Implementation of a Fail-Safe Design in the Spartan-6 Family Using ISE Design Suite 12.4
Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2011–2013 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Revision History

The following table shows the revision history for this document.

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/23/11</td>
<td>1.0</td>
<td>Initial Xilinx release.</td>
</tr>
<tr>
<td>06/19/13</td>
<td>1.0.1</td>
<td>Replaced SCC lounge with IDF page throughout. Added URL to download reference design in Reference Design Files.</td>
</tr>
</tbody>
</table>
Table of Contents

Revision History ... 2

Preface: About This Guide
Guide Contents ... 5
Additional Resources ... 5
Conventions .. 6
 Typographical ... 6
 Online Document ... 6

Chapter 1: Single Chip Crypto Design Overview
Lab Design Overview ... 7
Reference Design Files ... 11
 Reference Design Checklist ... 11
 Installing Reference Design Files into Target Directories .. 12

Chapter 2: Synthesizing Modules for the Isolation Design Flow
Synthesize the SCC_LAB_TOP Module ... 13
Synthesize the aes Module .. 22
Synthesize the aes_r Module .. 29
Synthesize the compare Module ... 36
Isolation Design Flow Progress .. 43

Chapter 3: Floorplanning the System
Project Entry in PlanAhead Tool ... 45
 Launch the PlanAhead Tool ... 45
 PlanAhead Project Creation ... 45
Placing I/Os and DCMs with the PlanAhead Tool .. 52
Setting Up Timing Constraints with the PlanAhead Tool .. 59
Defining ISO Partitions with the PlanAhead Tool .. 63
Defining Attributes for Each ISO Partition with the PlanAhead Tool 65
Set Up the Area Groups for the ISO Regions with the PlanAhead Tool 69
Isolation Design Flow Progress .. 87
Running Report Timing with the PlanAhead Tool .. 88
Isolation Design Flow Progress .. 89
Exporting the Design ... 89

Chapter 4: Running the Isolation Verification Tool Against the UCF
Creating the File Used to Run the IVT UCF Test ... 91
Creating the Pin Isolation Group File ... 92
Chapter 5: Implementing the Design with the PlanAhead Tool

Generating and Running an Implementation ... 97

Isolation Design Flow Progress ... 102

Chapter 6: Verifying the Design with the NCD Isolation Verification Tool

Creating the File Used to Run the IVT NCD Test 103

Running the IVT NCD Test ... 104

Examining the Output from the IVT NCD Test 104

IVT RPT Output File .. 104

IVT SVG Output File for NCD Mode .. 106

Isolation Design Flow Progress ... 107

Appendix A: Tactical Patch Needed for ISE Tools 12.3 and 12.4

Tactical Patch for ISE Tools 12.3 or 12.4 for Windows PC 109

Tactical Patch for ISE Tools 12.3 or 12.4 for the Linux Server 109
Preface

About This Guide

This lab covers the creation and implementation of a single chip crypto (SCC) system, utilizing an isolated, redundant Advanced Encryption Standard (AES) module. Complete step-by-step instructions are given for the entire process.

Guide Contents

This manual contains the following chapters:

- **Chapter 1, Single Chip Crypto Design Overview**, describes the SCC design and the goals of the lab.
- **Chapter 2, Synthesizing Modules for the Isolation Design Flow**, describes the steps in the bottom-up synthesis flow.
- **Chapter 3, Floorplanning the System**, gives step-by-step instructions for implementing the SCC design.
- **Chapter 4, Running the Isolation Verification Tool Against the UCF**, covers running the Isolation Verification Tool (IVT) against the pre-placed-and-routed design.
- **Chapter 5, Implementing the Design with the PlanAhead Tool**, details placing and routing the SCC design.
- **Chapter 6, Verifying the Design with the NCD Isolation Verification Tool**, describes running the verification tool on the placed-and-routed design.
- **Appendix A, Tactical Patch Needed for ISE Tools 12.3 and 12.4**, describes the tactical patches needed for ISE tools 12.3 and 12.4 for the Windows PC and Linux server.

Additional Resources

To find additional documentation, see the Xilinx website at:

To search the Answer Database of silicon, software, and IP questions and answers, or to create a technical support WebCase, see the Xilinx website at:

Conventions

This document uses the following conventions. An example illustrates each convention.

Typographical

The following typographical conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning or Use</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courier font</td>
<td>Messages, prompts, and program files that the system displays</td>
<td>speed grade: -100</td>
</tr>
<tr>
<td>Courier bold</td>
<td>Literal commands that you enter in a syntactical statement</td>
<td>ngdbuild design_name</td>
</tr>
<tr>
<td>Helvetica bold</td>
<td>Commands that you select from a menu</td>
<td>File → Open</td>
</tr>
<tr>
<td></td>
<td>Keyboard shortcuts</td>
<td>Ctrl+C</td>
</tr>
<tr>
<td>Italic font</td>
<td>Variables in a syntax statement for which you must supply values</td>
<td>ngdbuild design_name</td>
</tr>
<tr>
<td></td>
<td>References to other manuals</td>
<td>See the Command Line Tools User Guide for more information.</td>
</tr>
<tr>
<td></td>
<td>Emphasis in text</td>
<td>If a wire is drawn so that it overlaps the pin of a symbol, the two nets are not connected.</td>
</tr>
</tbody>
</table>

Online Document

The following conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning or Use</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue text</td>
<td>Cross-reference link to a location in the current document</td>
<td>See the section “Additional Resources” for details. Refer to “Title Formats” in Chapter 1 for details.</td>
</tr>
<tr>
<td>Blue, underlined text</td>
<td>Hyperlink to a website (URL)</td>
<td>Go to http://www.xilinx.com for the latest speed files.</td>
</tr>
</tbody>
</table>
Chapter 1

Single Chip Crypto Design Overview

This chapter describes how a Single Chip Crypto (SCC) system can be created using a Spartan®-6 FPGA, and the Xilinx® ISE® Design Suite 12.4 and PlanAhead™ 12.4 development tools.

The isolation design flow (IDF) allows for applications that include redundant type 1 encryptors, resident red and black data, and functionality that operates on multiple levels of security within the same Xilinx FPGA.

At the core of the IDF is physical and electrical isolation (ISO) of chosen logic from other areas of the design. This is accomplished via:

- Conventional, best practices, modular Xilinx design entry where each function isolated by the user must be at its own level of hierarchy
- Modular synthesis of each isolated region of the design
- (Mandatory) Manual floorplanning to isolate the desired regions of the design on the FPGA while providing user-specified intra-region communication through the use of trusted routing
- Automated verification of isolation via the Xilinx Isolation Verification Tool (IVT) software

Lab Design Overview

The SCC rules for the Spartan-6 FPGA are outlined in XAPP1145, Developing Fail-Safe Designs in the Spartan-6 Family Using the Isolation Design Flow. This application note gives details on how functions are to be isolated, specific differences between a normal partition flow and an SCC partition flow, information on SCC-specific HDL code mnemonics, and trusted routing rules.

To illustrate the IDF and capabilities, this design implements isolated, redundant AES modules. Figure 1-1 is a hierarchical diagram of the various VHDL sub-blocks used in the implementation of the design. Type 1 Spartan-6 FPGA crypto applications require defense-grade (XQ) devices for mask control. The design example used in this application note was created using a non-defense-grade Spartan-6 XC6SLX150T-3FGG676 device.

Note: This lab requires the ISE software, version 12.2 or later.
Chapter 1: Single Chip Crypto Design Overview

Figure 1-1: VHDL Design Hierarchical Block Diagram

Figure 1-2 shows the IDF used for the SCC lab.

Figure 1-2: Isolation Design Flow
Figure 1-3 shows the partitioning and I/O mapping for an XC6SLX150T-3FGG676 device.

Figure 1-4 is a view of the completed SCC reference design displayed in the Xilinx FPGA Editor tool. The design incorporates two AES algorithm blocks: `aes` and `aes_r`. Both of the AES blocks are driven by the same input data and key. In Figure 1-4, the two AES blocks are the angle-shaped regions. Both of the AES blocks are tied to the `compare` block, which compares the outputs of the AES blocks. If the outputs of the AES blocks do not match, the `compare` block sends an alert to the user indicated by an LED. Both AES blocks have an input that allows the user to inject an error. However, only the `aes` block has the error injection input tied to an external pushbutton.
Figure 1-4: FPGA Editor View: Implementation of the SCC Design
Reference Design Files

Reference Design Checklist

The design files for this application note can be downloaded from:
https://secure.xilinx.com/webreg/clickthrough.do?cid=343344

The design checklist in Table 1-1 includes simulation, implementation, and hardware details for the reference design.

Table 1-1: Design Checklist

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>Developer Name</td>
<td>Xilinx</td>
</tr>
<tr>
<td>Target devices</td>
<td>Spartan-6 SLX150T FPGA</td>
</tr>
<tr>
<td>Source code provided</td>
<td>Y</td>
</tr>
<tr>
<td>Source code format</td>
<td>VHDL</td>
</tr>
<tr>
<td>Design uses code/IP from existing Xilinx application note/reference designs, CORE Generator™ software, or third party</td>
<td>N</td>
</tr>
<tr>
<td>Simulation</td>
<td></td>
</tr>
<tr>
<td>Functional simulation performed</td>
<td>Y</td>
</tr>
<tr>
<td>Timing simulation performed</td>
<td>Y</td>
</tr>
<tr>
<td>Testbench used for functional and timing simulations</td>
<td>Y</td>
</tr>
<tr>
<td>Testbench format</td>
<td>VHDL</td>
</tr>
<tr>
<td>Simulator software/version used</td>
<td>ISE design suite 12.4</td>
</tr>
<tr>
<td>SPICE/IBIS simulations</td>
<td>N</td>
</tr>
<tr>
<td>Implementation</td>
<td></td>
</tr>
<tr>
<td>Synthesis software tools/version used</td>
<td>XST</td>
</tr>
<tr>
<td>Implementation software tools/versions used</td>
<td>ISE design suite 12.4</td>
</tr>
<tr>
<td>Static timing analysis performed</td>
<td>Y</td>
</tr>
<tr>
<td>Hardware Verification</td>
<td></td>
</tr>
<tr>
<td>Hardware verified</td>
<td>N</td>
</tr>
<tr>
<td>Hardware platform used for verification</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Installing Reference Design Files into Target Directories

These steps describe the process for installing the reference design files:

Note: It is best if the design files are unzipped onto a directory without any spaces in the path.

