Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

© Copyright 2012–2015 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/23/2012</td>
<td>1.0</td>
<td>Initial Xilinx release.</td>
</tr>
<tr>
<td>07/02/2013</td>
<td>2.0</td>
<td>Updated for Vivado Design Suite 2013.2 release. Updated Extracting the Project Files, GTX Transceiver Clock Connections, Setting Up the Vivado Design Suite, Starting the SuperClock-2 Module, Viewing GTX Transceiver Operation, Closing the IBERT Demonstration, and Creating the GTX IBERT Core. Updated Figure 1-1 and Figure 1-10 through Figure 1-35.</td>
</tr>
<tr>
<td>12/18/2013</td>
<td>4.0</td>
<td>Updated for the Vivado Design Suite 2013.4 release.</td>
</tr>
<tr>
<td>04/16/2014</td>
<td>5.0</td>
<td>Updated for the Vivado Design Suite 2014.1 release. Added note to GTX TX/RX Loopback Connections. Updated Step 4 in Starting the SuperClock-2 Module. Updated In Case of RX Bit Errors. Added a note to Step 5 in Creating the GTX IBERT Core.</td>
</tr>
<tr>
<td>10/08/2014</td>
<td>7.0</td>
<td>Updated for the Vivado Design Suite 2014.3 release. Updated In Case of RX Bit Errors.</td>
</tr>
</tbody>
</table>
Table of Contents

Revision History ... 2

Chapter 1: KC724 IBERT Getting Started Guide

- Overview .. 5
- Requirements .. 6
- Setting Up the KC724 Board ... 6
- Extracting the Project Files ... 7
- Running the GTX IBERT Demonstration 8
 - Connecting the GTX Transceivers and Reference Clocks 8
 - Attach the GTX Quad Connector ... 10
 - GTX Transceiver Clock Connections 11
 - GTX TX/RX Loopback Connections 11
 - Configuring the FPGA ... 13
 - Setting Up the Vivado Design Suite 14
 - Starting the SuperClock-2 Module 17
 - Viewing GTX Transceiver Operation 23
 - In Case of RX Bit Errors .. 23
 - Closing the IBERT Demonstration 24
- SuperClock-2 Frequency Table ... 24
- Creating the GTX IBERT Core ... 26

Appendix A: Additional Resources

- Xilinx Resources .. 41
- Solution Centers ... 41
- References ... 41

Appendix B: Warranty
Overview

This document describes setting up the KC724 Kintex®-7 FPGA GTX Transceiver Characterization Board to run the Integrated Bit Error Ratio Test (IBERT) demonstration using the Vivado® Design Suite. The designs that are required to run the IBERT demonstration are stored in a Secure Digital (SD) memory card that is provided with the KC724 board. The demonstration shows the capabilities of the Kintex-7 XC7K325T FPGA GTX transceiver.

The KC724 board is described in detail in the KC724 Kintex-7 FPGA GTX Transceiver Characterization Board User Guide (UG932) [Ref 1].

The IBERT demonstrations operate one GTX Quad at a time. The procedure consists of:

1. Setting Up the KC724 Board, page 6
2. Extracting the Project Files, page 7
3. Connecting the GTX Transceivers and Reference Clocks, page 8
4. Configuring the FPGA, page 13
5. Setting Up the Vivado Design Suite, page 14
6. Starting the SuperClock-2 Module, page 17
7. Viewing GTX Transceiver Operation, page 23
8. Closing the IBERT Demonstration, page 24
Chapter 1: KC724 IBERT Getting Started Guide

Requirements

The hardware and software required to run the GTX IBERT demonstrations are:

- KC724 Kintex-7 FPGA GTX Transceiver Characterization Board, including:
 - One SD card containing the IBERT demonstration designs
 - One Samtec BullsEye cable
 - Eight SMA female-to-female (F-F) adapters
 - Six 50Ω SMA terminators
 - GTX transceiver power supply module (installed on board)
 - SuperClock-2 module, Rev 1.0 (installed on board)
 - Active BGA Heatsink (installed on FPGA)
 - 12V DC power adapter
 - USB cable, standard-A plug to micro-B plug
- Host PC with:
 - SD card reader
 - USB ports
 - Xilinx® Vivado Design Suite 2015.1

The hardware and software required to rebuild the IBERT demonstration designs are:

- Xilinx Vivado Design Suite 2015.1
- PC with a version of the Windows operating system supported by Xilinx Vivado Design Suite

Setting Up the KC724 Board

This section describes how to set up the KC724 board.

Caution! The KC724 board can be damaged by electrostatic discharge (ESD). Follow standard ESD prevention measures when handling the board, such as using a grounding strap and static dissipative mat.

