Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

Exploring AXI Transactions Using the AXI Traffic

Generator
2016.3

Abstract

AXI4 transactions will be explored in this lab with special emphasis on AXI channels,
handshaking, and the most useful signal members within the AXI interface. The AXI Traffic
Generator (ATG) IP example design will serve as the basis of this lab. Simulation of the design
will provide the sample AXI traffic to be studied.

Objectives

After completing this lab, you will be able to:

e Generate an AXI Traffic Generator (ATG) core by using the IP catalog
e Simulate the Xilinx-provided (ATG) core example design

e Explain the purpose of the AXl4 channels and how read/write transactions with their AXI
interface signals behave

Introduction

The main focus of this lab is to introduce you to the AXI4 (memory/full) interface, including:
e All five AXI channels

e Key control interface signals

e Handshaking protocol

e Single and burst data beat read and write transactions

You will examine simulation waveforms to observe the above points. A design is needed to
simulate to accomplish this end. The AXI Traffic Generator (ATG) IP (which can be found in the IP
catalog) has been selected for this lab. The ATG component documentation includes a
Xilinx-provided sample design that will be the basis of this lab.

The ATG IP component acts as a master, generating sample AXI traffic that can be used for both
simulation and synthesis. You can implement this component in actual hardware and generate
master-based AXI transactions. This lab will only demonstrate the simulation abilities of the core,
but one could implement the design, download, and operate it in hardware.

£ XILINX » ALL PROGRAMMABLE. www xilinx.com 1
© Copyright 2016 Xilinx



Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

The ATG is a highly configurable block of logic with three basic modes of operation:

e AXI4 Traffic Generator: This mode allows for the creation of custom or protocol (choice of
video, PCle® interface, Ethernet, USB, or data) AXI (full interface) transactions. The custom
sub-mode uses block RAM supporting programming for up to 1024 reads and writes. This
includes custom address, data, burst length, and other AXI signaling. It is necessary to
program the ATG block RAM with the desired transaction pattern and ordering via a slave
AXI4-Lite port. The example design in this lab uses this mode to generate the AXI4
transactions that will be studied.

e AXI4-Lite Traffic Generator (System Init/Test Mode): This mode allows for the creation of
custom AXI (Lite interface) transactions. The internals of this design contain up to four block
RAM buffers that must be loaded via a bit file using *.coe (coefficient) RAM initialization files.
This ATG mode facilitates up to 256 AXI4-Lite read or write transactions. The example
designs uses a second ATG in this mode to program the full AXI4 ATG described above. This
mode differs from the mode above in that:

e Only AXI4-Lite transactions can be generated (single data beat).

e No external programming is necessary (this is performed via COE block RAM initialization
files)

e Less flexibility in transaction generation

e AXI4-Stream Traffic Generator: This mode generates and receives AXI streaming interface
traffic. This lab does not use this mode.

The ATG is a very complex and flexible IP and its full explanation is beyond the scope of this lab.
Documentation for the ATG is covered in the AX! Traffic Generator Product Guide (PG125), which
is included in the support directory for your reference.

The intention of this lab is to illustrate the use of the Vivado® Design Suite tools to generate
the Xilinx-provided AXI Traffic Generator base example design and demonstrate use of the
Vivado simulator. Although conceptually simple, it is left to the student to perform a detailed
examination of the design RTL and simulation testbench outside of this lab.

The following is the simplified block design for the simulated design. These components are
described below.

“componentnames_sxdea.v (top)

5_axi_adk_p

8_BXI_sdk_n
EH B |

3_awl_areset
A4 AN ANIE
PEELOL AT
Drver ouT Reaponder
core_ext_start | — | E—
=

core_ext_stop
— |

Figure 3-1: AXI Traffic Generator Example Design Block Diagram

2 www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx



Lab Workbook

Exploring AXI Transactions Using the AXI Traffic Generator

The HDL example design contains these items:

Lite transactions to program the DUT module.

DUT: Device under test. An instantiation of the ATG in AXI4 mode. This module is used to
generate AXI4 transaction to the Responder.

Responder: An instantiation of a block RAM controller that will accept the generated traffic
from the ATG.

The design uses two instances of the ATG, one in AXI4-Lite mode (Driver) and the other in AXI4
mode (DUT). Both are instantiated as IP using the XCI file format. When either component's XCI
source is opened, the component Re-customize IP dialog box launches. Beginning with the
device under test (DUT), you will see how it is customized here:

¥ Re-customize IP

x|
AXI Traffic Generator (2.0) ‘
ﬁ Documentation | IP Location LJ Switch to Defaults
I~ Show disabled ports Component Name | axi_traffic_gen_0 Traﬁ?c data
Bl from internal
Profile Selection % block RAM =
" High Level Traffic

Generate full
AXI4 traffic
Custom on master
interface

("AXI4—Stream " AXH-Lite

-.‘_.. ------------- . Mode Advanced
o "o.. Repeat Coun 255| - 16777215]
. .
e '.. Address Wid 32 2 - 64]
D ldns_ma

Protocol

AXI4 traffic
generation options
(more are in internal
block RAM)

. Iave.I Interfac

.0
. Data Width N
K ATG internal block RAM and
ID Width 1 registers accessed over slave port
AWUSER Width |8 —

Y
-
.
.
.
2 cuzmmuns B “f" Base address space
% Base Address (Hex)j 0x00000000 i of internal block RAM
External % - - and registers
High Address (Hex) Y 0x0000FFFF i)
start control 8 2 (He)
( Master Interface )
Data Width 32
T T B Output port of generated AXI4
traffic
AWUSER Width |8
ARUSER Width |8 [0-8]

o |

Figure 3-2: DUT — ATG AXI4 Re-customize IP Dialog Box

The DUT is configured to generate AXI4 traffic based on contents of its internal RAM. Read and
write transactions are both emitted from the master interface that is connected to the
Responder as shown in the block diagram. The ATG in AX14 custom mode contains internal
block RAMs for storing traffic content and control registers, both of which are accessed over an

AXI4-Lite slave interface. The control registers are configured to generate traffic when the
core_ext_start port is active.

& XILINX » ALL PROGRAMMABLE.

www.xilinx.com 3
© Copyright 2016 Xilinx

Driver: An instantiation of the ATG in AXI4-Lite mode. This module is used to generate AX14



Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

The internal RAM is divided into four sections:

e Command RAM (CMDRAM): Two regions of up to 256 AXI transactions commands each,
one for read and one for writes. See the description below.

e Parameter RAM (PARAMRAM): Two regions of up to 256 parameters to modify
CMDRAM-generated transactions. Not used in this lab.

e Master RAM (MSTRAM): Write and read data buffer. See description below.

e Address RAM (ADDRRAM): Upper address bits for traffic addresses greater than 32 bits. Not
used in this lab.

Each of these block RAM buffers must be filled via the AX14-Lite slave interface by a processor or
some other mechanism. The slave interface address map is shown below.

Region Description
0x0000_0000-0x0000_0FFF Internal registers
0x0000_1000-0x0000_17FF PARAMRAM (2 KB)
0x0000_8000-0x0000_SFFF CMDRAM (8 KB)
0x0000_A0D0-0x0000_AFFF ADDRRAM (2 KB)
0x0000_C000-0x0000_DFFF MSTRAM (8 KB)

Figure 3-3: Slave Interface Address Map

The CMDRAM is where all the work takes place. It is a buffer that contains information to
generate custom AXI transactions. The buffer is organized into two regions of 256 entries of 128
bits, one read and one write for AXI4 transaction generation. The 128-bit control word is the
same for each.

For the purpose of this lab, only the bits of interest will be described. Access to the CMDRAM is
over the AXI4-Lite slave interface with 32-bit data transactions to the slave base address +
region offset (see the above two figures).

Below is the address map of the CMDRAM showing the read and write regions. When the ATG is
enabled, it cycles from the beginning to the end of the buffer, generating an AXI4 transaction
based on the 128 command and its 32-bit modifier in PARAMRAM. Both read and write regions
generate transactions simultaneously.