1. Copy `XAPP1104.zip` to the Windows desktop.
2. Double-click `XAPP1104.zip` and unzip the contents to the desired location.
3. The project files are placed in these directories:
 - `\Xilinx_Design\buildscripts`
 - `\Xilinx_Design\ivt`
 - `\Xilinx_Design\planahead`
 - `\Xilinx_Design\results`
 - `\Xilinx_Design\simulation`
 - `\Xilinx_Design\source`
 - `\Xilinx_Design\synthesis`

4. The `readme.txt` file describes how to use the files that come with `XAPP1104.zip` and the process for using the build scripts.
Chapter 2

Synthesizing Modules for the Isolation Design Flow

This chapter describes the steps that take the user through a bottom-up synthesis flow, which is the flow used for SCC designs to maintain isolation. The top module (SCC_LAB_TOP) is synthesized first, followed by each of the lower-level modules (aes, aes_r, and compare) creating four separate ISE® tools HDL projects.

Synthesize the SCC_LAB_TOP Module

These steps describe how to synthesize the SCC_LAB_TOP module:

1. Start the ISE design suite 12.4:
 - Start → All Programs → Xilinx ISE Design Suite 12.4 → ISE Design Tools → Project Navigator
2. Create a new ISE design suite 12.4 project:
 - File → New Project
3. Set the project location to ..\Xilinx_Design\synthesis.
4. Set the project name to SCC_LAB_TOP.
5. Click Next (see Figure 2-1).

Note: All requisite files were copied to a user-defined location by the instructions in Installing Reference Design Files into Target Directories, page 12.
Chapter 2: Synthesizing Modules for the Isolation Design Flow

Figure 2-1: New Project Wizard (Create New Project)
6. Make the following selections for the target device (see Figure 2-2):
 - **Family**: Spartan6
 - **Device**: XC6SLX150T
 - **Package**: FGG676
 - **Speed**: -3
 - **Preferred Language**: VHDL

 ![New Project Wizard](image)

 Figure 2-2: New Project Wizard (Project Settings)

 7. Click **Next**.
8. Click **Finish** (see Figure 2-3).

![New Project Wizard](image)

Figure 2-3: New Project Wizard (Project Summary)
9. Add source files to the project. There are two ways of doing this:
 a. Select **Project → Add Source**.
 b. Click the **Add Source** button on the left side of the Design window in the Project Navigator of the ISE tool (see **Figure 2-4**).

Figure 2-4: *Project Navigator Window (Add Existing Sources)*
Chapter 2: Synthesizing Modules for the Isolation Design Flow

10. Navigate to the ..\Xilinx_Design\source\design directory, and add the top_package.vhd and SCC_LAB_TOP.vhd files to the project by selecting a box with the mouse such that both filenames are selected, and then click Open. Click OK (see Figure 2-5).

![Adding Source Files](X1104_c2_05_102510)

The following allows you to see the status of the source files being added to the project, and allows you to specify the Design View association for sources which are successfully added to the project.

<table>
<thead>
<tr>
<th>File Name</th>
<th>Association</th>
<th>Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCC_LAB_TOP.vhd</td>
<td>All</td>
<td>work</td>
</tr>
<tr>
<td>top_package.vhd</td>
<td>All</td>
<td>work</td>
</tr>
</tbody>
</table>

Adding files to project: 2 of 2 files (0 errors)

Figure 2-5: Adding Source Files
Synthesize the SCC_LAB_TOP Module

The ISE Project Navigator window should look like Figure 2-6.

Note: The question marks (?) by all blocks that are not coded at the top level are expected because only the top level is being synthesized at this time. All other blocks are out of context and are treated as black boxes.

11. **Apply attributes to control I/O insertion:**

 To include I/O within isolated areas, the I/O buffers must be included at lower levels of the design’s hierarchy. This is counter to the normal Xilinx flow that has all device I/O at the top level. To fulfill the needs of the IDE, these two steps must be taken:

 a. Force instantiation of I/O buffers at lower levels
 b. Avoid creation of I/O buffers at the top level

 Both are accomplished by attaching the buffer_type attribute to the signals in the lower level modules. One exception to this rule is that clock networks are not required to be isolated. As such, this attribute should not be applied to the CLK pin of the top-level code.

 For this design, open the SCC_LAB_TOP.vhd file and locate the buffer_type attributes:

   ```vhdl
   attribute buffer_type: string;
   attribute buffer_type of push_button : signal is "none"; -- Pin in AES1
   ```
attribute buffer_type of reset : signal is 'none'; -- Pin inside AES1
--attribute buffer_type of clk : signal is 'none'; -- Top Level Pin
attribute buffer_type of led : signal is 'none'; -- Pin in Compare

All three signals go off-chip, and must therefore have the buffer_type attribute assigned to direct the Xilinx Synthesis Tool (XST) to disable I/O insertion on these ports. The buffer_type attribute is also needed to guarantee that I/Os are included in the lower level modules, and therefore are part of the isolated regions. In SCC_LAB_TOP.vhd, clk is driven to all modules, so no attribute is added and it is therefore commented out. Simple rules for applying the buffer_type attribute are:

- Clock networks are not required to be isolated, and thus do not need this attribute.
- Signals that are present within a single isolated region and get routed off-chip do not get the attribute. (During synthesis, this appears to XST to be a top-level design, and creating top-level I/O buffers is normal operation for XST.)
- Signals on the region’s top level that connect to other regions or to the upper level of the design (and are thus not routed off-chip) are assigned the attribute. The designer must manually make this assignment at the top level of the given design region’s source code.

Refer to XAPP1145, Developing Fail-Safe Designs in the Spartan-6 Family Using the Isolation Design Flow, for more details on IDF off-chip communication concepts.
12. Select **SCC_LAB.TOP - Behavioral** in the Design Hierarchy window, right-click the **Synthesize-XST** icon in the Processes window, and select **Process Properties** (see Figure 2-7).

![Process Properties (Synthesis Options)](X1104_c2_07_102510)

Figure 2-7: Process Properties (Synthesis Options)

13. Set the Property display level to **Advanced**, set Optimization Goal to **Area**, set Optimization Effort to **High**, and click **OK**. **Keep Hierarchy** does not have to be set on this module for this flow.

14. To run XST synthesis, either right-click the **Synthesize-XST** icon in the Processes window and click **Run**, or double-click **Synthesize-XST**. After synthesis is complete, close the SCC_LAB_TOP project.
Synthesize the aes Module

These steps describe how to synthesize the aes module:

1. Start the ISE design suite 12.4:

 Start → All Programs → Xilinx ISE Design Suite 12.4 → ISE Design Tools → Project Navigator

2. Create a new ISE design suite 12.4 project:

 File → New Project

3. Set the project location to \Xilinx_Design\synthesis.

4. Set the Project Name to aes.

5. Click Next (see Figure 2-8).

Figure 2-8: New Project Wizard (Create New Project)
6. Make the following selections for the target device (see Figure 2-9):
 - **Family**: Spartan6
 - **Device**: XC6SLX150T
 - **Package**: FGG676
 - **Speed**: -3
 - **Preferred Language**: VHDL

Figure 2-9: New Project Wizard (Device Properties)

7. Click **Next**.
Chapter 2: Synthesizing Modules for the Isolation Design Flow

8. Click **Finish** in the Project Summary window (see Figure 2-10).

![Figure 2-10: New Project Wizard (Project Summary)](image)
9. Add source files to the project by selecting **Project → Add Source**. Navigate to the `source\design` directory, and add the `aes.vhd`, `aes_package.vhd`, and `key_expander.vhd` files to the project. This is done by holding down the Ctrl key on the keyboard and left-clicking each of the filenames once such that all filenames are selected, then clicking **Open**. Click **OK** (see **Figure 2-11**).

![Figure 2-11: Adding Source Files](image)

Figure 2-11: Adding Source Files
Chapter 2: Synthesizing Modules for the Isolation Design Flow

The ISE Project Navigator Window should look as shown in Figure 2-12.

Note: All blocks are defined. There should be no question marks (?) by any module. All modules at this level and below are in context.

![Project Navigator Window](X1104_c2_12_062411)

Figure 2-12: Project Navigator Window

10. Apply attributes to control I/O insertion:

As in Synthesize the SCC_LAB_TOP Module, page 13, insertion of I/O buffers at this level of hierarchy must be prevented for the top-level signals (such as CLK) within the aes block that connect to the upper level of the design. Also, insertion of an I/O buffer on a port (such as DONE) that is a direct connection to a port of another instance must be prevented because no I/O buffer is needed if not going off-chip.