When the KC724 board ships from the factory, it is configured for the GTX IBERT demonstrations described in this document. If the board has been re-configured it must be returned to the default set-up before running the IBERT demonstrations.

1. Move all jumpers and switches to their default positions. The default jumper and switch positions are listed in the KC724 Kintex-7 FPGA GTX Transceiver Characterization Board User Guide (UG932) [Ref 1].
2. Install the GTX transceiver power module by plugging it into connectors J66 and J97.
3. Install the SuperClock-2 module:
 a. Align the three metal standoffs on the bottom side of the module with the three mounting holes in the SUPERCLOCK-2 MODULE interface of the KC724 board.
 b. Using three 4-40 x 0.25 inch screws, firmly screw down the module from the bottom of the KC724 board.
 c. On the SuperClock-2 module, place a jumper across pins 2–3 (2V5) of the CONTROL VOLTAGE header, J18, and place another jumper across Si570 INH header J11.
Extracting the Project Files

The Vivado Design Suite project files required to run the IBERT demonstrations are located in rdf0184-kc724-ibert-2015-1.zip on the SD card provided with the KC724 board. They are also available online at the Kintex-7 FPGA KC724 Characterization Kit documentation website.

The ZIP file contains these files:

- **BIT Files**
 - kc724_ibert_q115_125.bit
 - kc724_ibert_q116_125.bit
 - kc724_ibert_q117_125.bit
 - kc724_ibert_q118_125.bit

- **Probe Files**
 - kc724_ibert_115_debug_nets.ltx
 - kc724_ibert_116_debug_nets.ltx
 - kc724_ibert_117_debug_nets.ltx
 - kc724_ibert_118_debug_nets.ltx

- **Tcl Scripts**
 - add_scm2.tcl
 - setup_scm2_125_00.tcl

The Tcl scripts are used to help merge the IBERT and SuperClock-2 source code (described in Creating the GTX IBERT Core) and to set up the SuperClock-2 module to run at 125.00 MHz (described in the Setting Up the Vivado Design Suite).

To copy the files from the Secure Digital memory card:

1. Connect the Secure Digital memory card to the host computer.
3. Unzip the files to a working directory on the host computer.

d. Screw down a 50Ω SMA terminator onto each of the six unused Si5368 clock output SMA connectors: J7, J8, J12, J15, J16 and J17.
Running the GTX IBERT Demonstration

The GTX IBERT demonstration operates one GTX Quad at a time. This section describes how to test GTX Quad 115. The remaining GTX Quads are tested following a similar series of steps.

Connecting the GTX Transceivers and Reference Clocks

Figure 1-1 shows the locations for GTX transceiver Quads 115, 116, 117, and 118 on the KC724 board.

Note: Figure 1-1 is for reference only and might not reflect the current revision of the board.

Figure 1-1: GTX Quad Locations
All GTX transceiver pins and reference clock pins are routed from the FPGA to a connector pad that interfaces with Samtec BullsEye connectors. **Figure 1-2 A** shows the connector pad. **Figure 1-2 B** shows the connector pinout.

Figure 1-2: A – GTX Connector Pad. B – GTX Connector Pinout

The SuperClock-2 module provides LVDS clock outputs for the GTX transceiver reference clocks in the IBERT demonstrations. **Figure 1-3** shows the locations of the differential clock SMA connectors on the clock module which can be connected to the reference clock cables.

Note: Figure 1-3 is for reference only and might not reflect the current revision of the board.

Figure 1-3: SuperClock-2 Module Output Clock SMA Locations

The four SMA pairs labeled CLKOUT provide LVDS clock outputs from the Si5368 clock multiplier/jitter attenuator device on the clock module. The SMA pair labeled Si570_CLK provides LVDS clock output from the Si570 programmable oscillator on the clock module.

Note: The Si570 oscillator does not support LVDS output on the Rev B and earlier revisions of the SuperClock-2 module.

For the GTX IBERT demonstration, the output clock frequencies are preset to 125.000 MHz. For more information on the SuperClock-2 module, see the *HW-CLK-101-SCLK2 SuperClock-2 Module User Guide* (UG770) [Ref 2].
Attach the GTX Quad Connector

Before connecting the BullsEye cable assembly to the board, firmly secure the blue elastomer seal provided with the cable assembly to the bottom of the connector housing if it is not already inserted (see Figure 1-4).

Note: Figure 1-4 is for reference only and might not reflect the current version of the connector.

![BullsEye Connector with Elastomer Seal](image1)

Figure 1-4: BullsEye Connector with Elastomer Seal

Attach the Samtec BullsEye connector to GTX Quad 115 (Figure 1-5), aligning the two indexing pins on the bottom of the connector with the guide holes on the board. Hold the connector flush with the board and fasten it by tightening the two captive screws.