128-bit
I |
I 1

OxB000
CMDRAM (RD)

OxBFFF
0x3000

CMDRAM [WR)

O 9F FF

Figure 3-4: CMDRAM Address Map

4 www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx



Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

The encoding of the 128 command entry is shown below in 32-bit word chunks, as to be written
and accessed over the AXI4-Lite slave interface. Those entries of interest for this lab are
highlighted. During the course of this lab, you may wish to return to this table for reference.

Word Offset | Bits Description

+00 31:.0 AXI Address[31:0]: Address to drive on ar addr or aw _addr (3* addr[31:0

31 Valid_cmd'™: When set, this is a valid command. When clear, halt the master legic for
this request type (read or write).

: 30:28 last_addr[2:0]: Should be set to 0 for C_M_AXI_DATA_WIDTH = & 2 rites, indicates
» the valid bytes in the last data cycle.
: 64-bit mode:
: 000 = All bytes valid
” 001 = Only Byte 0 is valid
.. 010 = Only Bytes 0 and 1 are valid
0
-
- 32-bit mode:
v 000 = All bytes valid
100 = Only Byte 0 is valid
=01 101 = Only Bytes 0 and 1 are valid
A 110 = Only Bytes 0, 1, and 2 are valid
M 27:24 | Reserved
" 23:21 Prot[2:0]: Driven to a*_prot[2:0]
'. 20:15 Id[5:0]: Driven to a*_id[5:0]
-
o. 14:12 Size[2:0]: Driven to a*_size[2:0]
‘. 11:10 Burst[1:0]: Driven to a*_burst[1:0]
.. 9 Reserved
-
L) 8 Lock: Driven to a*_lock P
® 7:0 Len[7:0]: Driven to a*_len[?w
31 Reserved

30:22 My_depend[8:0]: This command does not begin until this master logic has at least
completed up to this command number. A value of zero in this field means do not wait.
This allows a command to wait until previous commands have completed for ordering.

21:13 Other_depend[8:0]: This command does not begin until the other master logic has
completed up to this command number. For example, if a write command had 0x04 in
+02 this field, the write would not begin until the read logic had at least completed its
commands (CMDs) 0x00 through 0x03.

A value of 0 in this field means do not wait, but commands can only be started in order
for each master type. For example, if Write CMD[0x05] waits for Read 0x03, then Write
CMD[0x06] cannot start until Read 0x03 completes as well. A read completes when it
receives the last cycle of data, and a write completes when it receives BRESP.

12:0 Mstlam_index[lz:o]':z:: Index into MSTRAM for this transaction (reads will write to this
MSTRAM address, writes take data from this address)

31:20 Reserved
19:16 qos[3:0]: Driven to a*_gos[3:0]

15:8 user[7:0]: Driven to a*_user[7:0]
T:4 cache[3:0]: Driven to a*_cache[3:0]
3 Reserved

+03
2:0 Expected_resp:

0x0 to 0x1 = Only OKAY is allowed

0x2 = Only EX_OK is allowed

0x3 = EX_OK or OKAY is allowed

0x4 = Only DECERR or SLVERR is allowed
0x7 = Any response is allowed

Figure 3-5: CMDRAM Memory Format

The first 32-bit word is used as the low order 32 bits of the AXI-generated transaction (1). Bit 31
of the second word is used to enable the ATG to begin generating traffic (2), and bits [7:0] set
the transaction burst length (3).

The other block RAM buffer of interest in the DUT is the master RAM (MSTRAM). Data is taken
from this RAM for write transactions and stored during read transactions.

As mentioned earlier, the CMDRAM and MSTRAM buffers must be filled via the ATG AXI4-Lite
slave interface by a processor or some other mechanism. Since this design does not have a
processor involved, the some other mechanism option will be used.

£ XILINX » ALL PROGRAMMABLE. www.xilinx.com 5
© Copyright 2016 Xilinx



Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

In the block diagram, the Driver is the block that is attached to the AXI4-Lite slave interface of
the DUT and programs the CMDRAM and other block RAM buffers in the DUT. As it turns out,
one of the easiest ways to configure an ATG in a design without a processor is with another
ATG. The Driver component is nothing more than the ATG in AXI4-Lite mode, as show below in

its Re-Customize IP dialog box.

¥ Re-customize IP x|
AXI Traffic Generator (2.0) '
i) Documentation [ IP Location (J Switch to Defaults
™ Show disabled ports Component Name | atg_lite_agent Traffic data
- from internal
Profile Selection block RAM
r‘ High Level Traffic
Generate
AXl4-Lite
Cust
L traffic on
Protocol master
- interface
A4 C AXI4-Stream
Mode Settings Allows for both read
and write traffic
generation
Transaction Depth 256 -

Number of AXI Channels 1 -
CH-1 Base Address (Hex) | 0x00000000

Max Command Retry Count | 2147483647 [1 - 4294967295]
Max Clocks to Run 2147483647 [15 - 4294967295]

COE File Paths

High Address (Hex) | OxO000FFFF

AXM4-Lite traffic
generation files
loaded into block

RAM during FPGA
configuration

Address COE File |ampIe.srcslsuurcEs_l[impurts/a)d_traFﬁc_gEn_U/addr.cwE\ [% Bri

Data COE File |amp\E.srcs!suurces,lf\mpunslaw,traﬁ'\c,gen,tlldata.cwe

[ Browse 7 Edit
J

Mask COE File |mple.srcsfsnur’:e571,'\mpnr’ts{axjftrafﬂcﬁganfu,’mask.cne

Control COE File |xample.srcsfsnur:es_l,’impm’ts[axi_trafﬁc_gan_ﬂ,’ctr\.cna

Figure 3-6: Driver — ATG AXI4 Re-customize IP Dialog Box

System Init mode is a special mode where the core provides an AXI4-Lite master interface. This
mode can be used in a system without a processor to initialize the system peripherals with
preconfigured values on system reset or for simple system testing. After the core comes out of
reset in System Init mode, it reads the coefficient (COE) files (address, data, control, and mask)
from the ROM and generates AXI4-Lite transactions. You must provide this COE files for this
mode. Entries in all of the COE files are 32 bits.

A description of the COE files is as follows:
e Address COE file: Provides the sequence of addresses to be issued.

o Data COE file: Provides the sequence of data corresponding to the address specified in the
address COE file.

e Control COE file: Provides various transaction fetch control, error checking enabling, and
read/write commands. For the context of this lab, you will only be concerned if the bit
signifies a read or write.

e Mask COE file: Used only for ready to indicate which bits of returning read data should be
checked against the Data COE file.

6 www.xilinx.com £ XILINX » ALL PROGRAMMABLE.

© Copyright 2016 Xilinx



Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

Each entry in the corresponding COE file generates a single AXI4-Lite transaction. The number of
entries in all COE files must be the same. The number of entries in the COE file are user
programmable. Allowed values are 16, 32, 64, 128, and 256. You can insert NOP (No Operation)
defined by address (OXFFFFFFFF) in the middle of a COE address file. The core stops generating
further transactions (including the current NOP address of OxFFFFFFFF) after the NOP address is
present. You need to ensure that at least one NOP address is present in the address COE file.

Operation:
. After AXI Traffic Generator comes out of reset, it reads the ADDR and DATA ROMs.

2. ltinitiates AX14-Lite write transactions to a specified address and data in the COE files.
3. The core goes to an idle state after AXI4-Lite transactions are issued.

Your design is configured so that the COE files are set up to program the DUT AXI4 ATG to
enable it to generate AX14 traffic to the Responder, which is a block RAM controller (including
the associated block RAM), as shown below in its Re-Customize IP dialog box.