Open the aes.vhd file and locate the section containing the buffer_type attributes:

```
attribute buffer_type: string;
attribute buffer_type of clk             : signal is "none";   -- Top level PIN
attribute buffer_type of reset         : signal is "none";   -- Hooked up to IBUF
attribute buffer_type of push_button   : signal is "none";   -- Hooked up to IBUF
attribute buffer_type of start          : signal is "none";   -- Port
attribute buffer_type of mode           : signal is "none";   -- Port
attribute buffer_type of load           : signal is "none";   -- Port
attribute buffer_type of key            : signal is "none";   -- Port
```

X-Ref Target - Figure 2-12
attribute buffer_type of data_in : signal is "none"; -- Port
attribute buffer_type of reset_out : signal is "none"; -- Port
attribute buffer_type of data_out : signal is "none"; -- Port
attribute buffer_type of done : signal is "none"; -- Port

Note: The reset and push_button signals do not have an attribute associated with them and are therefore commented out. They are a connection between the off-chip world and the aes module only, i.e., they are "owned" by aes and therefore require an I/O to be inferred within the aes module rather than within SCC_LAB_TOP. The clk I/O was inferred when SCC_LAB_TOP was synthesized. The other signals cross the isolation barrier but remain internal to the FPGA; therefore, they have the attribute **signal is "none"** applied.

11. Instantiate LUTs per the trusted routing rules:

In the aes.vhd source code file, LUT instantiation between reset and reset_out and on done_aes1 are necessary for trusted routing rules. Trusted routing is a set of resources that is selected automatically by the tools to facilitate communication between isolated regions. These resources serve to prevent “shorted” nets between isolated regions and also preserve one-to-one mapping of input and output ports of isolated regions. Refer to XAPP1145, *Developing Fail-Safe Designs in the Spartan-6 Family Using the Isolation Design Flow*, for more details on trusted routing rules. A section of the VHDL code for the LUT instantiation is shown here:

```vhdl
-- Instantiate LUT buffers on nets that either drive two different regions
-- or are feedthrough's from one region to the next. This prevents a single
-- net being placed "shorting" three regions together.

lut_reset_out : LUT1
GENERIC MAP (INIT => X"2")
PORT MAP (I0 => reset, O => reset_out);

lut_done_aes1_out : LUT1
GENERIC MAP (INIT => X"2")
PORT MAP (I0 => done_d2, O => done);
```

12. Select **aes - Behavioral** in the Design Hierarchy window, right-click the **Synthesize-XST** icon in the Processes window, and select **Process Properties** (see Figure 2-13).
Chapter 2: Synthesizing Modules for the Isolation Design Flow

13. Set Optimization Goal to **Area**, and set Optimization Effort to **High**. **Keep Hierarchy** does not have to be set.

14. Within the Process Properties window, click **HDL Options** in the column on the left, and uncheck **Resource Sharing**. Click **Xilinx Specific Options** in the column on the left, and uncheck **Equivalent Register Removal**.

15. Click **OK**.

16. To run XST synthesis, either right-click the **Synthesize-XST** icon in the Processes window and select **Run** or double-click **Synthesize-XST**.

17. After synthesis is complete, close the aes project.

Figure 2-13: Process Properties (Synthesis Options)

13. Set Optimization Goal to **Area**, and set Optimization Effort to **High**. **Keep Hierarchy** does not have to be set.

14. Within the Process Properties window, click **HDL Options** in the column on the left, and uncheck **Resource Sharing**. Click **Xilinx Specific Options** in the column on the left, and uncheck **Equivalent Register Removal**.

15. Click **OK**.

16. To run XST synthesis, either right-click the **Synthesize-XST** icon in the Processes window and select **Run** or double-click **Synthesize-XST**.

17. After synthesis is complete, close the aes project.
Synthesize the `aes_r` Module

These steps describe how to synthesize the `aes_r` module:

1. Start the ISE design suite 12.4:
 - Start → All Programs → Xilinx ISE Design Suite 12.4 → ISE Design Tools → Project Navigator
2. Create a new ISE design suite 12.4 project:
 - File → New Project
3. Set the Project Location to `\Xilinx_Design\synthesis`.
4. Set the Project Name to `aes_r`.
5. Click Next (see Figure 2-14).

![New Project Wizard](X1104_c2_14_102510)

Figure 2-14: New Project Wizard (Create New Project)
6. Make the following selections for the target device (see Figure 2-15):
 - Family: Spartan6
 - Device: XC6SLX150T
 - Package: FGG676
 - Speed: -3
 - Preferred Language: VHDL

7. Click Next.
8. Click **Finish** in the Project Summary window (see Figure 2-16).
9. Add source files to the project by selecting Project → Add Source. Navigate to the source\design directory and add the aes_r.vhd, aes_package.vhd, and key_expander.vhd files to the project. This is done by holding down the Ctrl key on the keyboard and left-clicking each of the filenames once such that all filenames are selected, then clicking Open. Click OK (see Figure 2-17).

![Adding Source Files](image-url)

Figure 2-17: Adding Source Files

<table>
<thead>
<tr>
<th>File Name</th>
<th>Association</th>
<th>Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>aes_r.vhd</td>
<td>All</td>
<td>work.</td>
</tr>
<tr>
<td>key_expander.vhd</td>
<td>All</td>
<td>work.</td>
</tr>
<tr>
<td>aes_package.vhd</td>
<td>All</td>
<td>work.</td>
</tr>
</tbody>
</table>

Adding files to project: [] 3 of 3 files (0 errors)

OK Cancel Help
The ISE Project Navigator Window should look like Figure 2-18.

Note: All blocks are defined. There should be no question marks (?) by any module. All modules at this level and below are in context.

10. **Apply attributes to control I/O insertion:**

 As in Synthesize the SCC_LAB_TOP Module, page 13, insertion of I/O buffers at this level of hierarchy must be prevented for the top-level signals (such as CLK) within the `aes_r` block that connect to the upper level of the design, or because the port is a direct connection to a port of another instance.

 Open the `aes_r.vhd` file and locate the section containing the `buffer_type` attributes:

   ```
   attribute buffer_type: string;  
   attribute buffer_type of clk   : signal is "none";  
   attribute buffer_type of reset : signal is "none";  
   attribute buffer_type of push_button : signal is "none";  
   attribute buffer_type of start : signal is "none";  
   attribute buffer_type of mode : signal is "none";  
   attribute buffer_type of load : signal is "none";
   ```
attribute buffer_type of key : signal is "none";
attribute buffer_type of data_in : signal is "none";
attribute buffer_type of data_out : signal is "none";
attribute buffer_type of done : signal is "none";

Note: The clk I/O is inferred when SCC_LAB_TOP is synthesized. All other ports are internal to the FPGA; therefore, they have the attribute `signal is "none"` applied.

11. Instantiate LUTs per the Trusted Routing rules:

 In the aes_r.vhd source code file, LUT instantiation on done_aes2 is necessary for trusted routing rules. Trusted routing is a set of resources that is selected automatically by the tools to facilitate communication between isolated regions. These resources serve to prevent "shorted" nets between isolated regions and also preserve one-to-one mapping of input and output ports of isolated regions. Refer to XAPP1145, *Developing Fail-Safe Designs in the Spartan-6 Family Using the Isolation Design Flow*, for more details on trusted routing rules. A section of the VHDL code for the LUT instantiation is shown here:

    ```vhdl
    -- Instantiate LUT buffers on nets that either drive two different regions
    -- or are feedthrough's from one region to the next. This prevents a single
    -- net being placed "shorting" three regions together.

    lut_done_aes2_out : LUT1
    GENERIC MAP (INIT => X"2")
    PORT MAP (I0 => done_d2, O => done);
    ```
12. Right-click the **Synthesize-XST** icon in the Processes window and select **Process Properties** (see Figure 2-19).

![Figure 2-19: Process Properties (Synthesis Options)](X1104_c2_19_102510)

13. Set Optimization Goal to **Area**, and set Optimization Effort to **High**. Keep Hierarchy does not have to be set.

14. Within the Process Properties window, click **HDL Options** in the column on the left, and uncheck **Resource Sharing**. Click **Xilinx Specific Options** in the column on the left, and uncheck **Equivalent Register Removal**.

15. Click **OK**.

16. To run XST synthesis, either right-click the **Synthesize-XST** icon in the Processes window and select **Run**, or double-click **Synthesize-XST**.

17. After synthesis is complete, close the **aes_r** project.
Chapter 2: Synthesizing Modules for the Isolation Design Flow

Synthesize the compare Module

These steps describe how to synthesize the compare module:

1. Start the ISE design suite 12.4:

 Start → All Programs → Xilinx ISE Design Suite 12.4 → ISE Design Tools → Project Navigator

2. Create a new ISE design suite 12.4 project:

 File → New Project

3. Set the project location to `\Xilinx_Design\synthesis`.

4. Set the project name to `compare`.

5. Click **Next** (see **Figure 2-20**).

![New Project Wizard](image_url)

Figure 2-20: New Project Wizard (Create New Project)
6. Make the following selections for the target device (see Figure 2-21):
 - Family: Spartan6
 - Device: XC6SLX150T
 - Package: FGG676
 - Speed: -3
 - Preferred Language: VHDL

 ![New Project Wizard](X1104_c2_21_102510)

 Figure 2-21: New Project Wizard (Device Properties)

7. Click Next.
8. Click **Finish** in the Project Summary window (see Figure 2-22).

![New Project Wizard](image-url)

Figure 2-22: New Project Wizard (Project Summary)
9. Add source files to the project by selecting Project → Add Source. Navigate to the source\design directory, and add the compare.vhd by left-clicking once on the filename such that it is selected, then clicking Open. Click OK (see Figure 2-23).

![Adding Source Files...](image-url)
Chapter 2: Synthesizing Modules for the Isolation Design Flow

The ISE Project Navigator Window should look like Figure 2-24.

Note: All modules are defined. There should be no question marks (?) by any module. All modules at this level and below are in context.