![BullsEye Connector Attached to Quad 115](image2)

Figure 1-5: BullsEye Connector Attached to Quad 115
Running the GTX IBERT Demonstration

GTX Transceiver Clock Connections

See Figure 1-2 to identify the P and N coax cables that are connected to the CLK0 reference clock inputs. Connect these cables to the SuperClock-2 Module as follows:

- CLK0_P coax cable → SMA connector J7 (CLKOUT1_P) on the SuperClock-2 Module
- CLK0_N coax cable → SMA connector J8 (CLKOUT1_N) on the SuperClock-2 Module

Note: Any one of the five differential outputs from the SuperClock-2 Module can be used to source the GTX reference clock. CLKOUT1_P and CLKOUT1_N are used here as an example.

GTX TX/RX Loopback Connections

See Figure 1-2 to identify the P and N coax cables that are connected to the four receivers (RX0, RX1, RX2, and RX3) and the four transmitters (TX0, TX1, TX2, and TX3). Use eight SMA female-to-female (F-F) adapters (Figure 1-6), to connect the transmit and receive cables as shown in Figure 1-7:

- TX0_P → SMA F-F Adapter → RX0_P
- TX0_N → SMA F-F Adapter → RX0_N
- TX1_P → SMA F-F Adapter → RX1_P
- TX1_N → SMA F-F Adapter → RX1_N
- TX2_P → SMA F-F Adapter → RX2_P
- TX2_N → SMA F-F Adapter → RX2_N
- TX3_P → SMA F-F Adapter → RX3_P
- TX3_N → SMA F-F Adapter → RX3_N

Note: To ensure good connectivity, it is recommended that the adapters be secured with a wrench; however, do not over-tighten the SMAs.

![SMA F-F Adapter](image_url)
Figure 1-7: TX-To-RX Loopback Connection Example

Figure 1-8 shows the KC724 board with the cable connections required for the Quad 115 GTX IBERT demonstration.

Figure 1-8: Cable Connections for Quad 115 GTX IBERT Demonstration
Configuring the FPGA

This section describes how to configure the FPGA using the SD card included with the board. The FPGA can also be configured through the Vivado Design Suite using the .bit files available on the SD card and online (as collection rdf0184-kc724-ibert-2015-1.zip) at the Kintex-7 FPGA KC724 Characterization Kit documentation website.

To configure from the SD card:

1. Insert the SD card provided with the KC724 board into the SD card reader slot located on the bottom-side (upper-right corner) of the KC724 board.
2. Plug the 12V output from the power adapter into connector J2 on the KC724 board.
3. Connect the host computer to the KC724 board using a standard-A plug to micro-B plug USB cable. The standard-A plug connects to a USB port on the host computer and the micro-B plug connects to U8, the Digilent USB JTAG configuration port on the KC724 board.
4. Select the GTX IBERT demonstration with the System ACE™ SD controller SASD CFG switch, SW8. The setting on this 4-bit DIP switch (Figure 1-9) selects the file used to configure the FPGA. A switch is in the ON position if set to the far right and in the OFF position if set to the far left. For the Quad 115 GTX IBERT demonstration, set ADR2 = ON, ADR1 = ON, and ADR0 = ON. The MODE bit (switch position 4) is not used and can be set either ON or OFF.

![Figure 1-9: Configuration Address DIP Switch (SW8)](UG931_c1_09_072412)

There is one IBERT demonstration design for each GTX Quad on the KC724 board, for a total of four IBERT designs. Four other demonstration designs are included that show other board features (the use of these designs are described in the README file within the SD card). All eight designs are organized and stored on the SD card as shown in Table 1-1.

<table>
<thead>
<tr>
<th>Demonstration Design</th>
<th>ADR2</th>
<th>ADR1</th>
<th>ADR0</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTX Quad 115</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>GTX Quad 116</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>GTX Quad 117</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>GTX Quad 118</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>LED Scroll</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>DIP Switches</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>Push Buttons</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>USB/UART</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>
5. Place the main power switch SW1 to the ON position.

Setting Up the Vivado Design Suite

1. Start the Vivado Design Suite on the host computer and click **Flow > Open Hardware Manager** (highlighted in **Figure 1-10**).

![Figure 1-10: Vivado Design Suite, Open Hardware Manager](image-url)
Running the GTX IBERT Demonstration

2. In the Hardware Manager window (Figure 1-11), click **Open New Target**.

 ![Open New Target](image)

 Figure 1-11: Open a New Hardware Manager

3. An Open Hardware Target wizard opens. Click **Next** in the first window.

4. In the Hardware Server Settings window, select **Local server (target is on local machine)**. Click **Next** to open the server and connect to the Xilinx TCF JTAG cable.
5. In the Select Hardware Target window, the xilinx_tcf cable appears under Hardware Targets, and the JTAG chain contents of the selected cable appear under Hardware Devices (Figure 1-12). Select the xilinx_tcf target and keep the JTAG Clock Frequency at the default value (15 MHz), click Next.

