
X P L A N AT I O N : F P G A 1 0 1

	 50	 Xcell Journal	 Second Quarter 2014

Make Slow Software Run
Fast with Vivado HLS

Anyone plagued
by code bottlenecks
should explore the
one-two punch of
high-level synthesis
and the Zynq SoC.

X P L A N A N T I O N : F P G A 1 0 1

	 Second Quarter 2014 	 Xcell Journal 	 51

Have you ever written some software
that, despite your best coding efforts,
didn’t run as fast as desired? I have.
Have you thought, “If only there were
an easy way to put some of the code into
multiple custom processors or custom
hardware that wasn’t so expensive”? Af-
ter all, your application is one of many,
and custom hardware takes time and
money to create. Or does it?
	 I began rethinking this proposition
recently when I heard about the Xilinx®
high-level synthesis tool, Vivado® HLS.
In combination with the Zynq®-7000 All
Programmable SoC, which combines a
dual-core ARM® Cortex™-A9 processor
with an FPGA fabric, high-level synthe-
sis opens up new possibilities in design.
This class of tools creates highly tuned
RTL from C, C++ or SystemC source
code. Many purveyors of this technol-
ogy exist, and the rate of adoption has
been increasing in recent years.
	 So, how hard would it be to migrate
some of that slow code into hardware,
if indeed I could simply use Vivado HLS
to do the more demanding computa-
tions? After all, I usually wrote my code
in C++, and Vivado HLS used C/C++
as an input. The ARM processor cores
meant I could run the bulk of my soft-
ware in a conventional environment. In
fact, Xilinx has even made available a
software development kit (SDK) and
PetaLinux for this purpose.

by David C. Black
Senior Member of Technical Staff
Doulos
david.black@doulos.com

ARCHITECTURAL CONCERNS
As I started to think about this trans-
formation from a software perspective,
I grew concerned about the software
interface. After all, HLS creates hard-
ware dedicated to processing hardware
interfaces. I needed something easy to
access, like a coprocessor or hardware
accelerator, to make the software go
faster. Also, I didn’t want to write a
new compiler. To make it easy to ex-
change data with the rest of the soft-
ware, the interface needed to look like
simple memory locations where we
could place the inputs and later read
back the results.
	 Then I made a discovery. Vivado HLS
supports the idea of creating an AXI
slave with relatively little effort. This
capability started me thinking an accel-
erator might not be so difficult to create
after all. Thus, I found myself coding up
a simple example to explore the possi-
bilities. I was pleasantly surprised with
how it turned out.

Let’s take a walk through the ap-
proach I took and consider the results.
	 For my example, I chose to model a
set of simple matrix operations such as
add and multiply. I didn’t want it to be
constrained to a fixed size, so I would
have to provide both the input arrays
and their respective sizes. An ideal in-
terface would put all the values as sim-
ple arguments to a function, such as the
code in Figure 1.
	 The interface to the hardware would
need to have a simple way to map the
function arguments to memory loca-
tions. Figure 2 shows a memory layout
to support this mapping. The registers
would hold information about how
matrices were laid out and what the
desired operations would be. The com-
mand register would indicate which
operation to do. This would allow me
to combine several simple operations
into one piece of hardware. The status
register would simply be a way to know
if the operation was in progress or had
finished successfully. Ideally, the de-
vice would also support an interrupt.

H

mailto:david.black@doulos.com

X P L A N A N T I O N : F P G A 1 0 1

	 52	 Xcell Journal	 Second Quarter 2014

and conveniently PetaLinux provides
a mechanism known as the User I/O
device. UIO allows a simple approach
to mapping the new hardware into
user memory space, and provides the

ability to wait for an interrupt. This
means you avoid the awkward time
and process of writing a device driv-
er. Figure 4 illustrates the system.
 There are of course a few drawbacks
to this approach. For instance, the
UIO device cannot be used with DMA,
so you must construct matrices in the
device memory and manually copy
them out when done. A custom device
driver in the future could address that
issue if needed.

SYNTHESIZING THE HARDWARE
WITH VIVADO HLS
Back to the topic of synthesizing the AXI
slave. How difficult would this be? I found
the coding restrictions to be quite reason-
able. Most of the C++ language could be
used with the exception of the dynamic
allocation of memory. 	