![Project Navigator Window]

Figure 2-24: Project Navigator Window

10. Apply attributes to control I/O insertion:

As in Synthesize the SCC_LAB_TOP Module, page 13, insertion of I/O buffers at this level of hierarchy must be prevented for the top-level signals (such as CLK) within the compare block that connect to the upper level of the design, or because the port is a direct connection to a port of another instance.

Open the compare.vhd file and locate the buffer attributes:

```vhdl
attribute buffer_type: string;
--attribute buffer_type of led         : signal is "none"; -- HOOKED UP TO OBUF
attribute buffer_type of clk           : signal is "none"; -- Port
attribute buffer_type of reset         : signal is "none"; -- Port
attribute buffer_type of reset_out     : signal is "none"; -- Port
attribute buffer_type of done1         : signal is "none"; -- Port
attribute buffer_type of done2         : signal is "none"; -- Port
```
attribute buffer_type of start_aes1 : signal is "none"; -- Port
attribute buffer_type of start_aes2 : signal is "none"; -- Port
attribute buffer_type of load_aes1 : signal is "none"; -- Port
attribute buffer_type of load_aes2 : signal is "none"; -- Port
attribute buffer_type of data_in1 : signal is "none"; -- Port
attribute buffer_type of data_in2 : signal is "none"; -- Port

Note: The led signal does not have an attribute associated with it because this signal is driven directly by an output buffer from within the compare code and is therefore commented out. All other ports are either those within the FPGA or have had their I/Os inferred at a different level; therefore, they have the attribute `signal is "none"` applied.

11. In the `compare.vhd` source code file, LUT instantiation between certain inputs and outputs is necessary for trusted routing rules. Refer to XAPP1145, *Developing Fail-Safe Designs in the Spartan-6 Family Using the Isolation Design Flow*, for more details on trusted routing rules. A section of the VHDL code for the LUT instantiation is shown here:

```vhdl
-- Instantiate LUT buffers on nets that either drive two different regions
-- or are feedthrough's from one region to the next. This prevents a single
-- net being placed "shorting" three regions together.

lut_reset_out : LUT1
GENERIC MAP (INIT => X"2")
PORT MAP (I0 => reset_i, O => reset_out );

lut_start_aes1_out : LUT1
GENERIC MAP (INIT => X"2")
PORT MAP (I0 => start_i, O => start_aes1 );

lut_start_aes2_out : LUT1
GENERIC MAP (INIT => X"2")
PORT MAP (I0 => start_i, O => start_aes2 );

lut_load_aes1_out : LUT1
GENERIC MAP (INIT => X"2")
PORT MAP (I0 => load_i, O => load_aes1 );

lut_load_aes2_out : LUT1
GENERIC MAP (INIT => X"2")
PORT MAP (I0 => load_i, O => load_aes2 );
```
12. Right-click the Synthesize-XST icon in the Processes window and select Process Properties (see Figure 2-25).

![Process Properties - Synthesis Options](Figure 2-25: Process Properties (Synthesis Options))

13. Set the Optimization Goal to Area and the Optimization Effort to High. Keep Hierarchy does not have to be set.

14. Within the Process Properties window, click HDL Options in the column on the left and uncheck Resource Sharing. Click Xilinx Specific Options in the column on the left and uncheck Equivalent Register Removal.

15. Click OK.

16. To run XST synthesis, either right-click the Synthesize-XST icon in the Processes window and select Run, or double-click Synthesize-XST.

17. After synthesis is complete, close the compare project.
Isolation Design Flow Progress

The Module Synthesis block of the isolation design flow diagram is complete, as shown in Figure 2-26.

![Isolation Design Flow with Module Synthesis Block Complete](X1104_c2_26_110110)

Figure 2-26: Isolation Design Flow with Module Synthesis Block Complete
Chapter 3

Floorplanning the System

Project Entry in PlanAhead Tool

Launch the PlanAhead Tool

To launch the 12.4 version of the PlanAhead™ tool, select:

Start → All Programs → Xilinx ISE Design Suite 12.4 → PlanAhead → PlanAhead

PlanAhead Project Creation

The PlanAhead tool works with any synthesized netlist (XST, Synplify, etc.). The regular guidelines are followed to generate a new project and import the netlist into the PlanAhead tool to create a floorplan for the design.
1. Set up a new PlanAhead tool project (see Figure 3-1):
 File → New Project

![New Project](X1104_c3_01_102510)

Figure 3-1: New Project

2. Click Next and enter:
 - Project name: For this lab, the **FloorPlan_SCC** project name is used.
 - Project location: ..\Xilinx_Design\PlanAhead
3. Click Next.
4. Select **Import a synthesized (EDIF or NGC) netlist** (see Figure 3-2) because the modules have already been synthesized. Click **Next**.

Note: The Spartan-6 FPGA does not support partial reconfiguration, so do not select the **Set PR Project** option.

![New Project (Design Source)](image)

Figure 3-2: New Project (Design Source)
5. Import the previously generated top-level netlist (see Figure 3-3).

6. Designate the top-level netlist and library directories. The netlist directories should include the static logic `SCC_LAB_TOP.ngc` and only one “version” of each isolated (ISO) module.

 Netlist File:
   ```plaintext
   ..\Xilinx_Design\synthesis\SCC_LAB_TOP\SCC_LAB_TOP.ngc
   ```

 Netlist Directories:
   ```plaintext
   ..\Xilinx_Design\synthesis\aes
   ..\Xilinx_Design\synthesis\aes_r
   ..\Xilinx_Design\synthesis\compare
   ```

7. Click **Next**.

8. This lab creates the final user constraints file (UCF) from the beginning. Thus, no UCF files needs to be imported. Click **Next**.
9. Select the product, family, and sub-family for the default part (see Figure 3-4). For this lab, make the following selections:
 a. Product: **General Purpose**
 b. Family: **Spartan6**
 c. Sub-Family: **Spartan6 LXT**

10. Select the device specifics:
 a. Package: **FGG676**
 b. Speed grade: **-3**
 c. Temperature grade: **C**
 d. Device: **xc6slx150tfgg676-3**

11. Click **Next** and **Finish**.
12. The PlanAhead tool project is created. Figure 3-5 shows the PlanAhead tool Project Manager window and the Open Netlist Manager window for the FloorPlan_SCC project.

13. To open the netlist design in the PlanAhead tool, under the Project Manager pane on the left, select Netlist Design → Open Netlist Design....

14. Set the design name to SCC_LAB_1. Click OK.

Figure 3-5: PlanAhead Tool Project Manger (Open Netlist Design)
15. The floor plan of the FPGA device appears, as shown in Figure 3-6.

As stated in step 4, the Spartan-6 FPGA does not support partial reconfiguration. Therefore, the File → Set PR Project option is grayed out and not selectable.
Placing I/Os and DCMs with the PlanAhead Tool

When placing I/O buffers or pins, it is imperative to consider the physical location of I/Os in relation to the logic regions they interface with. While the clock input can be placed on any clock-capable pin because it does not have to be isolated, the led pin is part of the compare logic, so it does need to be physically placed within that region. Similarly, the reset and push_button pins are owned by the aes logic, so they need to be physically placed inside the aes region. All available resources should be included, even if the logic is not used, because excluding them also excludes using their respective routing resources. This includes clock components such as DCMs, PLLs, and BUFGs, even though such components are instantiated (logically owned) at the top level.

To place the PlanAhead tool in Site Constraint mode:

1. Select the symbol shown in Figure 3-7 that is on the vertical shortcut bar between the Netlist Design window and the Device Planner window.

![Select Site Constraint Mode Symbol](X1104_c3_07_102510)

Figure 3-7: Select Site Constraint Mode Symbol
2. To specify the I/O pin for the clk, select **Edit → Find** (shortcut: **Ctrl-F**). A Find window appears, as shown in Figure 3-8.

![Find window](X1104_c3_08_102510)

Figure 3-8: Find

3. Select **Sites** from the Find pull-down menu.
4. Select **Name** and **matches** from the two pull-down menus under Criteria.
5. Type **U25** in the remaining field box and click **OK**.

The search results appear on a tab in the Find Results section at the bottom left of the PlanAhead tool window.
6. Select the find result and press F9 to zoom to the current selection, as shown in Figure 3-9. Alternatively, select View → Fit Selection from the top menu bar to perform the same task.

Figure 3-9: Find Results
7. To place clk on pin **U25**, select **Edit → Find** (shortcut: **Ctrl-F**). A Find window appears, as shown in **Figure 3-10**.

![Figure 3-10: Find](image)

8. Select **I/O Ports** from the Find pull-down menu.
9. Select **Name** and **matches** from the two pull-down menus under Criteria.
10. Type **clk** in the field box, and click **OK**. The search results appear on a tab in the Find Results section at the bottom left of the PlanAhead tool window.
11. Click and drag the result clk to the site identified in step 2 through step 6, as shown in Figure 3-11.

12. Repeat step 2 to step 11 to place reset at M19.
13. Repeat step 2 to step 11 to place push_button at H20.
14. Repeat step 2 to step 11 to place led at L24.

Figure 3-11: Drag clk
15. Select **Edit → Find** (shortcut: **Ctrl-F**).
16. Select **Sites** from the Find pull-down menu.
17. Select **Name** and **matches** from the two pull-down menus under Criteria.
18. Type **DCM_X0Y5** in the field box, and click **OK**. The search results appear on a tab in the Find Results section at the bottom left of the PlanAhead tool window. Select the result and press **F9** to zoom to the current selection, as shown in **Figure 3-12**.

![Figure 3-12: Search Results for DCM_X0Y5](image-url)
19. In the Netlist window, expand Primitives, and then drag TOP_DCM_SP to the DCM_X0Y5 box, as shown in Figure 3-13.