¥ Re-customize IP x|

AXI BRAM Controller (4.0)

Bock RAM absorbs
all of the AXI4
traffic generated by
the ATG

ﬁﬁ Documentation | ) IP Location (3 Switch to Defaults

I™ Show disabled ports Component Name | bram_memory
=l
(A)C[ Protocol AX4 v) Resources

Data Width 32 - Memory Size : 4 KB

Memory Depth ll[l24—v Total 36K BRAMS : 1

D Width [x

Support AXI Narrow Bursts lNo—v

BRAM Options
BRAM_INSTANCE W

A Number of BRAM interfaces IZ—'

ECC Options
Enable ECC No A
ECC TYPE [Hamming ~
Enable Fault Injection ll\civ

ECC Reset Value 0 =

Cancel
Figure 3-7: Responder - AXI4 Block RAM Re-customize IP Dialog Box

To summarize, the example design is a structural design consisting of two ATGs and a block
RAM controller—no other RTL is needed.

General Flow

Step 1: Step 2: Step 3:
Creating the =\ Generating =\ Slmulatlhg &
Placeholder | —~ | the Core 7| Analyzing

Project and Design Transactions

© Copyright 2016 Xilinx



Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

Creating the Vivado Design Suite Placeholder Project Step 1

Many pieces of IP have their own reference design. Since you will be working with
the example design for the AXI Traffic Generator, you will create a "placeholder”
project that does nothing more than enable you to access the specific piece of IP
and launch another version of the Vivado Design Suite with the example ATG
design.

While the ZC702 or ZedBoard board will be selected for this lab as a hardware
design target, any board (or part) could be used, as the FPGA fabric is common to
all. There is no synthesis or implementation of this design (even though the
design is capable of synthesis and implementation) in this lab, only simulation.

There are a number of ways to launch the Vivado Design Suite. The two most
popular mechanisms are shown here.

1-1. Launch the Vivado Design Suite.
This can be done in two standard ways, use your preferred method.
1-1-1. Select Start > All Programs > Xilinx Design Tools > Vivado 2016.3 > Vivado 2016.3.

@llllllll]...
L
*
-

Kilinx Design Tools "

fa: Uninstall Xilinx Information Cgnter
"

i: Kilinx Information Center
DocMNav
SDK 201
Vivado 201 -
¥ Add Design Tools o Bevices 201
i\:r_h_u Manage Xilinx Licaises
£ Uninstall 2011 .‘.‘
B Vivado 201 Shell
A Vivado 201
Systern Generator
Vivado HLS

L ]
L}
L
L]
L ]
L ]

Figure 3-8: Launching the Vivado Design Suite from the Start Menu

--OR --

44
Double-click the Vivado Design Suite shortcut icon (5 <) on the desktop.

8 www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx



Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

The Vivado Design Suite opens to the Welcome window. From the Welcome window you
can create a new project, open an existing project, or enter Tcl commands directly into
the Vivado Design Suite as well as access documentation and examples.

+ Vivado 2018 (=3
f

le Fow Tools Window Help

VIVADO! £ XILINX

Open an Existing
(including Recent)
Projects or an Y Recent Projects
Example Project

Manage IP, Open
Hardware Manager T
and Xilinx Tcl Storect

Documentation, Information Center
Quick Take Videos

Tcl Console
— =

Figure 3-9: Vivado Design Suite Welcome Screen

"Create New Project" is the starting point for all designs. Projects contains
sources, settings, graphics, IP, and other elements that are used to build a final
bitstream and analyze a design. The Create New Project Wizard in the Vivado
Design Suite allows you to specify HDL and other project resource files that will
be included in the project.

1-2. Create a new blank Vivado Design Suite project.

1-2-1. Click Create New Project to begin the process (1).

¢ Vivado 201 ’
Fie Fow Tods Wedow B
HLx Editions. (
= it }
Create a New Vivado Project )
guide you through the creation of o new project. *
g B s R i ¢
] 2, you wil spe be working with. Finaly,
. will specfy your project sources and choose 3 default part. {
Moo o b
4 :
Documentation ang Tuorls ek Take videos Reeae otgs G 2
s Sevt s e OV Spa S e o N PR i e

Figure 3-10: Creating a New Vivado Design Suite Project

This will launch the New Project Wizard.

1-2-2. Click Next to exit the introductory dialog box and begin entering in project-specific
information (2).

£ XILINX » ALL PROGRAMMABLE. www.xilinx.com 9
© Copyright 2016 Xilinx



Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

1-3.

1-3-1.
1-3-2.

1-3-3.

1-3-4.

1-3-5.
1-3-6.

1-3-7.

You will now encounter a series of dialog boxes asking you to enter
different pieces of information describing the project.

Enter ip_placeholder in the Project name field.
Enter C:\training\AXItransactions\lab in the Project location field.

Alternatively, you can use the browse feature to navigate to where you want the project
to reside.

Deselect the Create Project Subdirectory option as leaving this checked will create an
unnecessary level of hierarchy for this lab.

¢ New Project [_Jﬂh
Project Name
Enter & name for your project and spedify a directory where the project data files will
be stored.

Project name: I Per Instructions I

Project !ucaﬁun:l Per Instructions I \:l

Olraate project subdirectory

Project will be created at:

Finish | Cancel ‘

s |<Eﬁ‘ e

Figure 3-11: Entering the Project Name and Location

Click Next to advance to the next dialog box.

Here you will choose between an RTL project or a post-synthesis project. Simply put, an
RTL project enables you to add or create new HDL files and synthesize them, whereas the
post-synthesis project requires pre-synthesized files. When an empty design is created,
an RTL project is used.

Select RTL Project (1).

Select Do not specify sources at this time (2), which creates a blank project.

While existing sources could be entered at this time, you will enter them later so that you
can move through this portion of the project creation process more quickly.

s New Project =

Project Type
Specify the type of project to create. '

9 RITL Project o

VOU VAT & able to add sources, create block designs in [P Integrator, generate P, run RTL analysis,

nthesis, implementation, design planning and analysis.
o niot specify sources at. this time
JPost-synthesis Project: You will be able to add sources, view device resources, run design analysis,

planning and implementation.
Dg ot specify sources at this time
0 Planning Project

Do not specify design sources. You will be able to view part/package resources.

Imported Project
Create a Vivado project from a Synplify, XST or ISE Project File.

Example Project
Create a new Vivado project from a predefined template.

z < pack nish Cancel

Figure 3-12: Selecting Project Type

Click Next to advance to the target device/platform selection (3).

10

www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx



Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

1-4. Select the target part by first filtering by board and then by family. If you
are not using a supported board, you will need to filter by part.

1-4-1. Select Boards from the Select area to filter by board rather than by the specific part (1).
1-4-2. Select All from the Vendor drop-down list in the Filter area (2).

This limits the number of boards seen to those manufactured by the specified vendor.
1-4-3. Select ZC702 or ZedBoard from the board list.

Alternatively you can select the board directly from the list at any time while in this

dialog box.
¢ New Project o
Default Part &
Choose a default Xilinx pa d for your project. This can be changed later. é
L4
o e
Select:  Part -
4 Filter/ Preview J
&
Vendor: All
Display Name: | All v &é
Board Rey: Latest v y
Reset All Filters 5

Search: v

Block
RAMsg

ﬂ e -
< 11 ,\l“
? [ < Back Next > nish Cag’"

Figure 3-13: Selecting the Board for the Project

Display Name Vendor Board Rev  Part 1/O Pin Count  File Version

1-4-4. Click Next to advance to the summary (3).

A summary of your project is displayed. If you want to change any of the information
that you entered, you can do so now by clicking Back until you reach the correct dialog
box and making the correction, or you can create the project now and edit the project
properties, add or remove files, etc. later.

1-4-5. Click Finish to accept these settings and build the project.

Your project is constructed and leaves you in the operational portion of the Vivado
Design Suite GUL

© Copyright 2016 Xilinx



Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

1-5. Verify that the Vivado Design Suite project language default, Verilog, is
selected for this lab example. Verilog is the native language for the example
design. Selecting VHDL, while valid, would generate another hierarchical
wrapper layer to the underlying Verilog RTL.

1-5-1. Select Tools > Project Settings to open the Project Settings dialog box.