After all, hardware doesn’t manufac-
ture itself during operation. This fact
also restricts the use of the Standard
Template Library (STL) functions, be-
cause they make heavy use of dynamic
allocation. As long as the data remains
static, most features are available. At
first this task appeared onerous, but I re-
alized it wasn’t a huge deal. Also, Vivado
HLS allows for C++ classes, templates,
functions and operator overloading.
My matrix operations could easily be
wrapped in a custom matrix class.
	 Adding the I/O to create an AXI slave
was easy. Simply add some pragmas to
indicate which ports participate and
what protocol they would use.

	 Going back to the hardware design, I
learned that Vivado HLS allows for array
arguments to specify small memories.
Thus, the functionality would be described
with a function such as Figure 3 shows.

	 Assuming the ability to synthesize
the AXI slave, how would this fit
with the software? My normal coding
environment assumes Linux. Fortu-
nately, Xilinx provides PetaLinux,

Figure 1 – Example call to accelerator

Figure 2 – Register summary table

 Addr Register name Dir Bits Contents

 0 Matrix0_ptr RW 32 Address of matrix 0 data

 4 Matrix0_shape RW 32 Rows matrix 0 Cols matrix 0

 8 Matrix1_ptr RW 32 Address of matrix 1 data

 12 Matrix1_shape RW 32 Rows matrix 1 Cols matrix 1

 16 Matrix2_ptr RW 32 Address of matrix 2 data

 20 Matrix2_shape RW 32 Rows matrix 2 Cols matrix 2

 24 Matrix3_ptr RW 32 Address of matrix 3 data

 28 Matrix3_shape RW 32 Rows matrix 3 Cols matrix 3

 32 -reserved- - 32

 36 -reserved- - 32

 40 Command RW 32 0 enum

 44 Status RW 32 0 enum

8192 x 32 memory

Figure 3 – Accelerator function API

int Accelerator(int registers[16], int memory[8192]);

Matrix operand1(5,10), operand2(10,5), product(10,10);
int status;
status = matrix_op(MUL, operand1, operand2, product); // product = operand1 * operand2;
if (status != 0) cout << “ERROR: multiplication failed” << endl;

X P L A N A N T I O N : F P G A 1 0 1

	 Second Quarter 2014 	 Xcell Journal 	 53

Figure 4 – System diagram

Zynq-7000 All Programmble SoC

Programmable Logic (FPGA fabric)

Processing System (Dual Cortex-A9 MPCore)

Software
Application

Linux OS
(drivers)

Software
Accelerator

AXI Slave
Adpater

Figure 5 – Steps in design flow

Code
Application

Verify
Function

Identify
Candidates

Integrate
Software

Refactor
Code

Verify
Function

High-Level
Synthesis

Analyze
Schedule

Verify
Function

Verify
Function

Integrate
IP

Synthesize
IP

Analyze
Timing

Place and
Route

Validate
Performance

Bitstream

Original
Application +
Test Stimulus

RTLIP

Application +
HLS Drivers

Refactored
Application
(Testbench)

Extracted
Function

(HLS input)

	 Running the synthesis tool was also
fairly easy as long as I didn’t push all
the knobs. Figure 5 shows the overall
steps involved, which I won’t describe
in detail here. Vivado HLS needs a bit
of direction as to the target technol-
ogy and clock speed. After that the
process involved keeping an eye on
the reports for violations of policy,
and studying the analysis report to
ensure Vivado HLS had done what
I expected. Tool users need to have
some appreciation for the hardware
aspects, but technology classes exist
to cover that issue. There is also the
matter of running simulations both
before and after synthesis to verify
the expected behavior.
	 The Vivado IP Integrator made
connecting the AXI slave into the
Zynq SoC hardware a breeze, and re-
moved concerns that signals would
be hooked up incorrectly. Xilinx
even has a profile for my develop-
ment system, the ZedBoard, and IP
Integrator exports data for the soft-
ware development kit.

UNCLOGGING THE BOTTLENECKS
I am truly pleased with the results,
and hope to do more with this chip-
and-tool set combination. I have not
explored all the possibilities. For in-
stance, Vivado HLS also supports an
AXI master interface. AXI would al-
low the accelerator to copy the matri-
ces from external memory (although
security issues might exist for this
case). Nevertheless, I highly recom-
mend that anyone looking at code
bottlenecks in their software should
look at this tool set. Ample training
classes, resources and materials exist
to enable a fast ramp, including those
from Doulos. See www.doulos.com
for more information.

Running the synthesis tool was fairly easy
as long as I didn’t push all the knobs.

http://www.doulos.com

