Summary

A variety of PCB SelectIO™ interface VREF generation circuits are used in FPGA design. Sometimes, large amounts of noise (200–400 mV) can be found on VREF pins even with a PCB VREF generation circuit that has been successful in previous designs. The presence of large amounts of VREF noise can lead to loss of design margin with high performance SelectIO interfaces, such as wide DDR3 memory interfaces. This application note examines the source of this VREF noise and recommends optimized PCB SelectIO VREF generation circuits.

VREF Input

Figure 1 shows a simplified view of a VREF circuit inside the FPGA. The circuit is powered by the VCCO rail of the SelectIO bank containing the VREF pin. The FPGA comparator circuit presents a high-impedance input load (from a DC view).

Tracking Requirement

In general, the VCCO voltage for a SelectIO band has low-amplitude, high-frequency noise from multiple sources (such as SelectIO switching activity and switching power supply harmonics). For maximum noise margin, this requires the VREF voltage generated by the PCB circuit to track the changes on VCCO (VREF == tracking VCCO/2) in real time. This is easily achieved with a resistor divider, as shown in Figure 2.

A standard voltage regulator should not be used for VREF generation. Voltage regulators are designed to remove variation in the output voltage as a function of variation in the input voltage. In normal voltage regulator applications, this is a desirable feature. However, this is an
V_{REF} Noise Root Cause

Noise problems have the common attributes of an “aggressor” noise source, coupling mechanisms, and a so-called “victim” circuit. For SelectIO V_{REF} noise, the source of the noise is most frequently the switching frequencies (and harmonics) of the SelectIO interface switching activity.

Coupling mechanisms exist through the voltage rail and direct coupling to the V_{REF} trace leading to the FPGA V_{REF} pin.

The most insight into the root cause of V_{REF} noise comes from a more detailed look at the victim circuit, the V_{REF} input, in Figure 3. This more detailed view of the V_{REF} input shows some of the FPGA die and package parasitic elements.

L1 is the package inductance from FPGA ball to die and varies significantly across package types (e.g., wire bond CSG and flip-chip FFG packages). L1 also varies from pin to pin. C1 is the die input capacitance, which has some variation across FPGA process nodes. The value of L1 can be obtained from the package files, and C1 from the RLGC IBIS models. For purposes of illustration, Table 1 shows a selection of values for some V_{REF} pins in the 7 series XC7VX485T-FFG1761 device on the 28 nm process node in a flip-chip package.

Table 1: Representative L1 and C1 Values for Some V_{REF} Pins on XC7VX485T-FFG1761

<table>
<thead>
<tr>
<th>Pin</th>
<th>Net</th>
<th>Type of SelectIO</th>
<th>L1 (nH)</th>
<th>C1 (pF) (HP SelectIOs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B18</td>
<td>IO_L6N_T0_VREF_38</td>
<td>HP (2)</td>
<td>6.9</td>
<td>4.67</td>
</tr>
<tr>
<td>L11</td>
<td>IO_L19N_T3_VREF_39</td>
<td>HP (2)</td>
<td>3.8</td>
<td>4.67</td>
</tr>
</tbody>
</table>

Notes:
1. The average die capacitance for HR SelectIO on 7 series devices on the 28 nm node is ~7.5 pF.

In addition, PCB construction contributes small amounts of additional stray inductance and capacitance from via construction, PCB stack-up, and ground clearance topologies (typical values are ~\(\frac{1}{2}\) nH and ~1 pF, respectively).

Neglecting these small additional PCB contributions, L1 and C1 form a resonant victim circuit. Any small, sustained, input signal with frequencies near the resonance defined by L1 and C1
excite that resonance and build up large voltage amplitudes limited only by small resistive parasitic components embedded in the largely reactive structure. This resonant behavior of $L_1$ and $C_1$ is the root cause of excessive $V_{REF}$ noise.

### Typical Victim Resonant Frequencies

Table 2 shows typical resonant frequencies at representative $V_{REF}$ pins in the XC7VX485T-FFG1761 device. The resonant frequency for an LC circuit is $1/(2\pi\sqrt{LC})$.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Net</th>
<th>Type of SelectIO</th>
<th>$L_1$ (nH)</th>
<th>$C_1$ (pF) (HP SelectIO)</th>
<th>Resonant Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B18</td>
<td>IO_L6N_T0_VREF_38</td>
<td>HP</td>
<td>6.9</td>
<td>4.67</td>
<td>887</td>
</tr>
<tr>
<td>L11</td>
<td>IO_L19N_T3_VREF_39</td>
<td>HP</td>
<td>3.8</td>
<td>4.67</td>
<td>1195</td>
</tr>
</tbody>
</table>

The resonant frequency of ~800 MHz is the most troublesome. DDR3 interfaces run at rates with rich frequency content near this frequency. For example, DDR1600 is a common interface rate with a base clock rate at 800 MHz, very close to the victim resonant frequency of 887 MHz for the $V_{REF}$ pin B18, as shown in Table 2. A substantial amount of energy can be coupled to the victim resonant circuit, creating large amounts of $V_{REF}$ noise.