. ip_placeholder - [C:/trainis HD/labs/buildCu:
File Edit Flo | Taols | Jugdoy Layout View Help
& 3| i ¢ Repaort ‘\\ b 00 Def,
Flow Nasigator * Create and Package IP.%,
a, e Run Tel Script... \
=7 )| Property Editor 'l Chrl+d
4 Project Mana Associate ELF Files. ..
- {@tp:ject Compl\eSlmu\atlonle[ag!s.‘.
¥ add So il Tel Store. . ;
1F 1P cata Customize Comma >
PR— @ Project Settings... ) | ;
.ﬁ,”, Create Qp:ions...
& CpenFlock Design
Figure 3-14: Selecting Project Settings
1-5-2. If necessary, select Verilog from the Target language drop-down list to select it as the

base HDL language used for template creation.

J‘H_ Project Settings &J
General |
General Mame: ip_placeholder
= T 1L L A L I T
(@ Project device: X o - . ﬁ""~ [E
Simulation Target language: Yerilag
& Default Library Veriog 7
. 4
Synthesis AP @R s /7 =
D Language Options ,’
Implementation Werilog options: verilog_version=Veriog 2001 ” E]
Tnal Generics/Parameters: [ E]
Bitstream Loop count; " 1,000 =
g ”
- oy

Figure 3-15: Selecting VHDL
1-5-3. Click OK to accept the changes.

Question 1

Why was a board chosen (as opposed to an FPGA part), when the Vivado Design Suite project
was created?

12 www.xilinx.com £ XILINX » ALL PROGRAMMABLE.

© Copyright 2016 Xilinx



Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

Generating the ATG Core and Example Design Step 2

The ATG IP core needs to be added to the empty project in order to generate the
Xilinx-provided example design. The IP catalog wizard will be used to create and
parameterize the AXI Traffic Generator core and add it to the placeholder project.

While you are generating the core, the default parameters will be accepted since
the values do not matter (the core just needs to exist in the project). Once the
ATG core has been added, the Xilinx example design for this core can be
generated. At that point a second Vivado Design Suite project, containing the
ATG example design, will be created and opened.

2-1. Open the IP catalog and add the AXI Ethernet Subsystem core to the empty
Vivado Design Suite project.

2-1-1. Under the Flow Navigator, select Project Manager > IP Catalog to open the catalog.

File Edit Flow Tools Window Layout View

I x| ® > % S K L
: Flow Mavigator b mEa, « Project Mz,
-
o] 5 Sources
4 Project Manager & s »,

R Frooct Sotti = -1 Design
Wa Project Settings . 155 Consth
¥ Add Sources o =1 Simulat

) Language Tefplates 15 sim
LF 1P catalog

4 P Integrator

F Create Block Design }
”*,M B o

Figure 3-16: Opening the IP Catalog

© Copyright 2016 Xilinx



Exploring AXI Transactions Using the AXI Traffic Generator

Lab Workbook

2-1-2. Expand the Embedded Processing > Debug & Verification > Debug folders to locate

the IP core of interest.

2-1-3. Double-click AXI Traffic Generator to both select the I
IP dialog box.

P and open its re-customization

L Project Summary x iF IP Catalog X

= Communication & Networking

Cores | Interfaces Search:
3] £
Name AXIA Status License VLNV
= B BaselP
ey = Basic Elements
=

(= Debug & Verification
m. Ja Digital Signal Processing
E )} Embedded Processing
E e = AXI Infrastructure
= = AXI Peripheral
" = Clock & Reset
@ Debug & Verification
(ﬁl F AXI Performance Monitor AXI4, AXI4-Stream Pre-Production Included  xilinx.com
B Pre-Froduction |included _bilinx.com
T MDM) AX14, AXH4-Stream  Pre-Production Included  xilinx.com
Interprocessor Communication
Details
Hame: AXI Traffic Generator
Version:
Interfaces: AXI4, AXI4-Stream

Figure 3-17: Selecting the AXI Traffic Generator IP Core

—y,

a""‘\-r‘l""

sipraxi_perf_

sip:axi_traffic_
dipimdm:3.2

4

-
»
¥
i

WWrator sneﬁig Tl:iif'ﬁc ba'g on core Eroawﬂmmg ' \MM

The Customize IP wizard opens for the AXI Traffic Generator.

¥ Customize IP

AXI Traffic Generator (2.0)

ﬁ Documentation [ IP Location 3 Switch to Defaults

%]

¢

I~ Show disabled ports Component Name | axi_traffic_gen_0|

=l

Profile Selection

@ Custom (" High Level Traffic

Custom

Protocol

& AXE (" AXH-Stream (" AXI4-lite

Mode [Advanced  ~

Repeat Count [255  [2 16777215]
Addresswidth[32 | [32-64]

Slave Interface

32
[ &lo-1e
O
ARUSER Width ls— [0-8]
Base Address (Hex) [B00000000  ©
High Address (Hex) [oxa0ooFFFF  ©

Master Interface

-

Data Width

1D Width

core_ext_start

AWUSER Width

Data Width 32 ~
Thread ID Width |1 [0-6]
AWUSER Width |8 [0-8]

ARUSER Width |8 [0-8]

J—
Co ) o

Figure 3-18: ATG Customization Dialog Box

www.xilinx.com
© Copyright 2016 Xilinx

14

£ XILINX » ALL PROGRAMMABLE.



Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

2-1-4. Click OK to add the ATG IP to the design using the default settings.

The Generate Output Products dialog appears.
x|

The following output products will be
generated. ’

Preview

Q E-LF0 axi_traffic_gen 0. (0OC per IF)
i Instantiation Template

~[1i Synthesized Checkpoint (.dcp)

~[fi Behavioral Simulation

=i Change Log

Ik B4

Synthesis Options ?
¢ Global

& Qut of context per IP

Run Settings
Number of jobs: |4 ~
Aoply || Canaraie | =

Figure 3-19: Generate Output Products Dialog Box

2-1-5. Click Skip because output products are not needed at this time.

Question 2

In what form is the ATG IP added to the ip_placeholder Vivado Design Suite project?

15
© Copyright 2016 Xilinx



Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

2-2.
2-2-1.

2-2-2.
2-2-3.

2-2-4.

2-2-5.
2-2-6.

Generate the Xilinx-provided example design for the AXI Traffic Generator.
From the Sources > Hierarchy pane, select the axi_traffic_gen_0 component to begin
the process to generate the Xilinx-provided Vivado IDE design for this IP.

Right-click axi_traffic_gen_0 to open the context menu.

Select Open IP Example Design.

Sources - Ouw = £ Project Summary x |1 Id
A X5 ?. #] search:
© © Dssip Souces = vonfh

B8l _traffic_gen_0 (axi_traffic_gen_0.xge
*> Source Node Properties... Ctr+E j

B4 Simulation Sourges (1)

. it 1% Re-customize IP...
- sim_1 (1)

Generate Output Products...
Reset Output Products...
Upgrade IP

Copy IP...

= = a»%{ Open IP Example Design...

IP Documentation

Figure 3-20: Generating the Example Design

The Open IP Example Design dialog box opens.

Click the E] icon to select the C:/training/AXltransactions/lab directory (1).

This is the folder where the example design will be placed.

¢ Open IP Example Design &J
Specify a location where the example project directory 'axi_traffic_gen_0_example' will be ‘
placed.

PR F
Location L‘-..' "“. 1

Put example project directory here: C:/training/.  /labs;

[] overwrite existing example project

n

Figure 3-21: Open IP Example Design

Click OK to begin generating the design (2).
Click OK again to accept creation of the example project directory.
The example design may take a couple of minutes to build. The completion of the build

will be indicated when a new Vivado Design project opens containing the example
design.

Question 3

How many Vivado IDE projects are now open? How do they differ?

16

www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx



Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

2-3. The Vivado Design Suite ip_placeholder project is not required anymore.
2-3-1. Select the ip_placeholder project.

Be careful not to accidentally close the ATG example design project.

2-4. Close the project.
2-4-1. Select File > Close Project to close the project.

The Close Project dialog box opens.

Close Project s |

Figure 3-22: Close Project Dialog Box

2-4-2. Click OK.