20. Repeat step 15 to step 19 to place TOP_CLK0_BUFG at BUFGMUX_X3Y16.

21. Repeat step 15 to step 19 to place TOP_CLKDEV_BUFG at BUFGMUX_X2Y12.
Setting Up Timing Constraints with the PlanAhead Tool

This section shows that timing constraints can be applied to each module and the top-level design easily with the PlanAhead tool.

1. Select the **Timing Constraints** tab in the Netlist Design window, and click the **Create New Constraint** button located at the top of the netlist/constraints window (see Figure 3-14).
2. Add a **Basic period** constraint of 20 ns to the design by entering the value, as shown in Figure 3-15.

![New Timing Constraint - Basic Period](X1104_c3_15_102510)

Figure 3-15: New Timing Constraint - Basic Period

3. Click **OK**.
4. Create a new timing constraint for **Input pad to clk offset**. For Data arrival, select **Before clock**, check the **Delay value** box, and add a global input constraint of 6 ns to the design by entering the value, as shown in **Figure 3-16**.

![New Timing Constraint - Input Pad to Clk Offset](X1104_c3_16_102510)

Figure 3-16: New Timing Constraint - Input Pad to Clk Offset

5. Click **OK**.
6. Create a new timing constraint for **Clk to output pad** offset. For Data arrival, select **After clock**, check the **Delay value** box, and add a global output constraint of 6 ns to the design by entering the value, as shown in **Figure 3-17**.

![New Timing Constraint](image)

Figure 3-17: New Timing Constraint - Clk to Output Pad Offset

7. Click **OK**.
Defining ISO Partitions with the PlanAhead Tool

Each partition must be turned into an ISO partition:

1. Select and right-click **U1_AES (aes)** in the Netlist tab and select **Set Partition** from the pull-down menu (see Figure 3-18).

2. Repeat step 1 for the **U2_AES2 (aes_r)** partition.

3. Repeat step 1 for the **U3_Comp (compare)** partition.
4. A new Pblock must be created for each block. In the Netlist tab, select the U1_AES1 (aes) partition, and right-click to select **New Pblock** from the menu (see Figure 3-19). Keep the default name, pblock_U1_AES1, and click **OK**.

5. Repeat step 4 for the U2_AES2 (aes_r) partition while keeping the default name, pblock_U2_AES2.

6. Repeat step 4 for the U3_Comp (compare) partition while keeping the default name, pblock_U3_Comp.

Figure 3-19: New Pblock
Defining Attributes for Each ISO Partition with the PlanAhead Tool

IDF rules have many additional constraint rules as opposed to a traditional partial reconfiguration flow. It is necessary to define several attributes for each partition as follows:

1. Under the Netlist tab, select the **U1_AES1 (aes)** partition, right-click the selection, and click **Instance Properties** in the resulting menu.
2. Click the **Attributes** tab of the Instance Properties window, and click the **Add Pre-defined Attributes** button (a green “+” symbol).
3. Click the **SCC_ISOLATED** general attribute to select it, and click **OK** (see Figure 3-20).

![Add Pre-defined Attributes](image)

Figure 3-20: Add Pre-Defined Attribute
4. Select the checkbox for **SCC_ISOLATED** in the general attributes list in the Instance Properties window, and click **Apply** (see Figure 3-21).

![Instance Properties](X1104_c3_21_102510)

Figure 3-21: Instance Properties

5. Repeat step 1 to step 4 for the **U2_AES2 (aes_r)** partition.

6. Repeat step 1 to step 4 for the **U3_Comp (compare)** partition.

The PRIVATE attribute needs to be set for each pblock in the PlanAhead tool GUI as follows:

7. Under the Physical Constraints tab, select the **pblock_U1_AES** pblock, right-click the selection, and click **Pblock Properties** in the resulting menu.

8. Click the Attributes tab of the Pblock Properties window, and click the **Add Pre-defined Attributes** button (a green “+” symbol).
9. Click the **PRIVATE** attribute to select it, and click **OK** (see Figure 3-22).
10. Select the attribute **PRIVATE** in the general attributes list in the Pblock Properties window, and select **NONE** (see Figure 3-23).

![Pblock Properties](image)

Figure 3-23: Setting PRIVATE Attribute to NONE

11. Click **Apply**.
12. Repeat step 7 to step 11 for pblock_U2_AES2, and set the attribute **PRIVATE** to **NONE**.
13. Repeat step 7 to step 11 for pblock_U3_Comp, and set the attribute **PRIVATE** to **NONE**.
Set Up the Area Groups for the ISO Regions with the PlanAhead Tool

Area groups constrain FPGA resources. Their size can be changed by the user with the PlanAhead tool. For the purpose of this exercise, the dimensions for the area groups are made known and are presented. However, a general method of configuring an area group for an arbitrary ISO region is demonstrated in this section:

1. Under the Physical Constraints tab, select the block pblock_U1_AES1 (aes).
2. Right-click pblock_U1_AES1 (aes) and select Set Pblock Size from the pull-down menu.
3. Draw a rectangle in the upper-right area of the Design Planner window, as shown in Figure 3-24. (The rectangle does not have to be 100% accurate—it will be resized shortly.)

4. A dialog box (shown in Figure 3-24) appears with various attributes and associated checkboxes. All boxes must be checked, including (if listed) DCM_ADV, PLL_ADV, BUFGCTRL, BUFR, and BUFIO. Even though most of these blocks are not used in the design, it is important to select them to take advantage of their routing resources. Failure to do so, while not an error, might produce designs that are unnecessarily
difficult to route. Naturally, all used components must be included. The only exception is the Memory Controller Block (MCB) box, which should not be checked for this lab.

Note: Trusted routing requires that all clocking components be assigned to the AREA GROUP that physically contains the component, even though the component is not logically instantiated in the HDL of that module.

5. Click OK.
6. In the Choose LOC mode dialog box, select **Leave all location constraints in their current position**.
7. Click OK.
8. Ensure that **pblock_U1_AES1 (aes)** is selected in the Physical Constraints pane.
9. Select the **Rectangles** tab in the Pblock Properties window (see **Figure 3-25**).

Figure 3-25: Pblock Properties

10. After the preliminary U1_AES1 (aes) block is drawn, adjust the rectangle graphically as necessary to match these coordinates:
 - X Lo = 88
 - Y Lo = 0
 - X Hi = 169
 - Y Hi = 43

The final Pblock should look like **Figure 3-26**.
11. Alternately, the Pblock rectangle (of the size specified in step 10) can be added to the design by entering this command string into the Tcl command line in the PlanAhead tool:

   ```
   resize_pblock pblock_U1_AES1 -add {SLICE_X68Y152:SLICE_X127Y191
   BUFDS_X2Y4:BUFDS_X2Y5 BUFH_X0Y320:BUFH_X3Y383
   BUFIO2_X1Y26:BUFIO2_X4Y29 BUFIO2FB_X1Y26:BUFIO2FB_X4Y29
   BUFPPLL_X1Y4:BUFPPLL_X2Y5 BUFPPLL_MCB_X1Y9:BUFPPLL_MCB_X2Y9
   DCM_X0Y10:DCM_X0Y11 DSP48_X2Y38:DSP48_X3Y47
   GTPA1_DUAL_X1Y1:GTPA1_DUAL_X1Y1 ILOGIC_X19Y136:ILOGIC_X35Y175
   IODELAY_X19Y136:IODELAY_X35Y175 IPAD_X1Y8:IPAD_X1Y15
   OLOGIC_X19Y136:OLOGIC_X35Y175 OPAD_X1Y4:OPAD_X1Y7
   PLL_ADV_X0Y5:PLL_ADV_X0Y5 RAMB16_X3Y76:RAMB16_X5Y94
   RAMB8_X3Y76:RAMB8_X5Y95} -locs keep_all -replace
   ```

12. The second rectangle is drawn to complete pblock_U1_AES1. Under the Physical Constraints tab, select the block **pblock_U1_AES1**.

13. Right-click **pblock_U1_AES1** and select **Add Pblock Rectangle** from the pull-down menu.

Figure 3-26: pblock_U1_AES1 Pblock Layout
14. Draw a new rectangle below and to the far left side of the first rectangle to make a resultant L-shaped area, as shown in Figure 3-27. (The second rectangle does not have to be 100% accurate—it will be resized shortly.)

15. A dialog box pops up with various attributes and associated checkboxes. All boxes must be checked, including (if listed) DCM_ADV, PLL_ADV, BUFGCTRL, BUFR, and BUFIO. Even though most of these blocks are not used in the design, it is important to select them to take advantage of their routing resources. Failure to do so, while not an error, might produce designs that are unnecessarily difficult to route. Naturally, all used components must be included. The only exception is the MCB box, which should not be checked for this lab.

 Note: Trusted routing requires that all clocking components be assigned to the AREA GROUP that physically contains the component, even though the component is not logically instantiated in the HDL of that module.

16. Click **OK**.

17. Ensure that **pblock_U1_AES1** is selected in the Physical Constraints pane.

Figure 3-27: **pblock_U1_AES1** Pblock Layout - Add Pblock Rectangle
18. Select the **Rectangles** tab in the Pblock Properties window to view all of the rectangles created for this Pblock (see **Figure 3-28**).

![Pblock Properties](X1104_c3_28_102510)

Figure 3-28: Pblock Properties

Note: The PlanAhead tool might resize the rectangle to many different combinations of smaller rectangles. Make sure that all of the resources (such as block RAMs and DCMs) inside the area group are fully enclosed.