![Select Hardware Target](image)

Figure 1-12: Select Hardware Target

6. In the Open Hardware Target Summary window, click Finish. The wizard closes and the Vivado Design Suite opens the hardware target.

![Open New Hardware Target](image)
Starting the SuperClock-2 Module

The IBERT demonstration designs use an integrated VIO core to control the clocks on the SuperClock-2 module. The SuperClock-2 module features two clock-source components:

- Always-on Si570 crystal oscillator
- Si5368 jitter-attenuating clock multiplier

Outputs from either source can be used to drive the transceiver reference clocks.

To start the SuperClock-2 module:

1. The Vivado Design Suite Hardware window shows the System ACE controller and the XC7K325T device. The XC7K325T device is reported as programmed. In the Hardware Device Properties window, enter the file path to the Q115 Probes file (kc724_ibert_115_debug_nets.ltx) in the extracted IBERT files from the SD card (Figure 1-13).

![Figure 1-13: Adding the Probes File](UG931_c1_13_001914)

Figure 1-13: Adding the Probes File
2. In the Hardware window, right-click **XC7K325T_1** and select **Refresh Device** (Figure 1-14).

 Note: If the FPGA was not programmed using the SD card, provide both the programming and the probes files, and then select **Program Device**.

![Program/Refresh Device](image_url)
3. Vivado Design Suite reports that the XC7K325T is programmed and displays the SuperClock-2 VIO core and the IBERT core. To configure the SuperClock-2 module, click **Tools > Run Tcl Script** (Figure 1-15). In the Run Script window, navigate to the `setup_scm2_125_00.tcl` script in the extracted files and click **OK**.

Figure 1-15: Run Tcl Script
4. To view the SuperClock-2 settings in the VIO core, select the probe signal from the Debug Probes window and drag it to the VIO-hw_vio_1 window. For example, the frequencies, ROM addresses, and start signals are selected (Figure 1-16).

Note: The ROM address values for the Si5368 and Si570 devices (i.e., Si5368 ROM Addr and Si570 ROM Addr) are preset to 19 to produce an output frequency of 125.000 MHz. Entering a different ROM address changes the reference clock(s) frequency. The complete list of pre-programmed SuperClock-2 frequencies and their associated ROM addresses is provided in Table 1-2, page 24.

Figure 1-16: SuperClock-2 Module VIO Core
5. To view the GTX transceiver operation, click **Layout > Serial I/O Analyzer**. From the top of the Hardware Manager window, select **Auto-Detect Links** to display all available links automatically. Links can also be created manually in the Links window by right-clicking and selecting **Create Links**, or by clicking the Create Links button (Figure 1-17).
6. If links are created manually, the Create Links window is displayed. The options in this window are used to link any TX GT to any RX GT. To create links, select the TX GT and RX GT from the two lists then click the Add (+) button. For this project, connect the following links (Figure 1-18):

- MGT_X0Y0/TX to MGT_X0Y0/RX
- MGT_X0Y1/TX to MGT_X0Y1/RX
- MGT_X0Y2/TX to MGT_X0Y2/RX
- MGT_X0Y3/TX to MGT_X0Y3/RX

Figure 1-18: Create Links Window
Viewing GTX Transceiver Operation

After completing step 6 in Starting the SuperClock-2 Module, the IBERT demonstration is configured and running. The status and test settings are displayed on the Links tab in the Links window shown in Figure 1-19.

Note the line rate and RX bit error count:

- The line rate for all four GTX transceivers is 12.5 Gb/s (see MGT Link Status in Figure 1-19).
- Verify that there are no bit errors.

In Case of RX Bit Errors

If there are initial bit errors after linking, or as a result of changing the TX or RX pattern, click the respective BERT Reset button to zero the count.

If the MGT Link Status shows No Link for one or more transceivers:

- Make sure the blue elastomer seal is connected to the bottom of the BullsEye cable and the cable is firmly connected and flush on the board.
- Increase the TX differential swing of the transceiver (to compensate for any loss due to PCB process variation).
- Click the respective TX Reset button followed by BERT Reset.

Additional information on the Vivado Design Suite and IBERT core can be found in Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 3] and in LogiCORE IP Integrated Bit Error Ratio Tester (IBERT) for 7 Series GTX Transceivers Product Guide for Vivado.
Chapter 1: KC724 IBERT Getting Started Guide

Closing the IBERT Demonstration

To stop the IBERT demonstration:
1. Close the Vivado Design Suite by selecting **File > Exit**.
2. Place the main power switch SW1 in the off position.