2-5. Study the structure of the ATG example design that was opened as a Vivado
Design Suite project during the example design creation process. View the
source hierarchy of the example design.

2-5-1. Click the Expand All icon (<) in the Sources > Hierarchy pane to expand the source tree.
2-5-2. Identify the location of the top-level RTL and simulation testbench sources.

Sources N N E S

Synthesizable

driver - atg_lite_agent (atg_|
1DUT - axi_traffic_gen_0 (axi_tra
1 responder - bram_memory (brarm_memory.xci)
1= Cogfficient.Ejles (4)

Block RAM
ATG
Configuration

-3 ctrl.coe
- data.coe

E-i= Constr;

INts (1]
B constrs_1 (1) Simulation
--H4 axi_traffic_gen_0_exdes.xdc Testbench
0_th_top.v) (1)
traffic_gen_0_exdes.v) (3)

-} responder - bram_memory (#ram_
=+ Coefficient Files (4)
-2 addr.coe

IP Catalog

-2 cirl.coe Components
et In Design

TP Sources | Libraries | Compile Order |

4 Sources | Templates |

Figure 3-23: Example Design Source Hierarchy

© Copyright 2016 Xilinx



Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

Question 4

Why does the synthesizable design source RTL show up in two places in the hierarchy?

2-5-3. Double-click the design top-level RTL component, axi_traffic_gen_0_exdes, to open it.
2-5-4. Examine the RTL structure.

Note: The Re-Customize IP dialog box for each of the IP catalog XCI components can be
opened by double-clicking them.
Question 5

List the three major components of the top-level RTL design. (Reference the block diagram at
the beginning of this lab along with the source hierarchy.)

Question 6

Which of the three components are really just ATG cores?

18 www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx



Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

2-6.

2-6-1.
2-6-2.

2-6-3.

2-6-4.

2-6-5.

2-6-6.
2-6-7.
2-6-8.

Open a COE file to examine its contents.

Note that the data format will be in binary format, which is difficult to read.
You will replace these files with the ones provided in hexadecimal format.
This will make them easier to modify later in this lab.

From the Sources window, expand the Coefficient Files folder.

Double-click addr.coe to open the default binary-formatted file in the editor.

E Project Summary X | 2 addr.coe X :

5 ciftraining/# - - -

1memory initialization radix
2memory_initialization_vector =

300000000000000000000000000004 Binary not
4 00000000000000001000000000004 very

5 00000000000000001 0000 dable
& n0nanananonononoiooononoooool, A0

QL0 0! Q10000000

Figure 3-24: Binary COE File

Click the X next to the file name on the tab to close the file.

COE files can also be written in hexadecimal, which is much easier to read. New COE files
have been prepared for you to replace the binary versions so that it is easier for you to
modify.

Using the Sources pane, right-click addr.coe and select Remove File from Project to
delete it.

Sources

AZHEP B

()1 Design Sources (5)

@4 axi_traffic_gen_0_exdes (2
LI driver - atg_lite_agent (atq
[-LF DUT - axi_traffic_gen 0 (axi
A} responder - bram_memory (brarm _rr

B Coefficient Files (4)

%l Source File Properties...
2 crl.coe g P

2 data.coe | *¥, Open File
¥
2 mask.cos  Replace File...
i Constraints (1)
5 constrs_1 (1

.
+
b

2 axi_traffi Copesll Elles Toin Brojact

- Simulation So |X Remow

B sim_1 (5)
i@ axi tr

Copy File Into Project

e File from Project...
BTE FIE

Figure 3-25: Deleting the COE Files

When the Remove Sources dialog box opens, click OK to confirm deletion.

x

:'I OK to remove the one selected file from the project?

™ also delete the project local file/directory from disk

Cancel |

Figure 3-26: Confirming Deletion

Multi-select ctrl.coe, data.coe, and mask.coe.
Press the <Delete> key to delete these files.
Click OK to confirm the deletion.

© Copyright 2016 Xilinx



Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

2-7. Add the new hexadecimal formatted COE files.

2-7-1. From the Sources pane, right-click the driver component to open the context menu.
2-7-2. Select Re-customize IP to open the IP configuration dialog box.

2-7-3. For each of the four files that were deleted, browse to C:\training\AXltransactions\
support and replace the existing COE files.

2-7-4. Click OK to accept these new COE files.

| I Re-customize IP x|
e —

B =
AXI Trafﬁc;Seneﬁtor (2.0) Sou;ﬁ e — B x| [ Project Summa
F AzTEIEEBE s s [
= - " P - A
1) Dacumentafjon [ % Location () Swit E i'é_l?‘,isjgn ?Oufcs -‘l . . > . "ch\ ;| & Project name:
% -. “ f i; Proiect location:,
I™ Show d\saﬂfd port§, o n = ource NdHe Properties... Ctri+E
* K [ responder - bram
., '.‘ be Congraintsel‘. - K Re-customize IP... )
‘.. ’o. [EEE) cons‘trs_i :'1:: T L Generate Output Products...
o‘. e, )
- M T

‘e Custom

Protocol
o, " AXHM  AXHM-Stream {* AXHM-Lite
.,
L]
I...
Mode Sertma.?-,.
L

“y »
Mode *u, | System Test -

Transaction Depth 258+, . -

Replace the four
Number of AXI Channels | 1 a2, ¥ P

s_axl_aclk FLASLIMEE R — COE files with ones
o il done CH-1 Base Address (Hex) | 0x00000000] . *4)  High Address (Hex] from the support
status[31:0] directory

-
-
Max Command Retry Count | 2147483647 [1- 42%967295]
-
Max Clocks to Run 2147483647 [15- 42949%’295]
*
.

+
COE File Paths

Address COE FileYample.srcs\sources_1\imports\axi_traffic_gqgei | Browse + Edit |
Data COE File mple.srcs\sources_1\imports\a affic_gen_0\data.coe % Browse & Edit |
Mask COE File Inple.sres\sources_1\imports\axi_traffic_gen_0\mask.coe [~ Browse # Edit |
Control COE File fample.srcs\sources_1\imports\axi_traffic_gen_0\ctrl.coe |-* Browse # Edit |
L3 o
G ‘.o
., -
=l =] SN hLT au®® | =

'.IIIII'...wllII"‘

.......lllllllll-.'?d OK j Cancel |

Figure 3-27: Replacing the COE Files for the Driver ATG

2-7-5. Accept the values and click OK to close the dialog box.
The Generate Output Products dialog box opens.

20 www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx



Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

2-7-6. Click Skip because output products are not needed at this time.

% Generate Output Products x|

The following output products will be
generated. ‘

Preview

O E-LF0 atg_lite_agent.xci (0OC per IF)
Instantiation Template
[l Synthesized Checkpoint (.dcp)
-[fi Behavioral Simulation

& B4

Synthesis Options
" Global
* Qut of context per IP

Run Settings
Numberof10b5:|4 A
apply  |[[Generate K skp )

Figure 3-28: Skip Generating Output Products

2-7-7. Return to the Sources window.
2-7-8. Expand the Coefficient Files folder.
2-7-9. Double-click addr.coe to open the coefficients file in the editor.

[Z Project Summary X ] £ addr.coe X
4 C:ftraining/support/intro2axi/addr.coe
" | lmemory initialization radix =< 167 >
Zmemory_initialization vector =
300000000
4 00008000
500008004
& 00008008
wadliP s

Hex much
easier to read
and edit

Figure 3-29: Hexadecimal COE File

2-7-10. Click the X next to the file name on the tab to close the file.

© Copyright 2016 Xilinx

21



Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

The following instruction will have you modify some of the COE files. These
hexadecimal-formatted COE files have been modified from the original to
enhance the lab experience.

A modified simulation waveform file has been provided. The modified waveform
file includes added signals to view that were not in the original.

HDL simulation files can be added to the design at any time.

2-8. Add simulation files to the design.

2-8-1. Select Add Sources under Project Manager in the Flow Navigator.

