Xilinx R² Flows are built on the foundation of design partitioning and preservation of placement and routing. These flows leverage Xilinx's extensive expertise and heritage in secure military applications.

Isolation Design Flow is a direct result of heritage work in Single Chip Cryptographic Milcom radio designs which rely on separation of red-side and black-side processing for assurance of data integrity within a single device. Similarly the Qualified Bitstream Flow is based on the core capabilities that enable delivery of a fully placed and routed partial bitstream, the Security Monitor IP Core. The fundamental enabling technology in Xilinx FPGA silicon and design environments allow us to support these flows as well as Dynamic Partial Reconfiguration.

R² Flows enable advanced, safe, and reliable SoC FPGA applications. They are suited for certifiable applications including avionics, automotive, industrial, and medical.

R² Flows: Enabling Safe and Reliable SOC Solutions for Certifiable Applications

Four independent yet related design flows built on a common foundation. Mix and match the flows to meet system goals.
Partitioning and Preservation

Locked and preserved placement and routing for specified functional blocks. Example: Three functions implemented via a hierarchical design are placed and routed. One function, the red, uses preservation to retain its exact placement and routing. In rerouted design the other two functions can use all unutilized resources. The verified behavior of locked, red, function remains unchanged. The precise placement, and thus performance, is unchanged.

Based on the design rules, using existing tool flow, this flow reduces NRE for engineering changes, and it forms the foundation for other R² flows.

Isolation Design Flow

Supporting enhanced verification and mixed-level certification in a single device. Isolation Design Flow adds verifiable physical isolation, to partitioning and preservation.

Approved for secure cryptographic systems that require information assurance.

- Utilizing a justifiable/certifiable design flow
- Leveraging an independent Isolation Verification Tool (IVT)
- Ensuring physical and functional isolation

IDF Design Iterations

A commercial systems reference design, XAPP584, gives a tutorial; implementing a lockstep soft core MicroBlaze™ processor design with adherence to IDF design rules and walking through the full flow to verification using IVT.

Achieve:

- Isolation of critical and non-critical functions
- Reduction of common cause failure modes
- Separation of test and debug logic
- Enhanced verification capability
- Reduced NRE for design modifications

Well suited for:

- Avionics applications requiring DO-254
- Industrial systems requiring IEC 61508
- Other certifiable systems requiring functional safety and robust design

IDF XAPP584 design shown in Floorplaner, SVG, and FPGA Editor post implementation.
Dynamic Partial Reconfiguration enables dynamically adaptive applications with on-the-fly/real-time reprogramming of hardware during operation.

Allow multiple algorithms to run in a single hardware platform. Adapt functionality for a given operational scenario. Leverage a time multiplexed hardware implementation.

Achieve:
- Higher performance
- Lower cost
- Increased power efficiency

Well suited for:
- Software Defined Radio
- Imaging and Video systems
- Sensor Payloads
- Adaptive systems
- Self-healing applications
- Hardware multi-tasking

Qualified Bitstream Flow is a newly emerging advanced flow that allows for reuse of fully placed routed partial bitstreams. Security Monitor is the first and only IP core in world to be delivered as a fully placed and routed IP. With significant heritage Xilinx is now expanding the capability to other IP core and customer uses.

The flow follows design floor planning rules to allow insertion of partial bitstreams. IP solutions may be generated and verified to the bitstream level. After integration and fully building the final device bitstream, the partial bitstream can still be verified against the golden verified source, irrespective of design flow versions.

QBF is the ultimate reusable IP solution, with an unmatched degree of integrity and security.
Take the NEXT STEP

For documentation and more information about R² Flows, and for information regarding DO-254 and SEU Mitigation, visit the avionics site, and avionics developers site, accessible at: www.xilinx.com/avionics/

For information regarding licensing of Isolation Design Flow (IDF), or Dynamic Partial Reconfiguration, consult a local Xilinx sales rep.

For interests in the Qualified Bitstream Flow (QBF), please email avionics@xilinx.com

© Copyright 2013 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Printed in the U.S.A. PN 2525