

1. Why was a board chosen (as opposed to an FPGA part), when the Vivado Design Suite

project was created?

The ZC702 or ZedBoard was chosen (as opposed to an FPGA part) to take advantage of the

IP catalog core creation features to generate constraints for this hardware platform when the

example design is to be opened. For a custom board, you would have specified the FPGA

family, part, package, and speed grade instead.

2. In what form is the ATG IP added to the ip_placeholder Vivado Design Suite project?

The core is represented in the Design Sources folder (in the Sources pane) as an XCI file. This

was generated by the IP catalog wizard and represents the core. This file can be instantiated

as a component in an RTL source. Doubling-clicking the file will open the Re-customize IP

dialog box, allowing the core parameters to be modified and updated.

3. How many Vivado IDE projects are now open? How do they differ?

There are two Vivado IDE projects now open. The originally created project

(ip_placeholder.xpr) is just a dummy project so that the IP catalog could be launched and the

AXI Traffic Generator core generated. Subsequently, this project is not used. The second

project (axi_traffic_gen_0_example.xpr) is the example design project that was opened in the

last step.

4. Why does the synthesizable design source RTL show up in two places in the hierarchy?

The RTL, axi_traffic_gen_0_exdes, shows under the Design Sources folder for synthesis and in

the Simulation Sources folder for simulation. It is the same RTL reference in both locations.

5. List the three major components of the top-level RTL design. (Reference the block diagram

at the beginning of this lab along with the source hierarchy.)

Verilog modules:

 atg_lite_agent driver: Instantiation of the ATG in AXI4-Lite (System Init) mode.

 axi_traffic_gen_0 DUT: Instantiation of the ATG in AXI4 mode.

 bram_memory responder: Block RAM target for AXI-generated transactions.

6. Which of the three components are really just ATG cores?

The Driver and the DUT components are both ATG cores. The Driver is configured to be an

AXI4-Lite ATG and the DUT is configured as an AXI4 full ATG.

Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

 www.xilinx.com 37

 © Copyright 2016 Xilinx

7. What do the waveform signal group dividers represent?

They represent the five various AXI channels. Each divider contains a few of the more

important signals associated with that channel. The waveform would appear as too busy if all

of the signals were shown.

8. How many AXI ports are indicated? Which components are their masters?

As suggested by the divider names, there are two AXI ports. The Driver ATG component

generates AXI4-Lite transactions (the first five channels). The DUT-labeled channels

represent the AXI4 full port driving the Responder.

9. Examine the signal names under each channel and their related waveform activity. What two

signal names are common to each channel? How do they seem to operate?

Each channel has a ready and valid signal. These are the main handshaking signals across

the AXI connection used to transfer the information (address, data, response, and/or control)

across the channel.

Valid indicates that information is present and ready indicates information acceptance.

Information is transferred on the rising edge of s_axi_clk when both are a '1'. The valid signal

is generated by the AXI channel side (that is, providing the information) while the ready

signal is generated by the receiving agent of the transaction.

10. How is the beginning of a transaction identified? What is the first transaction?

The beginning of any AXI transaction is activity on the write or read address channel. The

first transaction is a read from address 0x00000000 on the read address channel followed by

a return of 0x20000000 on the read data channel. This transaction is reading the Master

Control register (location 0x00000000) of the DUT ATG. The 0x20 (high byte) represents the

revision of the ATG, which is defined in the AXI Traffic Generator Product Guide (PG125).

11. What is the second transaction?

The second transaction is a write to 0x00008000, a value of 0x00000000, which will be the

first address of the AXI traffic that will be generated by the DUT. Hence the DUT is being

configured for the AXI traffic that will be generated to the Responder.

12. How many AXI4 full transactions are generated by the DUT ATG? What type are they?

A total of five transactions are generated: three write followed by two read.

13. What seems to be different about the Driver transactions compared to the DUT

transactions? (Hint: Look at the data channels.)

The Driver port only provides for a single data transfer for either a read or write operation.

This is because it is only AXI4-Lite capable. The DUT port is AXI4 full and is capable for

multiple data beats (transfers) per transaction.

Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

38 www.xilinx.com

 © Copyright 2016 Xilinx

14. What values of awlen and arlwen are driven, as burst length, for each DUT transaction? How

many data beats are there in each transaction's data channel? What is the relationship

between the number of data beats and the length? Fill the values in the table below.

Transaction Type Address
Number

Data Beats

Burst Length

awlen or arlen

1 write 0x00000000 3 2

2 write 0x00000040 4 3

3 write 0x00000080 4 3

4 read 0x00000000 3 2

5 read 0x00000040 4 3

The AMBA AXI and ACE Protocol Specification (AMBA AXI and ACE Protocol.pdf located in

the support directory) defines the burst length as the value of awlen (arlen) - 1. Reference

page A3-44.

15. What address is being written to and read from? Is the same data being read that was

written?

Both transactions are writing and reading address 0x00000040. The data burst length is 3

and the data is identical for the write and read.

16. Line three in the address and data COE files represent the first AXI4-Lite transaction that was

emitted by the Driver. What does it represent? (Hint: It is encoded as a read.)

As you previously studied, this first transaction emitted by the Driver is a read of address

0x00000000, the DUT ATG Master Control register. The read returns a 0x20000000, the

version of the ATG core.

Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

 www.xilinx.com 39

 © Copyright 2016 Xilinx

17. Fill in the values of the table below, comparing the results to those in the previous table that

you completed.

Transaction Type Address
Number

Data Beats

Burst Length

awlen or arlen

1 write 0x00000000 4 3

2 write 0x00000040 2 1

3 write 0x00000080 5 4

4 read 0x00000040 3 2

5 read 0x00000080 5 4

18. How many data beats are there on the write data channel? How can you tell? What is the

significance of the ATG dropping ready for a clock cycle?

The burst length, m_axi_awlen, is 0x01, meaning that there are two data beats on the

channel. This is verified by noting that m_axi_wready and m_axi_wvalid are '1' for two clock

cycles.

This is a good example of ready/valid handshaking. In this example, the AXI block RAM

controller for some reason needed an extra clock cycle before receiving the second data and

pulled a wait state by dropping the ready signal for that clock cycle.

19. Examine the DUT write and read transactions. Is the read data consistent with what was

written to those transaction addresses?

Yes.

20. Do different burst lengths of the reads and writes affect the data value outcomes?

No, data value outcomes depend on the starting address and not the burst length. It is the

task of the AXI agent to store the channel address and increment it for each data beat in the

burst. Whether it is a write or a read does not matter.