A oo B | B GO | E
4 Project Manager
e . =|-{= Design Sources (1]
i Project Settings - —
O%T Add Sources + | Constraints
-/ Simulation Sources (1) -
' Language Templates J
L -

Figure 3-30: Selecting Add Sources

2-8-2. Select Add or create simulation sources.
2-8-3. Click Next.

¢ Add Scurces P
Add Sources
[
V |VAD O This guides you through the process of adding and creating sources for
HLx Editions your project
Add or create constraints
Add or create design sources
' @ Add or create simulation sources ’
Add or create DSP sources
Add existing block design sources
Add existing IP
-
& XILINX
ALL FROGRAMMABLE To continue, dick Next

Figure 3-31: Add Sources Dialog Box

2-8-4. Click the Plus (¥) icon to open the pop-up menu.

2-8-5. Select Add Files to open the Add Source Files dialog box which allows you to browse to
the desired directory.

2-8-6. Browse to the C:\training\AXItransactions\support directory if it is not open already.
2-8-7. Select axi_traffic_gen_0_tb_top_behav.wcfg.

2-8-8. Click OK in the Add Source Files dialog box.

2-8-9. Click Finish to add the file(s) to the project.

22 www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx



Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

Simulating the Design and Analyzing the AXI Transactions Step 3
Now that the example design is complete, it can be simulated and AXI
transactions studied. The testbench provides clock, reset, and Driver start
signaling stimuli.

A brief overview and block diagram of the design can be found in the
Introduction section of this lab. The Driver is an ATG that generates AXI4-Lite
traffic based on the contents of the four COE files. The Driver AXI4-Lite master
port attaches to the DUT ATG slave AXI port and is used to configure its block
RAM-based controller/traffic generator logic. After the DUT has been configured,
the last write to its control register (bit 20 ='1") enables traffic generation.

The base design will be simulated first and then you will modify the Driver ATG
COE files to modify the AXI traffic generation in the ATG DUT.

3-1. When the COE files are updated, it is necessary to reset the project
simulation output products, else the simulation will run with the old COE
files. Since the COE files are only used for the Driver ATG component, only
that one needs to reset. Note that every IP catalog-generated component
has its own set of output products.

3-1-1. Using the Sources pane, right-click the driver- atg_lite_agent component to select it.
3-1-2. Select Reset Output Products.

Soufpes — O JZ Project Summary
AN Y B | Project seungs
(=7 Design Sources (5) B Project name:
- axi traffic_gen 0 _exdes (oo Lafic gen 0 exde: Praject location:
2 driver - atg_lite_agent (atg_lite_; i) & Product family: A

LLTDUT = ax_tramhc_gen_U (aa_T %[ Sourck TBde,Properties... Ctri+
4F[ responder - bram_memaory (bram_me —

=+ Coefficient Files (4) % Re-customize ...

- Zraddr.coe Generate Output Products...

A ctrl.coe Reset Output Products...
-2 data.coe T

{51 mas

Upgrage

Figure 3-32: Reset Driver ATG Component Output Products

The Reset Output Products dialog box appears.
3-1-3. Click Reset to reset the output products.
x|

The following output products will be reset.

Preview

) E-LHT atg_lite_agent.xci (00C per T7)
[l Behavioral Simulation

4k B4

Cancel

Figure 3-33: Confirming Output Products Reset

© Copyright 2016 Xilinx



Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

3-2.

3-2-1.

3-2-2.

3-2-3.

3-2-4.

3-2-5.

Run behavioral simulation using the Vivado simulator.

Select Run Simulation > Run Behavioral Simulation from the Flow Navigator under
Simulation.

The simulation window opens and simulation runs for the length of time specified in the
Simulation Settings (1 us default).

Note: If the simulator fails to start (reported problem in 2016.3), you can alternatively
start the the Vivado simulator by entering launch simulation in the Tcl Console.

After the waveform opens after approximately 1 to 2 minutes, click the Run All icon
(L)m) to execute the entire simulation.

When done, the simulation will terminate at the last line of code executed.

Select the axi_traffic_gen.xcfg tab to return to the waveform view.

Note that double-clicking the tab will enlarge the view to full screen so that you can
more easily navigate the design.

Click the Zoom All icon () to see the entire simulation.

Optional: Use the various controls to zoom and position the waveform cursor. Also, feel
free to float the waveform window (1)) and maximize to full screen (dl), and adjust the
column width for maximum waveform exposure.

Note: If you are unfamiliar with the Vivado simulator, hovering the mouse pointer over
an icon will describe its functionality.

raffic
onfigure DUT (AXI4-
ansactions)

N N N A A A AN A A ARy AR vwninmi

LUCLLLL LG LR LU LU LU LELLLEELLLLL

DUT Traffic, full AXId,
1o Responder (BRAN) ] o

Figure 3-34: ATG Design Simulation Waveform

24

www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx



Lab Workbook

Exploring AXI Transactions Using the AXI Traffic Generator

The testbench writes operational activities and messages to the Tcl Console. These will
also aid in understanding the design.

Td Console

fEXDES:Done Received
Test Status :1
Test Completed Successfully)
al

E Ehl]:_mtam_gen_vS_Z collision detected at time:
k_mem gen w&_2 collision detected at time:
k_mem gen_v3_2 collision detected at time:
X mem gen w&_2 collision detected at time:
L. 2 i detected at time:

1725000, B wril
1805000, A wri
1885000, A wrj
3255000, R reag
3335000, B read

\@ Messages | [ Log |

Figure 3-35: Simulation Console Messages

3-3. Use the various zoom and pan controls to view the waveform and answer

the questions below.

3-3-1. Examine the various names of the waveform signal group dividers.

Question 7

What do the waveform signal group dividers represent?

Question 8

How many AXI ports are indicated? Which components are their masters?

Question 9

Examine the signal names under each channel and their related waveform activity. What two
signal names are common to each channel? How do they seem to operate?

& XILINX » ALL PROGRAMMABLE.

www.xilinx.com 25

© Copyright 2016 Xilinx



Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

3-3-2. Use the waveform controls to zoom into the region from 1.5 us to 1.7 us.
3-3-3. Examine the first two Driver AXI4-Lite transactions.

Question 10

How is the beginning of a transaction identified? What is the first transaction?

Question 11

What is the second transaction?

Note that there are many Driver write transactions that are configuring the DUT to
generate AXI traffic to the Responder. The DUT does not start generating transactions
until it has been configured and its Master Control register (0x00000000) start command
(bit 20 equal '1") has been written to.

3-3-4. Use the waveform controls to zoom to 13.535 us to examine this transaction.

axi_traffic_gen.wcfg
# 13,535.000 ns

i done

" status[1:0]

B m_axi_lite_ch1_awaddr{31:0]

Th m_axi_lite_ch1 dy

1 m_axi_lite_ch1_awwvalid

B m_axi_lite_ch1_wdata[31:0]

16 i_lite_chi

1% m_axi_lite_ch1_ww

Driver - Write Respol

" m_axi_lite_ch1_bresp[1:0
_axi_lite_ch1_bready

xi_lite wvali
e - Regd Addrgss Channgl

ar
g

)
4
Bl
©
=
£

[H=

Figure 3-36: Enabling DUT — ATG to Begin Traffic Generation

Note that the rising edge valid signal is a great way to locate when a channels
information is good.

26 www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx



Lab Workbook

Exploring AXI Transactions Using the AXI Traffic Generator

3-3-5. Use the waveform controls to pan to 14 us.

3-3-6.

You will see the Driver ATG polling the DUT ATG until Driver indicates that all the traffic
has been generated. Note the flexibility of the ATG is these different modes.

axi_traffic_gen.wcfg

Dnver Wrrle Channel

"4 m_axi_lite_ch1_bresp[1:0]
B m_axi_lite_chl_bready

n m_axi_lite_ch1_bvalid

Driver - Read Address Channel

" m_axi_lite_ch1_araddr[31:0]
B m_axi_lite_chl_a
& m_axi_lite_ch1_arvalid

Driver - Read Data Channel

™ m_axi_lite_chl_rdata[31:0]

& m_axi_lite_dl
W m_axi_lite_ch1_rvalid

W ite Address Channel

14,115.000

ns

R K Al Al B Rl M
S S N (N S

Driver ATG
continuously
polls DUTATG
Error Status
register until all
AX4 traffic has
been generated

Figure 3-37: DUT - ATG Indicating Completion of Traffic Generation

Hardware 5
Done and
Status lines
from DUT

il

LE]

Bit 31
high
indicates
done

You will now turn your attention to the AXI4 full traffic generated by the DUT to the
Responder.