SuperClock-2 Frequency Table

Table 1-2 lists the addresses for the frequencies that are programmed into the SuperClock-2 read-only-memory (ROM).

<table>
<thead>
<tr>
<th>Address</th>
<th>Protocol</th>
<th>Frequency (MHz)</th>
<th>Address</th>
<th>Protocol</th>
<th>Frequency (MHz)</th>
<th>Address</th>
<th>Protocol</th>
<th>Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100GE/40GE/10GE</td>
<td>161.130</td>
<td>30</td>
<td>OBSAI</td>
<td>307.200</td>
<td>60</td>
<td>XAUI</td>
<td>156.250</td>
</tr>
<tr>
<td>1</td>
<td>Aurora</td>
<td>81.250</td>
<td>31</td>
<td>OBSAI</td>
<td>614.400</td>
<td>61</td>
<td>XAUI</td>
<td>312.500</td>
</tr>
<tr>
<td>2</td>
<td>Aurora</td>
<td>162.500</td>
<td>32</td>
<td>OC-48</td>
<td>19.440</td>
<td>62</td>
<td>XAUI</td>
<td>625.000</td>
</tr>
<tr>
<td>3</td>
<td>Aurora</td>
<td>325.000</td>
<td>33</td>
<td>OC-48</td>
<td>77.760</td>
<td>63</td>
<td>Generic</td>
<td>66.667</td>
</tr>
<tr>
<td>4</td>
<td>Aurora</td>
<td>650.000</td>
<td>34</td>
<td>OC-48</td>
<td>155.520</td>
<td>64</td>
<td>Generic</td>
<td>133.333</td>
</tr>
<tr>
<td>5</td>
<td>CE111</td>
<td>173.370</td>
<td>35</td>
<td>OC-48</td>
<td>311.040</td>
<td>65</td>
<td>Generic</td>
<td>166.667</td>
</tr>
<tr>
<td>6</td>
<td>CPRI™</td>
<td>61.440</td>
<td>36</td>
<td>OC-48</td>
<td>622.080</td>
<td>66</td>
<td>Generic</td>
<td>266.667</td>
</tr>
<tr>
<td>7</td>
<td>CPRI</td>
<td>122.880</td>
<td>37</td>
<td>OTU-1</td>
<td>166.629</td>
<td>67</td>
<td>Generic</td>
<td>333.333</td>
</tr>
<tr>
<td>8</td>
<td>CPRI</td>
<td>153.630</td>
<td>38</td>
<td>OTU-1</td>
<td>333.257</td>
<td>68</td>
<td>Generic</td>
<td>533.333</td>
</tr>
<tr>
<td>9</td>
<td>CPRI</td>
<td>245.760</td>
<td>39</td>
<td>OTU-1</td>
<td>666.514</td>
<td>69</td>
<td>Generic</td>
<td>644.000</td>
</tr>
<tr>
<td>10</td>
<td>CPRI</td>
<td>491.520</td>
<td>40</td>
<td>OTU-1</td>
<td>666.750</td>
<td>70</td>
<td>Generic</td>
<td>666.667</td>
</tr>
<tr>
<td>11</td>
<td>Display Port</td>
<td>67.500</td>
<td>41</td>
<td>OTU-2</td>
<td>167.330</td>
<td>71</td>
<td>Generic</td>
<td>205.000</td>
</tr>
<tr>
<td>12</td>
<td>Display Port</td>
<td>81.000</td>
<td>42</td>
<td>OTU-2</td>
<td>669.310</td>
<td>72</td>
<td>Generic</td>
<td>210.000</td>
</tr>
<tr>
<td>13</td>
<td>Display Port</td>
<td>135.000</td>
<td>43</td>
<td>OTU-3</td>
<td>168.050</td>
<td>73</td>
<td>Generic</td>
<td>215.000</td>
</tr>
<tr>
<td>14</td>
<td>Display Port</td>
<td>162.000</td>
<td>44</td>
<td>OTU-4</td>
<td>174.690</td>
<td>74</td>
<td>Generic</td>
<td>220.000</td>
</tr>
<tr>
<td>15</td>
<td>Fibrechannel</td>
<td>106.250</td>
<td>45</td>
<td>PCIe®</td>
<td>100.000</td>
<td>75</td>
<td>Generic</td>
<td>225.000</td>
</tr>
<tr>
<td>16</td>
<td>Fibrechannel</td>
<td>212.500</td>
<td>46</td>
<td>PCIe</td>
<td>125.000</td>
<td>76</td>
<td>Generic</td>
<td>230.000</td>
</tr>
<tr>
<td>17</td>
<td>Fibrechannel</td>
<td>425.000</td>
<td>47</td>
<td>PCIe</td>
<td>250.000</td>
<td>77</td>
<td>Generic</td>
<td>235.000</td>
</tr>
<tr>
<td>18</td>
<td>GigE</td>
<td>62.500</td>
<td>48</td>
<td>SATA</td>
<td>75.000</td>
<td>78</td>
<td>Generic</td>
<td>240.000</td>
</tr>
<tr>
<td>19</td>
<td>GigE</td>
<td>125.000</td>
<td>49</td>
<td>SATA</td>
<td>150.000</td>
<td>79</td>
<td>Generic</td>
<td>245.000</td>
</tr>
<tr>
<td>20</td>
<td>GigE</td>
<td>250.000</td>
<td>50</td>
<td>SATA</td>
<td>300.000</td>
<td>80</td>
<td>Generic</td>
<td>250.000</td>
</tr>
<tr>
<td>21</td>
<td>GigE</td>
<td>500.000</td>
<td>51</td>
<td>SATA</td>
<td>600.000</td>
<td>81</td>
<td>Generic</td>
<td>255.000</td>
</tr>
<tr>
<td>22</td>
<td>GPON</td>
<td>187.500</td>
<td>52</td>
<td>SDI</td>
<td>74.250</td>
<td>82</td>
<td>Generic</td>
<td>260.000</td>
</tr>
<tr>
<td>23</td>
<td>Interlaken</td>
<td>132.813</td>
<td>53</td>
<td>SDI</td>
<td>148.500</td>
<td>83</td>
<td>Generic</td>
<td>265.000</td>
</tr>
<tr>
<td>24</td>
<td>Interlaken</td>
<td>195.313</td>
<td>54</td>
<td>SDI</td>
<td>297.000</td>
<td>84</td>
<td>Generic</td>
<td>270.000</td>
</tr>
</tbody>
</table>
Table 1-2: Si570 and Si5368 Frequency Table (Cont’d)