19. The format of multiple rectangles makes it more difficult to resize the second rectangle. Alternately, the second Pblock rectangle can be added to the design by entering the following command strings into the Tcl command line in the PlanAhead tool:

```tcl
resize_pblock pblock_U1_AES1 -add {SLICE_X68Y128:SLICE_X101Y151 BUFH_X0Y256:BUFH_X3Y19 DCM_X0Y8:DCM_X0Y9 DSP48_X2Y32:DSP48_X2Y37 RAMB16_X3Y64:RAMB16_X3Y74 RAMB8_X3Y64:RAMB8_X3Y75} -locs keep_all

resize_pblock pblock_U1_AES1 -add {DCM_X0Y10:DCM_X0Y11 PLL_ADV_X0Y4:PLL_ADV_X0Y5} -remove {DCM_X0Y10:DCM_X0Y11 PLL_ADV_X0Y5:PLL_ADV_X0Y5} -locs keep_all
```
20. The completed Pblock for pblock_U1_AES1 is shown in Figure 3-29.

21. Under the Physical Constraints tab, select the block pblock_U2_AES2.
22. Right-click pblock_U2_AES2 to select Set Pblock Size from the pull-down menu.
23. Draw a rectangle in the center right area of the Design Planner window, as shown in Figure 3-30. (The rectangle does not have to be 100% accurate—it will be resized shortly.)

24. A dialog box (shown in Figure 3-30) appears with various attributes and associated checkboxes. All boxes must be checked, including (if listed) DCM_ADV, PLL_ADV, BUFGCTRL, BUF, and BUFI. Even though most of these blocks are not in the design, it is important to select them to take advantage of their routing resources. Failure to do so, while not an error, might produce designs that are unnecessarily difficult to route. Naturally, all used components must be included. The only exception is the MCB box, which should not be checked for this lab.

Note: Trusted routing requires that all clocking components be assigned to the AREA GROUP that physically contains the component, even though the component is not logically instantiated in the HDL of that module.

25. Click OK.

26. Ensure that pblock_U2_AES2 is selected in the Physical Constraints pane.
27. Select the **Rectangles** tab in the Pblock Properties window (see Figure 3-31).

![Pblock Properties](X1104_c3_31_102510)

Figure 3-31: Pblock Properties

28. After the preliminary U2_AES2 block is drawn, adjust the rectangle graphically as necessary to match these coordinates:

- X Lo = 88
- Y Lo = 96
- X Hi = 169
- Y Hi = 138

The Pblock area should look like Figure 3-32.
29. Alternately, the Pblock rectangle (of the size specified in step 28) can be added to the design by entering the following command string into the Tcl command line in the PlanAhead tools:

```tcl
resize_pblock pblock_U2_AES2 -add {SLICE_X68Y64:SLICE_X127Y103
BUFIMGUX_X2Y1:BUFIMGUX_X3Y16 BUFPH_X0Y128:BUFPH_X3Y191
BUFI02_X1Y8:BUFI02_X4Y23 BUFI02FB_X1Y8:BUFI02FB_X4Y23
BUFPPLL_X1Y2:BUFPPLL_X2Y3 BUFPPLL_MCB_X1Y5:BUFPPLL_MCB_X2Y5
D0M_X0Y4:DCM_X0Y5 DSP48_X2Y16:DSR48_X3Y25 ILOGIC_X19Y60:ILOGIC_X35Y101
IODELAY_X19Y60:IODELAY_X35Y110 OLOGIC_X19Y60:OLOGIC_X35Y101
PCML0GIC_X1Y0:PCML0GIC_X1Y0 PLL_ADV_X0Y2:PLL_ADV_X0Y2
RAMB16_X3Y32:RAMB16_X5Y50 RAMB8_X3Y32:RAMB8_X5Y51} -locs keep_all -replace
```

Note: The fence between the AES1 and AES2 isolated partitions contains DSP tiles. Fence rules dictate that there must be two adjacent vertical DSP tiles in a horizontal fence to provide the required isolation.
30. The next rectangle for pblock_U2_AES2 is drawn up to, but not including, the DSP tile column. To complete the area needed for pblock_U2_AES2, multiple rectangles should be drawn to exclude the two DSP fence tiles. Under the Physical Constraints tab, select the block **pblock_U2_AES2**.

31. Right-click **pblock_U2_AES2** and select **Add Pblock Rectangle** from the pull-down menu.

32. Draw a new rectangle above and to the far left side of the first rectangle to make a resultant L-shape area, as shown in Figure 3-33. (The second rectangle does not have to be 100% accurate—it will be resized shortly.)

Note: Remember to leave one fence tile of isolation between the AES1 and AES2 partitions.

Figure 3-33: pblock_U2_AES2 Pblock Layout
33. A dialog box appears with various attributes and associated checkboxes. All boxes must be checked, including (if listed) **DCM_ADV, PLL_ADV, BUFGCTRL, BUFR, and BUFIO**. Even though most of these blocks are not in the design, it is important to select them to take advantage of their routing resources. Failure to do so, while not an error, might produce designs that are unnecessarily difficult to route. Naturally, all used components must be included. The only exception is the MCB box, which should not be checked for this lab.

Note: Trusted routing requires that all clocking components be assigned to the AREA GROUP that physically contains the component, even though the component is not logically instantiated in the HDL of that module.

34. Click **OK**.

35. Use the **Add Pblock Rectangle** option to draw the remaining two rectangles needed to complete the pblock_U2_AES2 area group. One rectangle should include the DSP tiles in this area group, and the last rectangle should include the remaining CLB tiles needed for this area group.

36. Ensure that **pblock_U2_AES2** is selected in the Physical Constraints pane.

37. Select the **Rectangles** tab in the Pblock Properties window to view all of the rectangles created for this pblock (see Figure 3-34).

![Figure 3-34: Pblock Properties](X1104_c3_34_062711)
Note: The PlanAhead tool might resize the rectangle to many different combinations of smaller rectangles. Make sure that all of the resources (such as block RAMs and DCMs) inside the area group are fully enclosed. The user should ensure that there is a fence of one configurable logic block (CLB) tile, one BRAM tile, and two DSP tiles separation between the pblocks AES1, AES2, and Comp.

38. The completed pblock for pblock_U2_AES2 (aes_r) is shown in Figure 3-35.

Figure 3-35: Completed pblock_U2_AES2 Pblock Layout
Note: The fence between the COMPARE isolated partition and AES1 and AES2 also contains DSP tiles. There must also be two adjacent vertical DSP tiles in these horizontal fences to provide the required isolation. Therefore, multiple rectangles are needed to define this pblock region to accommodate the DSP fence tiles.

39. Under the Physical Constraints tab, select the block pblock_U3_Comp.
40. Right-click pblock_U3_Comp to select Set Pblock Size from the pull-down menu.
41. Draw the first rectangle between the AES1 and AES2 blocks up to, but not including, the DSP column, as shown in Figure 3-36. (The rectangle does not have to be 100% accurate—it will be resized shortly.)

42. A dialog box (shown in Figure 3-36) appears with various attributes and associated checkboxes. All boxes must be checked, including (if listed) DCM_ADV, PLL_ADV, BUFGCTRL, BUFR, and BUFIO. Even though most of these blocks are not used in the design, it is important to select them to take advantage of their routing resources. Failure to do so, while not an error, might produce designs that are unnecessarily difficult to route. Naturally, all used components must be included. The only exception is the MCB box, which should not be checked for this lab.

Note: Trusted routing requires that all clocking components be assigned to the AREA GROUP that physically contains the component, even though the component is not logically instantiated in the HDL of that module.

43. Click OK.
44. In the Choose LOC Mode dialog box, select **Leave all location constraints in their current position.**
45. Click **OK.**
46. Use the **Add Pblock Rectangle** option to draw the remaining two rectangles needed to complete the pblock_U3_Comp area group. One rectangle should include the DSP tiles in this area group, and the last rectangle should include the remaining CLB tiles needed for this area group.
47. Ensure that **pblock_U3_Comp** is selected in the Physical Constraints pane.
48. Select the **Rectangles** tab in the Pblock Properties window (see Figure 3-37).

![Pblock Properties](X1104_c3_37_062711)

Figure 3-37: Pblock Properties

Note: The PlanAhead tool might resize the rectangle to many different combinations of smaller rectangles. The user should ensure that there is a fence of one CLB tile, one BRAM tile, and two DSP tiles separation between the pblocks AES1, AES2, and Comp.

49. After the preliminary U3_Comp block is drawn, adjust the rectangle graphically as necessary to match these coordinates:
 - X Lo = 134
 - Y Lo = 46
 - X Hi = 166
 - Y Hi = 93
50. The completed pblock for pblock_U3_Comp (aes_r) is shown in Figure 3-38.

![Image of pblock_U3_Comp Pblock Layout](X1104_c3_38_062411)

Figure 3-38: pblock_U3_Comp Pblock Layout

For the Spartan-6 FPGA, the pad ranges need to be set manually for the I/O blocks (IOBs) or pads used in the design to include them in each ISO partition with I/O pins. The pad range attribute (RANGE_PADXXX) can be set for each pblock in the PlanAhead tool GUI as follows:

51. Under the **Physical Constraints** tab, select the pblock **pblock_U1_AES**.
52. Right-click **pblock_U1_AES** and click **Pblock Properties** in the pull-down menu.
53. Click the **Attributes** tab of the Pblock Properties window, and click the **Add Pre-defined Attributes** button (a green “+” symbol).
54. Click the **RANGE_PADXXX** general attribute to select it, and click **OK** (see Figure 3-39).
55. Select the attribute **RANGE_PADXXX** in the general attributes list in the Pblock Properties window, and enter the pad range of **PAD133,PAD158** for pblock_U1_AES.