Pan to starting at 13.645 us, the address of the first DUT transaction, and examine the

remaining DUT transactions.

Question 12

How many AXI4 full transactions are generated by the DUT ATG? What type are they?

These transactions make up the entire DUT traffic program that is to be generated. This
was based on how the Driver configured the DUT from the information in the COE files.

Notice that after the traffic generation is completed the Driver, which monitors a
competition bit in the DUT Error Status register, asserts a Done and Status signal. The
testbench program also monitors these signals and ends the simulation with the

appropriate console message.

&£ XILINX » ALL PROGRAMMABLE.

www.xilinx.com

© Copyright 2016 Xilinx

27



Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

Question 13

What seems to be different about the Driver transactions compared to the DUT transactions?
(Hint: Look at the data channels.)

The DUT write (or read) address channel has a signal, m_axi_awlen[7:0] (arlwen for reads),
that indicates the number of data beats that will occur on the data channel for the
transaction.

3-3-7. Using the wready, wvalid, rready, and rvalid signals, determine how many data beats
there are for each of the five DUT-based transactions.

Question 14

What values of awlen and arlwen are driven, as burst length, for each DUT transaction? How
many data beats are there in each transaction's data channel? What is the relationship between
the number of data beats and the length? Fill the values in the table below.

Number Burst Length

Transaction Type Address
Data Beats | awlen or arlen

3-3-8. Examine the second write and read transactions (transactions two and five).

Note that the Responder component is block RAM (memory).

28 www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx



Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

Question 15

What address is being written to and read from? Is the same data being read that was written?

3-4. Unload or exit the simulation but do not exit from the Vivado Design Suite
itself.

This was just a demonstration of how to launch, use, and close the
simulator.

3-4-1. Select File > Close Simulation to exit from the simulator.
3-4-2. Click Yes to confirm if needed.

© Copyright 2016 Xilinx



Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

3-5. Change the AXI traffic that the DUT generates.
This is performed by altering the COE files that are used by the Driver
component to configure the DUT. You will begin by examining the contents
of the address COE file to see some of the configuration addressing. The
data COE file will then be opened and you will change the DUT ATG
configuration settings regarding burst length.
3-5-1. From the Sources window, expand the Coefficient Files folder.
3-5-2. Double-click addr.coe to open it.
The address COE file contains a list of address that the Driver ATG will write or read. A
read or write operation coding is determined by the corresponding location in the
ctrl.coe file (beyond the scope of this lab). Likewise write data (or predicted read results)
is contained in the corresponding location in the data.coe file. You will not be modifying
anything in the address COE file.
Do note, as shown below, that the DUT is being configured to generate the five AXI4
transactions. Each transaction requires 128 bits, written by four dword writes by the
Driver. There are two identical data structures in the DUT ATG. The one beginning at
0x00008000 is for read and the one at 0x00009000 is for writes. There are two read
entries and three write entries.
Note that the coding of each entry is beyond the scope of this lab. Additional
information for this can be found through DocNav in the Traffic Generator Product Guide
(PG125).
2 addr.coe X% }
4 C:ftraining/support/intro2axi/addr.coe
" | lmemory initialization_radixz = 16;
2memory initialization wvector = Each block of four
| — addresses represents a
| 2[ao00S000 First two blocks DUT 128-bit (four
= 2 33§3:33: at 0x00008000 Dwords) configuration to
=] 7.0000800C represent the initiate an AXI4
3| 2000080107 two reads transaction
13 DUDUSU;: {
25| 11lo000801C
ce_-J 12 pooog0oos address
—| 1300003004 |static AXI values Four Dwords
‘' | 14/poopsooe transaction ordering & burst length (128 bits)
| 1soooosnoc static AXI values represent AXl4
1600009010 traffic entry
17 00009014
12 33332312 Three blocks
20,00003020 beginning at
2100009024 0x00009000
2200003028 represent the
23/0000902C three writes
N 3 00Cog0
Figure 3-38: Driver Address COE File
30 www.xilinx.com £ XILINX » ALL PROGRAMMABLE.

© Copyright 2016 Xilinx



Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

3-5-3. From the Sources window, expand the Coefficient Files folder and double-click
data.coe to open it.

Each entry in the data COE file corresponds to the address entry in the address COE file.

2 addr.coe X | 2 data.coe x] \'\
9 C:ftraining/support/intro2axi/data.coe
| 1 Inemnry_initializatinn_radix=16:
i Zmemory initialization vector=
&9 320000000
|  4jo0ooonog .
- 580002402 Conﬁguratlon
é £ 00006400 write data for
| 7looooonog the two read
| & 0000004 transactions
| 90002403
H 10/0 10
tE| 11 oooooooo
5|| 12000000000] address
.:gj 1380002402 static AXI values BurSt_ length, )
‘v | 14'00000000 transaction ordering & burst length m_axi_awlen[7:0], is
[| 15'00000000 static AXI values low order 8 bits of
1600000040 third configuration
1780002403 Dword
18 00000010
1500000001
2000000080
21 80002403 Write data for
2200000020 the three writes
2300000000
T

Figure 3-39: Unmodified Driver Data COE File

Question 16

Line three in the address and data COE files represent the first AXI4-Lite transaction that was
emitted by the Driver. What does it represent? (Hint: It is encoded as a read.)

© Copyright 2016 Xilinx



Exploring AXI Transactions Using the AXI Traffic Generator

Lab Workbook

3-5-4. Change the following lines in the data.coe file:
o Line 4: 0x00000040 — Address of first read transaction

0O O O O O

Line 8: 0x00000080 — Address of second read transaction

Line 9: 0x80002404 — Burst length, m_axi_arlen, of second read transaction
Line 13: 0x80002403 — Burst length, m_axi_awlen, of first write transaction
Line 17: 0x80002401 — Burst length, m_axi_awlen, of second write transaction
Line 21: 0x80002404 — Burst length, m_axi_awlen, of third write transaction

[% addr.coe % | 1 data.coe x]

e

9 C:ftraining/support/intro2axi/data.coe

3

Z2memory_initialization vec
&9 320000000
%
580002402
=| 600006400
13| 700000000
3 |8 cooooog0
x
H 10 00000010
%= | 11 oooooooo
1200000000
13 20002403
14 00000000
| 1500000000
16 00000040
1a 00000010
18 00000000
20 00000080
| 1E0002404
22 00000020
23 00000000
24 00000111

lmemory_initialization radix=1&;

Change target )
address of first read

to 0x00000040
-

N

Change target
address of second
read to 0x00000080,
change burst
length, m_axi_arlen,
to4

y

Change write burst
length, m_axi_awlen,
for all three writes

)

Figure 3-40: Modified Driver Data COE File

. Select File > Save File to save the changes to data.coe.

Reset the output products and rerun the simulation.

-1. These processes are outlined in instructions 1 and 2 of this step.

32

www.xilinx.com
© Copyright 2016 Xilinx

£ XILINX » ALL PROGRAMMABLE.



Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

3-7. Study the resulting traffic from the DUT ATG.
3-7-1. Examine the DUT write and read addresses.
Question 17

Fill in the values of the table below, comparing the results to those in the previous table that you
completed.

Number Burst Length
Transaction Type Address

Data Beats | awlen or arlen

3-7-2. Zoom in to around 13 us.
3-7-3. Observe the second DUT write.