<table>
<thead>
<tr>
<th>Address</th>
<th>Protocol</th>
<th>Frequency (MHz)</th>
<th>Address</th>
<th>Protocol</th>
<th>Frequency (MHz)</th>
<th>Address</th>
<th>Protocol</th>
<th>Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Interlaken</td>
<td>265.625</td>
<td>55</td>
<td>SDI</td>
<td>594.000</td>
<td>85</td>
<td>Generic</td>
<td>275.000</td>
</tr>
<tr>
<td>26</td>
<td>Interlaken</td>
<td>390.625</td>
<td>56</td>
<td>SMPTE435M</td>
<td>167.063</td>
<td>86</td>
<td>Generic</td>
<td>280.000</td>
</tr>
<tr>
<td>27</td>
<td>Interlaken</td>
<td>531.250</td>
<td>57</td>
<td>SMPTE435M</td>
<td>334.125</td>
<td>87</td>
<td>Generic</td>
<td>285.000</td>
</tr>
<tr>
<td>28</td>
<td>OBSAI</td>
<td>76.800</td>
<td>58</td>
<td>SMPTE435M</td>
<td>668.250</td>
<td>88</td>
<td>Generic</td>
<td>290.000</td>
</tr>
<tr>
<td>29</td>
<td>OBSAI</td>
<td>153.600</td>
<td>59</td>
<td>XAUI</td>
<td>78.125</td>
<td>89</td>
<td>Generic</td>
<td>295.000</td>
</tr>
<tr>
<td>90</td>
<td>Generic</td>
<td>300.000</td>
<td>103</td>
<td>Generic</td>
<td>365.000</td>
<td>116</td>
<td>Generic</td>
<td>430.000</td>
</tr>
<tr>
<td>91</td>
<td>Generic</td>
<td>305.000</td>
<td>104</td>
<td>Generic</td>
<td>370.000</td>
<td>117</td>
<td>Generic</td>
<td>435.000</td>
</tr>
<tr>
<td>92</td>
<td>Generic</td>
<td>310.000</td>
<td>105</td>
<td>Generic</td>
<td>375.000</td>
<td>118</td>
<td>Generic</td>
<td>440.000</td>
</tr>
<tr>
<td>93</td>
<td>Generic</td>
<td>315.000</td>
<td>106</td>
<td>Generic</td>
<td>380.000</td>
<td>119</td>
<td>Generic</td>
<td>445.000</td>
</tr>
<tr>
<td>94</td>
<td>Generic</td>
<td>320.000</td>
<td>107</td>
<td>Generic</td>
<td>385.000</td>
<td>120</td>
<td>Generic</td>
<td>450.000</td>
</tr>
<tr>
<td>95</td>
<td>Generic</td>
<td>325.000</td>
<td>108</td>
<td>Generic</td>
<td>390.000</td>
<td>121</td>
<td>Generic</td>
<td>455.000</td>
</tr>
<tr>
<td>96</td>
<td>Generic</td>
<td>330.000</td>
<td>109</td>
<td>Generic</td>
<td>395.000</td>
<td>122</td>
<td>Generic</td>
<td>460.000</td>
</tr>
<tr>
<td>97</td>
<td>Generic</td>
<td>335.000</td>
<td>110</td>
<td>Generic</td>
<td>400.000</td>
<td>123</td>
<td>Generic</td>
<td>465.000</td>
</tr>
<tr>
<td>98</td>
<td>Generic</td>
<td>340.000</td>
<td>111</td>
<td>Generic</td>
<td>405.000</td>
<td>124</td>
<td>Generic</td>
<td>470.000</td>
</tr>
<tr>
<td>99</td>
<td>Generic</td>
<td>345.000</td>
<td>112</td>
<td>Generic</td>
<td>410.000</td>
<td>125</td>
<td>Generic</td>
<td>475.000</td>
</tr>
<tr>
<td>100</td>
<td>Generic</td>
<td>350.000</td>
<td>113</td>
<td>Generic</td>
<td>415.000</td>
<td>126</td>
<td>Generic</td>
<td>480.000</td>
</tr>
<tr>
<td>101</td>
<td>Generic</td>
<td>355.000</td>
<td>114</td>
<td>Generic</td>
<td>420.000</td>
<td>127</td>
<td>Generic</td>
<td>485.000</td>
</tr>
<tr>
<td>102</td>
<td>Generic</td>
<td>360.000</td>
<td>115</td>
<td>Generic</td>
<td>425.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Creating the GTX IBERT Core