Note: Do not insert a space between pads when entering the pad ranges into the Pblock Properties window.
56. Click **Apply** (see Figure 3-40).

![Figure 3-40: Setting New RANGE_PADXXX Attribute](X1104_c3_40_100510)

57. Repeat step 51 to step 56 for `pblock_U2_AES2` and set the attribute `RANGE_PADXXX` to PAD217.

58. Repeat step 51 to step 56 for `pblock_U3_Comp` and set the attribute `RANGE_PADXXX` to PAD190.
59. The final layout is shown in Figure 3-41. Each block is separated by one user tile (except the DSP tile which is two tiles for a horizontal fence) to ensure IDF isolation. A CLB, block RAM, DSP, IOB, or any other site type that contains a global switch (GSM), can be used for this isolation.

Figure 3-41: Final Layout
Isolation Design Flow Progress

The System Floorplanning block of the isolation design flow diagram is complete, as shown in Figure 3-42.

Figure 3-42: Isolation Design Flow with System Floorplanning Block Complete
Running Report Timing with the PlanAhead Tool

This section tests the timing constraints that were set up in Setting Up Timing Constraints with the PlanAhead Tool, page 59.

1. Select **Tools** → **Report Timing** and click **OK** to run report timing (see Figure 3-43).

2. A new tab, Timing Results - Report Timing, appears at the bottom with a sub-tab named as specified in the Run Report Timing window (results_1 in this case). As specified when launched, TimeAhead reports the 10 paths closest to missing timing.

 Note: The timing analysis performed through the PlanAhead tool is just a timing estimate and not a timing design sign-off step. The Xilinx® trce tool needs to be run after implementation to obtain the actual timing results.
Isolation Design Flow Progress

The Timing Analysis block of the isolation design flow diagram is complete, as shown in Figure 3-44.

![Isolation Design Flow with Timing Analysis Block Complete](X104_03_44_102710)

Exporting the Design

At this stage, the design can be exported. The user can export either the combined netlist in EDIF form, the top-level UCF, or both, if desired. For this lab, only the UCF need be exported for checking by the Isolation Verification Tool.

1. To export the netlist, select **File → Export Netlist**.
2. Browse to the `..\Xilinx_Design\PlanAhead` directory and keep the default filename `FloorPlan_SCC.edf`.
3. Click **OK**.
4. To export the constraints file, select **File → Export Constraints** and browse to the desired location or choose the default location and specify the UCF: `..\Xilinx_Design\PlanAhead\FloorPlan_SCC\SCC_LAB_TOP.ucf`.
5. Click **OK**.
Chapter 4

Running the Isolation Verification Tool Against the UCF

The Xilinx® Isolation Verification Tool (IVT) software verifies that an FPGA design that has been partitioned into isolated modules meets the stringent standards for a fail-safe design. IVT is a batch application with a command line and file-based user interface. While there is a graphical output, there is no graphical user interface.

While not required, it is highly recommended that the user run IVT on the UCF. This can catch pin and area group isolation faults early in the design when changes are more easily integrated. The steps in this chapter guide the reader through the process. After implementation, the IVT native circuit description (NCD) test (required for IDF designs) is run against the routed design.

Creating the File Used to Run the IVT UCF Test

These steps describe how to create the file used to run the IVT UCF test:

1. Open the directory ..\Xilinx_Design\ivt.
2. The ivt.zip file posted on the Isolation Design Flow page contains the files needed for IVT:
 - ivt.exe – the IVT executables for these systems: nt, nt64, lin, and lin64
 - IVT_End_User_License_Agreement.pdf – the IVT user license
 - IVT User Guide and Release Note documentation (both in PDF format)
3. Create a new text file and name the file SCC_LAB_TOP_ucf.ivt with these contents:

```plaintext
# Groups               Isolation Group             Area Group
# -------  -------------------- ---------------------
-group AES pblock_U1_AES1
-group AES_r pblock_U2_AES2
-group COMPARE pblock_U3_Comp

# Pin Isolation Groups
-pig SCC_LAB_TOP.pig

# User Constraint File
..\PlanAhead\Floorplan_SCC\SCC_LAB_TOP.ucf

# Output file
-output SCC_LAB_TOP_ucf.rpt
```

```plaintext
-device xc6slx150t -package fgg676
```
Chapter 4: Running the Isolation Verification Tool Against the UCF

4. Note the instructions placed in the IVT command file:
 a. The first line sets the target device and package for IVT to compare against.
 b. Three isolation groups are assigned: AES, AES_r, and COMPARE.
 \textit{Note:} These names are arbitrary. If desired, they can be named the same to denote RED and BLACK groups.
 c. Three area groups are assigned: pblock_U1_AES1, pblock_U2_AES2, and pblock_U3_Comp.
 \textit{Note:} These names must match the area groups in the UCF.
 d. IVT points to the pin isolation group (PIG) file.
 e. IVT points to the UCF.
 f. IVT is told where to place the output file and its associated name.

5. Save and close the IVT command file.

Creating the Pin Isolation Group File

The pin isolation group (PIG) file is an IVT command file that defines which pins are associated with what isolation groups. These steps describe the process for creating a PIG file:

1. Open the directory ..\Xilinx\Design\ivt.
2. Create or modify a text file and name the file SCC_LAB_TOP.pig with these contents:
 \begin{verbatim}
 # Place all Global (top level) signals here (each commented out)
 # NET "clk" LOC = U25;

 ISOLATION_GROUP AES BEGIN
 NET "reset" LOC = M19;
 NET "push_button" LOC = H20;
 END ISOLATION_GROUP

 ISOLATION_GROUP AES_r BEGIN
 # There are no pins in AES_r
 END ISOLATION_GROUP

 ISOLATION_GROUP COMPARE BEGIN
 NET "led" LOC = L24;
 END ISOLATION_GROUP
 \end{verbatim}

3. Note the instructions placed in the IVT PIG file:
 a. The clock pin, clk, is commented out because it is not required to be isolated.
 b. The three isolation groups that were created in the IVT UCF command file have their associated pins assigned to them.

4. The isolation group definitions must match the isolation group definitions from the IVT command created in Creating the File Used to Run the IVT UCF Test, page 91.
 \textit{Hint:} The IVT PIG file uses UCF syntax for each pin definition. It is useful to copy the pins from the UCF and place them in the PIG file as a starting point. From there, the user can either comment out the lines at the top level or add isolation group definitions around the remaining pins to assign them to their specific isolation group.
Running the IVT UCF Test

These steps describe how to run the IVT UCF test:

1. Open a DOS command prompt (Start → Run → cmd).
2. To set up the Xilinx environment variables for this command shell, run the system32 (settings32.bat) or system64 (settings64.bat) batch file from the ISE software installation directory (\Xilinx\12.4\ISE_DS).
3. Navigate to the \Xilinx_Design\ivt directory (where all of the IVT-related files should ultimately reside for the project).
4. Rename the IVT executable to ivt.exe.
5. Run the UCF test by typing the following at the command prompt:
 ivt -f SCC_LAB_TOP_ucf.ivt
6. The output for a successful UCF test run is “SUCCESS!”.
7. For more detailed messages from IVT, add the -verbose switch to the IVT command file or at the command line.

 Hint: It is useful to add this command line to a file with the name run_ivt_ucf.bat so that it can be double-clicked from a Windows Explorer window. A sample of this file can be found in the ..\ivt directory.

Examining the Output from the IVT UCF Test

The output report has three key sections:

1. Area Range Constraints
2. Package Pins, I/O Buffers, and I/O Banks

<table>
<thead>
<tr>
<th>Pin(col, row)</th>
<th>Bank</th>
<th>I/O Buffer</th>
<th>Isolation Group</th>
<th>Net</th>
</tr>
</thead>
<tbody>
<tr>
<td>M19(7,14)</td>
<td>5</td>
<td>PAD158</td>
<td>AES</td>
<td>reset</td>
</tr>
<tr>
<td>H20(6,18)</td>
<td>5</td>
<td>PAD133</td>
<td>AES</td>
<td>push_button</td>
</tr>
<tr>
<td>L24(2,15)</td>
<td>1</td>
<td>PAD190</td>
<td>COMPARE</td>
<td>led</td>
</tr>
</tbody>
</table>
3. Isolation Verification Summary

 I/O Isolation
 I/O Buffer Isolation Violations: 0
 Package Pin Isolation Violations: 0
 Bank Isolation Violations: 0
 Area Group Isolation
 Area Group Isolation Violations: 0
 UCF Isolation Verification Summary
 Total Isolation Violations: 0
 Isolation analysis completed.
 Elapsed time: 0:00:12
Chapter 4: Running the Isolation Verification Tool Against the UCF

IVT SVG Output File for UCF Mode

The SVG file SCC_LAB_TOP.ucf.svg created by IVT for UCF mode gives a graphical view of the Spartan-6 device with colored tiles denoting the ownership of the tiles by each isolated region. The SVG file also visually highlights that there is a proper fence isolating each of the regions (uncolored tiles). Figure 4-1 shows the SVG UCF mode output for the Spartan-6 FPGA design used in the SCC lab.

![SVG UCF Mode Output](image)
Isolation Design Flow Progress

The IVT on UCF File block of the isolation design flow diagram is complete, as shown in Figure 4-2.