Another application area that can see $V_{REF}$ noise generation is the area of high-speed LVDS interfaces. These interfaces can run in the range of 1.2 Gb/s to 1.5 Gb/s. There is a significant frequency content at the base clock frequency and at 3x the base clock frequency (third harmonic frequency). An 800 Mb/s DDR interface would have third harmonic content at 1.2 GHz. From Table 2, these LVDS DDR interfaces could see $V_{REF}$ noise build up.

### Design-to-Design Variation

The discussion to this point has identified several variables that contribute to the presence or absence of $V_{REF}$ noise. Some of these variables, such as SelectIO switching frequencies, package parasitics (including pin-to-pin variations), and IC process parameters have variations between design generations that are not obvious. These variations lead to PCB circuits that provide quiet $V_{REF}$ reference rails for one design and noisy $V_{REF}$ pins in another design.

### Optimal $V_{REF}$ Circuit

This section discusses an example of an 887 MHz resonance on $V_{REF}$ pin B18, assuming that a DDR3 interface is running at 1.6 Gb/s. One approach to minimizing $V_{REF}$ noise is to attach a capacitor with minimum impedance at ~887 MHz to the $V_{REF}$ pin. This capacitor should be physically placed as close as possible to the $V_{REF}$ pin. Figure 4 shows the characteristics of such a capacitor.
The 150 pF 0201 body size capacitor from Murata (GRM033B11C151KA01) shown in Figure 4 has very low impedance (0.7Ω) near ~887 MHz, the capacitor’s self-resonant frequency. (Murata has an online tool that shows capacitor self-resonance and other capacitor characteristics at http://www.murata.com/products/design_support/simsurfing/index.html). Although this capacitor eliminates high-frequency noise near 887 MHz, the resonant frequency still exists and has been shifted to some other frequency. This shifted resonant frequency range could still be excited by some customer specific data pattern, potentially creating a difficult issue to debug. It would be possible to extend this approach with a series of capacitors with a range of capacitance values and a corresponding range of minimum impedances. However, it becomes impractical to physically locate the quantity of capacitors required close enough to the FPGA VREF ball/.pin.

The recommended circuit schematic is shown in Figure 5, and the corresponding physical layout is shown in Figure 6.
This circuit introduces resistive element $R_3$ to dampen the reactive oscillations. Capacitor $C_2$, being larger than $C_1$, effectively shorts on one end of $R_3$ to ground at high frequency, inserting $R_3$ into the reactive circuit composed of $L_1$ and $C_1$ internal to the FPGA. The circuit behavior at high frequency can be approximated by the circuit shown in Figure 7.

A package with 0.8 mm ball pitch might cause the designer to avoid using some of the FPGA balls to make room for the 0201 discrete parts near the $V_{REF}$ pin.

With the layout in place, the values of $R_3$ and $C_2$ can be tuned to fit the application. This circuit approximates a second order resonant circuit. $R_3$ and $C_2$ should be chosen so that the circuit is critically damped, or if that is not possible, overdamped. The underdamped condition should be avoided.

The value of $R_3$ can now be chosen so that the circuit is critically damped. $R_3 = 2 \times (L/C)^{1/2}$, in this case. For the $V_{REF}$ pin B18 from the earlier example, $R_3 = 2 \times (6.9 \text{ nH/4.67 pF})^{1/2} = 77 \Omega$.

The physical layout of this circuit is important. $R_3$ and $C_2$ need to be located physically as close as possible to the $V_{REF}$ ball of the FPGA, as shown in Figure 7. Table 3 shows the component specifications to achieve critically damped characteristics on $V_{REF}$ pins B18 and L11 on the XC7VX485T-FFG1761 device.
Conclusion

As FPGA SelectIO pins increase in frequency, noise on $V_{REF}$ pins occurs more frequently. An optimized $V_{REF}$ generation circuit similar to the circuit presented in this application note provides protection from the issue of $V_{REF}$ noise as SelectIO switching rates continue to improve.

Table 3: Component Specifications for Critically Dampened Characteristics on $V_{REF}$ Pins B18 and L11

<table>
<thead>
<tr>
<th>Pin</th>
<th>Net</th>
<th>Type of SelectIO</th>
<th>$L_1$ (nH)</th>
<th>$C_1$ (pF) (HP SelectIO)</th>
<th>Resonant Frequency (MHz)</th>
<th>Critical Damping Resistance $R_3$ ($\Omega$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B18</td>
<td>IO_L6N_T0_VREF_38</td>
<td>HP</td>
<td>6.9</td>
<td>4.67</td>
<td>887</td>
<td>77</td>
</tr>
<tr>
<td>L11</td>
<td>IO_L19N_T3_VREF_39</td>
<td>HP</td>
<td>3.8</td>
<td>4.67</td>
<td>1195</td>
<td>57</td>
</tr>
</tbody>
</table>

Revision History

The following table shows the revision history for this document.

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Description of Revisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/24/2013</td>
<td>1.0</td>
<td>Initial Xilinx release.</td>
</tr>
</tbody>
</table>

Notice of Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at [http://www.xilinx.com/warranty.htm](http://www.xilinx.com/warranty.htm); IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: [http://www.xilinx.com/warranty.htm#critapps](http://www.xilinx.com/warranty.htm#critapps).

Automotive Applications Disclaimer

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.