The Vivado Design Suite 2015.1 is required to rebuild the designs shown here.

This section provides a procedure to create a single Quad GTX IBERT core with integrated SuperClock-2 controller. The procedure assumes Quad 115 and 12.5 Gb/s line rate, but cores for any of the GTX Quads with any supported line rate can be created following the same series of steps.

For more details on generating IBERT cores, see Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 3].

1. Start the Vivado Design Suite.
2. In the Vivado Design Suite window, click Manage IP (highlighted in Figure 1-20) and select New IP Location.

![Vivado Design Suite Initial Window](Image)

Figure 1-20: Vivado Design Suite Initial Window
3. When the Create a New Customized IP Location dialog window opens (not shown), click **Next**.

4. In the Manage IP Settings window, select a part by clicking the (...) button next to the Part field. A Select Device window is displayed. Use the drop-down menu items to narrow the choices. Select the **xc7k325tffg900-3** device (**Figure 1-21**). Click **OK**.

![Select Device](image)

Figure 1-21: Select Device
5. Back on the Manage IP Catalog window, select **Verilog** for Target language, **Vivado Simulator** for Target simulator, **Mixed** for Simulator language, and a directory to save the customized IP (Figure 1-22). Click **Finish**.

Note: Make sure the directory name does not include spaces.

Figure 1-22: Manage IP Settings
6. In the IP Catalog window, open the **Debug & Verification** folder, open the **Debug** folder, and double-click **IBERT 7 Series GTX** (Figure 1-23).

![IP Catalog](image)

Figure 1-23: IP Catalog
7. A Customize IP window opens. In the **Protocol Definition** tab, change LineRate(Gb/s) to **12.5** and change Refclk (MHz) to **125.00**. Keep defaults for other fields (**Figure 1-24**).

![Customize IP - Protocol Definition](image-url)
8. In the **Protocol Selection** tab, use the Protocol Selected drop-down menu next to QUAD_115 to select **Custom 1 / 12.5 Gbps** (Figure 1-25).

![Figure 1-25: Customize IP - Protocol Selection](image_url)
9. In the **Clock Settings** tab, select **DIFF SSTL15** for the I/O Standard, enter **C25** for the P Package Pin, enter **B25** for the N Package Pin (the FPGA pins that the system clock connects to), and make sure the Frequency (MHz) is set to **200.00** (Figure 1-26). Click **OK**. Click **Generate** in the next window to generate the output products.

Figure 1-26: Customize IP - Clock Settings
10. Back on the Manage IP Catalog window, in the Sources window, right-click the IBERT IP and select **Open IP Example Design** (Figure 1-27). Specify a location to save the design, click **OK**, and the design opens in a new Vivado Design Suite window.

![Figure 1-27: Open IP Example Design](image.png)
11. In the new window, select **Tools > Run Tcl Script**. In the Run Script window, navigate to `add_scm2.tcl` in the extracted files and click **OK**. The SuperClock-2 Module Design Sources and Constraints are automatically added to the example design (Figure 1-28).