![Isolation Design Flow Flow with IVT on UCF File Block Complete](image)

Figure 4-2: Isolation Design Flow with IVT on UCF File Block Complete
Implementing the Design with the PlanAhead Tool

Generating and Running an Implementation

These steps describe how to generate and run a design implementation:

1. Click the bright green triangle on the Project Manager pane to implement the design.
2. A new tab named Design Runs is created and a single entry named impl_1 is generated as specified in the Run Implementation window. Implement immediately starts the run: NGDBUILD → MAP → Place and Route.
3. The combined and routed design is placed in this directory:

 ..\Xilinx_Design\PlanAhead\FloorPlan_SCC\FloorPlan_SCC.runs\impl_1
Chapter 5: Implementing the Design with the PlanAhead Tool

4. Alternately, from the Project Manager pane in the PlanAhead™ tool:
 a. Select **Implement**, click the downward facing arrow to the right of the green Implement triangle, and select **Implementation Settings...** (see Figure 5-1).

 ![Figure 5-1: Implement Design (Implementation Settings)](image_url)
b. An Implementation Settings dialog box appears (see Figure 5-2). To launch a run, change or accept the defaults and click **Run**.

![Implementation Settings dialog box](image)

Figure 5-2: Implementation Settings

5. A new tab named Design Runs is created, and a single entry named impl_1 is generated. It immediately starts the run: **NGDBUILD → MAP → Place and Route**.

6. An Implementation Completed dialog box appears after the design run is completed. Select the **Open Implemented Design** option and click **OK**.
7. The Device tab in the Design Planner pane shows the placed, routed, and partitioned design (see Figure 5-3).

![Implemented and Floorplanned Design](image)

Figure 5-3: Implemented and Floorplanned Design
8. The file name for the combined and routed design is `SCC_LAB_TOP_routed.ncd`, and its view in FPGA Editor is shown in Figure 5-4.

Figure 5-4: FPGA Editor View
Isolation Design Flow Progress

The Design Implementation block of the isolation design flow diagram is complete, as shown in Figure 5-5.

```
Module Synthesis
    ↓
System Floorplanning
    ↓
Timing Analysis
    ↓
IVT on UCF File
    ↓
Design Implementation
    ↓
IVT on NCD File
```

Figure 5-5: Isolation Design Flow with Design Implementation Block Complete
Chapter 6

Verifying the Design with the NCD Isolation Verification Tool

Creating the File Used to Run the IVT NCD Test

These steps describe how to create an example file used to run the IVT NCD test:

1. Open the directory `\Xilinx_Design\ivt\`.
2. Create a new text file in the `\Xilinx_Design\ivt\` directory:

 SCC_LAB_TOP_ncd.ivt

3. Open the text file `SCC_LAB_TOP_ncd.ivt` in a text editor.
4. Add these lines to the `SCC_LAB_TOP_ncd.ivt` text test file.

   ```
   # comment the next line for reduced detail in the report file.
   -verbose
   
   # Groups    Isolation Group     Instance Name in Final NCD
   # -------- ---------------- --------------------------
   -group AES U1_AES1
   -group AES_r U2_AES2
   -group COMPARE U3_Comp
   
   # Combined design
   ..\PlanAhead\FloorPlan_SCC\FloorPlan_SCC.runs\impl_1\SCC_LAB_TOP_routed.ncd
   
   # Output Report File
   -output SCC_LAB_TOP_ncd.rpt
   ```

The NCD IVT command file sets these options:

- Enables the verbose IVT switch
- Assigns three area groups to the three NCD files making up the project
- Points the IVT tool to the combined NCD file
- Tells IVT what to name the output report file and where to put the file

Note: The Isolation Group names are arbitrary, but the instance name must match the actual design.
Chapter 6: Verifying the Design with the NCD Isolation Verification Tool

Running the IVT NCD Test

These steps describe how to run the IVT NCD test:

1. Open a command prompt (Start → Run → cmd).
2. Navigate to the \Xilinx_Design\ivt\ directory.
3. Rename the IVT executable to ivt.exe or replace ivt in the command line with the name of the IVT executable.
4. To run the IVT NCD test, type the following at the command prompt:

 ivt -f SCC_LAB_TOP_ncd.ivt

5. The output for a successful NCD test run is “SUCCESS!”.

Examining the Output from the IVT NCD Test

IVT creates two types of output files. The standard RPT file is a text report file. The SVG output file is a graphical view of the Spartan®-6 device with colored tiles denoting the ownership of the tiles by each isolated or PR area.

IVT RPT Output File

These steps describe how to read the output file from the IVT NCD test:

1. Open the IVT NCD test output file:

 \Xilinx_Design\ivt\SCC_LAB_TOP_ncd.rpt

 All the groups are listed in the Isolated Modules section:

 Isolated Modules

 Group AES module: U1_AES1
 Group AES_r module: U2_AES2
 Group COMPARE module: U3_Comp

2. Ensure that Clocks and Resets are listed in the Uncategorized User Global Nets section. For SCC Trusted Routing designs, signals shared between isolated regions are expected and intended and appear here. An example of global signals are the following Global Clock signals, which are expected to be shared outside of an isolated region:

 Uncategorized User Global Nets

 The nets below are found in multiple isolation groups, therefore it is incumbent upon the user to prove these signals do not violate data isolation requirements. Only power, ground, global clocks, trusted inter-region signals, or explicitly permitted control signals may be global.

 clk_ibufg
 clk0_buf
 clkdev_buf

3. In the Categorized Nets section, ensure that all remaining Clocks are listed in the Nets Driven by Global Clock Sources section:

 The nets listed below present lesser risk than uncategorized nets due to their physical extents or signal sources.
Examining the Output from the IVT NCD Test

Nets Driven by Global Clock Sources (BUFG, DCM, PLL, and PMCD)

clk_fb_i
clk_i

4. Ensure that only trusted bus macros are listed in the Trusted Bus Macro section.

Package Pins, I/O Buffers, and I/O Banks

Note: It is incumbent on the user to verify that pins connected to ignored networks are correct. For example, pins must not be directly connected to bus macros, but pins can be connected to clocks, power, and global resets.

<table>
<thead>
<tr>
<th>Pin(col, row)</th>
<th>Bank</th>
<th>I/O Buffer</th>
<th>Isolation Group</th>
<th>Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>M19(7, 14)</td>
<td>5</td>
<td>PAD158</td>
<td>AES</td>
<td>U1_AES1/reset_IBUF</td>
</tr>
<tr>
<td>L24(5, 14)</td>
<td>1</td>
<td>PAD190</td>
<td>COMPARE</td>
<td>U3_Compl/led_OBUF</td>
</tr>
<tr>
<td>H20(6, 18)</td>
<td>5</td>
<td>PAD133</td>
<td>AES</td>
<td>U1_AES1/push_button_IBUF</td>
</tr>
<tr>
<td>U25(1, 9)</td>
<td>1</td>
<td>PAD217</td>
<td>ignored</td>
<td>clk</td>
</tr>
</tbody>
</table>

The following output in the NCD report indicates that there are no faults in the NCD and lists the time it took to run the test:

Isolation Verification Summary

Tile Adjacency

Net Adjacency Violations: 0
Logic Adjacency Violations: 0

Tile Content

Net Content Violations: 0
Logic Content Violations: 0

Inter-region Signals

Inter-region Net PIP Violations: 0
Inter-region Load Violations: 0

Special Fence Rules

DSP Violations: 0

I/O Isolation

I/O Buffer Isolation Violations: 0
Package Pin Isolation Violations: 0
Bank Isolation Violations: 0

NCD Isolation Verification Summary

Total isolation violations: 0
Unrouted nets: 0

Isolation analysis completed.

Elapsed time: 0:00:53
IVT SVG Output File for NCD Mode

The SVG file `SCC_LAB_TOP_ncd.svg` created by IVT gives a graphical view of the Spartan-6 device with colored tiles denoting the ownership of the tiles by each isolated region. The SVG file also visually highlights that there is a proper fence isolating each of the regions (uncolored tiles). Figure 6-1 shows the SVG output for the Spartan-6 FPGA design used in the SCC lab.

Figure 6-1: IVT SVG File Graphical Output
Isolation Design Flow Progress

The SCC lab is complete with the IVT on NCD File block of the flow diagram, as shown in Figure 6-2.

Figure 6-2: Isolation Design Flow with IVT on NCD File Block Complete
Tactical Patch Needed for ISE Tools 12.3 and 12.4

Due to a software issue in XST, a tactical patch must be used for ISE® Design Suite 12.3 and 12.4. The XST synthesis tool can intermittently remove the buffer on an I/O pin causing the backend implementation tools to optimize out (remove) the apparently unused pin.

Tactical Patch for ISE Tools 12.3 or 12.4 for Windows PC

This section describes how to apply the tactical patch for the ISE tools 12.3 or 12.4 for the Windows PC:

1. Obtain the tactical patch ZIP file for the ISE tools 12.3 or 12.4 at the Isolation Design Flow page on Xilinx.com.
2. Unzip and place the tactical patch in the ISE tools installation path location as shown in the following example (the example shows the installation on the C: drive of a Windows PC):
 C:\Xilinx\TacticalPatch_12.4
3. To point to the proper location for the patch, set the MYXILINX environment variable in the Systems Properties/Environment Variables window to point to the appropriate path where the patch resides, as in this example:
 Variable name: MYXILINX
 Variable value: C:\Xilinx\TacticalPatch_12.4\rtf
4. When the ISE software is invoked, the updated patch for XST runs automatically.

Tactical Patch for ISE Tools 12.3 or 12.4 for the Linux Server

This section describes how to apply the tactical patch for the ISE tools 12.3 or 12.4 for the Linux server:

1. Obtain the tactical patch ZIP file for the ISE tools 12.3 or 12.4 at the Isolation Design Flow page on Xilinx.com.
2. Unzip and place the tactical patch in a known location, as shown in the following example (the example shows the installation on a Linux server):
 $ setenv MYXILINX <install_path>/TacticalPatch_12.4/rtf
3. When the ISE software is invoked, the updated patch for XST runs automatically.