Note the DUT write transaction to address 0x00000040 with a burst awlen of 0x01.
3-7-4. Study the write data channel data, ready, and valid.

axi_traffic_gen.wcfg
13,705_000 ns

¥ m_axi_lite_ch1_rvalid

DUT - Write Address Channel
™ m_a 31:0]

DUT - Write Response Channel _

Figure 3-41: Second DUT — ATG Write

© Copyright 2016 Xilinx



Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

Question 18

How many data beats are there on the write data channel? How can you tell? What is the
significance of the ATG dropping ready for a clock cycle?

Since the Responder (driver by the DUT) is a block RAM memory controller, one would
expect data written to a memory location would be the same when read back from that
location.

3-7-5. Examine the DUT address and data channels, paying attention to the actual address and
data values.

Question 19

Examine the DUT write and read transactions. Is the read data consistent with what was written
to those transaction addresses?

Note that the burst length of writes and reads to the same addresses are different.

Question 20

Do different burst lengths of the reads and writes affect the data value outcomes?

3-8. Exit from the Vivado Design Suite.

3-8-1. Select File > Exit to close the Vivado Design Suite.
3-8-2. C(lick OK.

34 www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx



Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

Summary

You used the Vivado Design Suite IP catalog to generate an example design for the AXI Traffic
Generator core. The design was simulated and AXI transactions were studied. You then changed
the generated AXI traffic by modifying the contents of the COE files that drive the ATG core.
With this limited exposure to the ATG core features, you are now in a position to further explore
use of this core in your own applications.

© Copyright 2016 Xilinx



Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

Answers

Why was a board chosen (as opposed to an FPGA part), when the Vivado Design Suite
project was created?

The ZC702 or ZedBoard was chosen (as opposed to an FPGA part) to take advantage of the
IP catalog core creation features to generate constraints for this hardware platform when the
example design is to be opened. For a custom board, you would have specified the FPGA
family, part, package, and speed grade instead.

In what form is the ATG IP added to the ip_placeholder Vivado Design Suite project?

The core is represented in the Design Sources folder (in the Sources pane) as an XCI file. This
was generated by the IP catalog wizard and represents the core. This file can be instantiated
as a component in an RTL source. Doubling-clicking the file will open the Re-customize IP
dialog box, allowing the core parameters to be modified and updated.

How many Vivado IDE projects are now open? How do they differ?

There are two Vivado IDE projects now open. The originally created project
(ip_placeholder.xpr) is just a dummy project so that the IP catalog could be launched and the
AXI Traffic Generator core generated. Subsequently, this project is not used. The second
project (axi_traffic_gen_0_example.xpr) is the example design project that was opened in the
last step.

Why does the synthesizable design source RTL show up in two places in the hierarchy?

The RTL, axi_traffic_gen_0_exdes, shows under the Design Sources folder for synthesis and in
the Simulation Sources folder for simulation. It is the same RTL reference in both locations.

List the three major components of the top-level RTL design. (Reference the block diagram
at the beginning of this lab along with the source hierarchy.)

Verilog modules:
e atg_lite_agent driver: Instantiation of the ATG in AXI4-Lite (System Init) mode.
e axi_traffic_gen_0 DUT: Instantiation of the ATG in AXI4 mode.

e bram_memory responder: Block RAM target for AXI-generated transactions.

Which of the three components are really just ATG cores?

The Driver and the DUT components are both ATG cores. The Driver is configured to be an
AXH4-Lite ATG and the DUT is configured as an AXI4 full ATG.

36

www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx



Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

7.

10.

11.

12.

13.

What do the waveform signal group dividers represent?

They represent the five various AXI channels. Each divider contains a few of the more
important signals associated with that channel. The waveform would appear as too busy if all
of the signals were shown.

How many AXI ports are indicated? Which components are their masters?

As suggested by the divider names, there are two AXI ports. The Driver ATG component
generates AXI4-Lite transactions (the first five channels). The DUT-labeled channels
represent the AXI4 full port driving the Responder.

Examine the signal names under each channel and their related waveform activity. What two
signal names are common to each channel? How do they seem to operate?

Each channel has a ready and valid signal. These are the main handshaking signals across
the AXI connection used to transfer the information (address, data, response, and/or control)
across the channel.

Valid indicates that information is present and ready indicates information acceptance.
Information is transferred on the rising edge of s_axi_clk when both are a '1". The valid signal
is generated by the AXI channel side (that is, providing the information) while the ready
signal is generated by the receiving agent of the transaction.

How is the beginning of a transaction identified? What is the first transaction?

The beginning of any AXI transaction is activity on the write or read address channel. The
first transaction is a read from address 0x00000000 on the read address channel followed by
a return of 0x20000000 on the read data channel. This transaction is reading the Master
Control register (location 0x00000000) of the DUT ATG. The 0x20 (high byte) represents the
revision of the ATG, which is defined in the AX! Traffic Generator Product Guide (PG125).

What is the second transaction?

The second transaction is a write to 0x00008000, a value of 0x00000000, which will be the
first address of the AXI traffic that will be generated by the DUT. Hence the DUT is being
configured for the AXI traffic that will be generated to the Responder.

How many AXI4 full transactions are generated by the DUT ATG? What type are they?

A total of five transactions are generated: three write followed by two read.

What seems to be different about the Driver transactions compared to the DUT
transactions? (Hint: Look at the data channels.)

The Driver port only provides for a single data transfer for either a read or write operation.
This is because it is only AXI4-Lite capable. The DUT port is AX14 full and is capable for
multiple data beats (transfers) per transaction.

£ XILINX » ALL PROGRAMMABLE. www.xilinx.com 37

© Copyright 2016 Xilinx



Exploring AXI Transactions Using the AXI Traffic Generator Lab Workbook

14.

15.

16.

What values of awlen and arlwen are driven, as burst length, for each DUT transaction? How
many data beats are there in each transaction's data channel? What is the relationship
between the number of data beats and the length? Fill the values in the table below.

Number Burst Length
Transaction Type Address

Data Beats | awlen or arlen

1 write 0x00000000 3 2

2 write 0x00000040 4 3

3 write 0x00000080 4 3

4 read 0x00000000 3 2

5 read 0x00000040 4 3

The AMBA AXI and ACE Protocol Specification (AMBA AXI and ACE Protocol pdf located in
the support directory) defines the burst length as the value of awlen (arlen) - 1. Reference
page A3-44.

What address is being written to and read from? Is the same data being read that was
written?

Both transactions are writing and reading address 0x00000040. The data burst length is 3
and the data is identical for the write and read.

Line three in the address and data COE files represent the first AXI4-Lite transaction that was
emitted by the Driver. What does it represent? (Hint: It is encoded as a read.)

As you previously studied, this first transaction emitted by the Driver is a read of address
0x00000000, the DUT ATG Master Control register. The read returns a 0x20000000, the
version of the ATG core.

38

www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx



Lab Workbook Exploring AXI Transactions Using the AXI Traffic Generator

17. Fill in the values of the table below, comparing the results to those in the previous table that
you completed.

Number Burst Length
Transaction Type Address

Data Beats | awlen or arlen

1 write 0x00000000 4 3

2 write 0x00000040 2 1

3 write 0x00000080 5 4

4 read 0x00000040 3 2

5 read 0x00000080 5 4

18. How many data beats are there on the write data channel? How can you tell? What is the
significance of the ATG dropping ready for a clock cycle?

The burst length, m_axi_awlen, is 0x01, meaning that there are two data beats on the
channel. This is verified by noting that m_axi_wready and m_axi_wvalid are '1' for two clock
cycles.

This is a good example of ready/valid handshaking. In this example, the AXI block RAM
controller for some reason needed an extra clock cycle before receiving the second data and
pulled a wait state by dropping the ready signal for that clock cycle.

19. Examine the DUT write and read transactions. Is the read data consistent with what was
written to those transaction addresses?

Yes.

20. Do different burst lengths of the reads and writes affect the data value outcomes?

No, data value outcomes depend on the starting address and not the burst length. It is the
task of the AXI agent to store the channel address and increment it for each data beat in the
burst. Whether it is a write or a read does not matter.

© Copyright 2016 Xilinx