![Project Manager](image)

Figure 1-28: Sources after Running add_scm2.tcl
12. The SuperClock-2 source code needs to be added to the example IBERT wrapper. Double-click `example_ibert_7series_gtx_0.v` in Design Sources to open the Verilog code of the example. Add the top-level ports from `top_scm2.v` to the module declaration and instantiate the `top_scm2` module in the example IBERT wrapper (Figure 1-29). The code is also available in `scm2_merge_source.txt`. Click File > Save File.

![SuperClock-2 in the Example IBERT Wrapper](image)

Figure 1-29: SuperClock-2 in the Example IBERT Wrapper
13. In the Sources window, Design Sources should now reflect that the SuperClock-2 module is part of the example IBERT design.

![Design Sources File Hierarchy]

Figure 1-30: Design Sources File Hierarchy
14. Click Run Synthesis in the Flow Navigator to synthesize the design.

Figure 1-31: Run Synthesis
15. When the synthesis is done a Synthesis Completed window opens. Select **Open Synthesized Design** and click **OK** (Figure 1-32).
16. When the Synthesized Design opens, select `dbg_hub` in the Netlist window, and then select the **Debug Core Options** tab in the Cell Properties window and change `C_USER_SCAN_CHAIN` to 3 (Figure 1-33). Click **File > Save File Constraints**.

![Figure 1-33: Debug Core Options for dbg_hub](image)
17. In the Program Manager window under Program and Debug, click **Generate Bitstream**. A window pops up asking if it is Okay to launch implementation. Click **Yes**.

![Image](UG001_c1_34_121213.png)

Figure 1-34: Generate Bitstream

18. When the Bitstream Generation Completed dialog window appears, click **Cancel** (Figure 1-35).

![Image](UG001_c1_35_051414.png)

Figure 1-35: Bitstream Generation Completed

19. Navigate to the `..\ibert_7series_gtx_0\ibert_7series_gtx_0_example\ibert_7series_gtx_0_example.runs\impl_1` directory to locate the generated bitstream.
Appendix A

Additional Resources

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see the Xilinx Support website.

For continual updates, add the Answer Record to your myAlerts.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual property at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting tips.

References

The most up to date information related to the KC724 board and its documentation is available on these websites:

- Kintex-7 FPGA KC724 Characterization Kit
- Kintex-7 FPGA KC724 Characterization Kit documentation
- Kintex-7 FPGA KC724 Characterization Kit Answer Record (AR 43390)

These documents provide supplemental material useful with this guide:

1. KC724 Kintex-7 FPGA GTX Transceiver Characterization Board User Guide (UG932)
2. HW-CLK-101-SCLK2 SuperClock-2 Module User Guide (UG770)
Appendix B

Warranty

THIS LIMITED WARRANTY applies solely to standard hardware development boards and standard hardware programming cables manufactured by or on behalf of Xilinx (“Development Systems”). Subject to the limitations herein, Xilinx warrants that Development Systems, when delivered by Xilinx or its authorized distributor, for ninety (90) days following the delivery date, will be free from defects in material and workmanship and will substantially conform to Xilinx publicly available specifications for such products in effect at the time of delivery. This limited warranty excludes:

(i) engineering samples or beta versions of Development Systems (which are provided “AS IS” without warranty); (ii) design defects or errors known as “errata”; (iii) Development Systems procured through unauthorized third parties; and (iv) Development Systems that have been subject to misuse, mishandling, accident, alteration, neglect, unauthorized repair or installation. Furthermore, this limited warranty shall not apply to the use of covered products in an application or environment that is not within Xilinx specifications or in the event of any act, error, neglect or default of Customer. For any breach by Xilinx of this limited warranty, the exclusive remedy of Customer and the sole liability of Xilinx shall be, at the option of Xilinx, to replace or repair the affected products, or to refund to Customer the price of the affected products. The availability of replacement products is subject to product discontinuation policies at Xilinx. Customer may not return product without first obtaining a customer return material authorization (RMA) number from Xilinx.

THE WARRANTIES SET FORTH HEREIN ARE EXCLUSIVE. XILINX DISCLAIMS ALL OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, AND ANY WARRANTY THAT MAY ARISE FROM COURSE OF DEALING, COURSE OF PERFORMANCE, OR USAGE OF TRADE. (2008.10)

Do not throw Xilinx products marked with the “crossed out wheeled bin” in the trash. Directive 2002/96/EC on waste electrical and electronic equipment (WEEE) requires the separate collection of WEEE. Your cooperation is essential in ensuring the proper management of WEEE and the protection of the environment and human health from potential effects arising from the presence of hazardous substances in WEEE. Return the marked products to Xilinx for proper disposal. Further information and instructions for free-of-charge return available at: www.xilinx.com/ehs/weee.