Getting Started with the Xilinx Virtex-6 FPGA ML605 Evaluation Kit
DISCLAIMER

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials, or to advise you of any corrections or update. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

Revision History

The following table shows the revision history for this document.

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>06/24/09</td>
<td>1.0</td>
<td>Xilinx Preliminary Release.</td>
</tr>
<tr>
<td>11/18/09</td>
<td>1.1</td>
<td>Xilinx Initial Release.</td>
</tr>
<tr>
<td>12/08/09</td>
<td>1.1.1</td>
<td>Initial Release to the Web.</td>
</tr>
</tbody>
</table>
| 12/23/09 | 1.2 | • Added “Getting Started with the Base Reference Design.”
| | | • Updated Figure 1-1, page 10, Figure 1-2, page 10, and Figure 1-20, page 23.
| | | • Miscellaneous typographical edits. |
| 01/22/10 | 1.2.1 | • Minor typographical edit. |
| 06/07/10 | 1.3 | Revised Figure 1-22, page 24 and Figure 1-29, page 30. |
| 11/15/10 | 1.4 | Revised “Installing the ISE Software,” page 61 describing the use of the software voucher as part of the software registration process. |
| 11/20/11 | 1.5 | Removed suggestion that reader can use one of their own images (page 57). |
Table of Contents

Preface: About This Guide

- Additional Documentation .. 5
- Additional Support Resources ... 6
- Introduction .. 7
 - ML605 Evaluation Kit Contents .. 7
- Key Features .. 8
 - Virtex-6 FPGA ... 8
 - Configuration ... 8
 - Communication and Networking ... 8
 - Memory .. 8
 - Clocking .. 8
 - Input/Output and Expansion Ports .. 9
 - Power ... 9
- Getting Started with the Flash Demonstration 9
 - Board Features ... 10
 - Connecting the Cables and Power ... 11
 - Setting the System Properties .. 12
 - Configuring the FPGA .. 15
 - Running the BIST Application .. 17
- Getting Started with PCI Express PIO Demonstration 28
 - System Requirements, Installation, and Setup 29
 - Running the PCI Express PIO Demonstration 31
 - Configuration Registers Test .. 32
 - Base Address Register (BAR) Test 38
- Getting Started with the Base Reference Design 43
 - Setting up the Hardware for the Base Reference Design 44
 - Installing Base Reference Design Application GUI 44
 - Running the Base Reference Design 55
- Installing the ISE Software .. 61
 - Redeeming the Software and IP License 62
- Now What? .. 67
- Getting Additional Help and Support ... 68
 - Support .. 68
- Warranty .. 69

Appendix A: References
Preface

About This Guide

This user guide introduces the Virtex®-6 FPGA ML605 board features, provides instructions for setting up the hardware, and includes step-by-step procedures for verifying the ML605 board functionality.

Additional Documentation

The following documents are also available for download at http://www.xilinx.com/support/documentation/virtex-6.htm.

- Virtex-6 Family Overview
 The features and product selection of the Virtex-6 family are outlined in this overview.

- Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
 This data sheet contains the DC and Switching Characteristic specifications for the Virtex-6 family.

- Virtex-6 FPGA Packaging and Pinout Specifications
 This specification includes the tables for device/package combinations and maximum I/Os, pin definitions, pinout tables, pinout diagrams, mechanical drawings, and thermal specifications.

- Virtex-6 FPGA Configuration Guide
 This all-encompassing configuration guide includes chapters on configuration interfaces (serial and SelectMAP), bitstream encryption, boundary-scan and JTAG configuration, reconfiguration techniques, and readback through the SelectMAP and JTAG interfaces.

- Virtex-6 FPGA Clocking Resources User Guide
 This guide describes the clocking resources available in all Virtex-6 devices, including the MMCM and PLLs.

- Virtex-6 FPGA Memory Resources User Guide
 The functionality of the block RAM and FIFO are described in this user guide.

- Virtex-6 FPGA SelectIO Resources User Guide
 This guide describes the SelectIO™ resources available in all Virtex-6 devices.

- Virtex-6 FPGA GTX Transceivers User Guide
 This guide describes the GTX transceivers available in all Virtex-6 FPGAs except the XC6VLX760.
Preface: About This Guide

- Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC User Guide
 This guide describes the dedicated Tri-Mode Ethernet Media Access Controller available in all Virtex-6 FPGAs except the XC6VLX760.

- Virtex-6 FPGA DSP48E1 Slice User Guide
 This guide describes the architecture of the DSP48E1 slice in Virtex-6 FPGAs and provides configuration examples.

- Virtex-6 FPGA System Monitor User Guide
 The System Monitor functionality available in all Virtex-6 devices is outlined in this guide.

- Virtex-6 FPGA PCB Design Guide
 This guide provides information on PCB design for Virtex-6 devices, with a focus on strategies for making design decisions at the PCB and interface level.

Additional Support Resources

To search the database of silicon and software questions and answers or to create a technical support case in WebCase, see the Xilinx website at:

Introduction

The Virtex®-6 FPGA ML605 Evaluation Kit provides a development environment for system designs that demand high-performance, serial connectivity and advanced memory interfacing. The ML605 is supported by multiple targeted reference designs and the industry-standard FPGA Mezzanine Connector (FMC) that allows scaling and customization with mezzanine cards. Integrated tools help streamline the creation of elegant solutions to complex design requirements. This document provides:

- Introduction to the board’s features
- Instruction for default hardware setup
- Step-by-step procedure for verifying the board’s functionality

ML605 Evaluation Kit Contents

What is Inside the Box

- Virtex-6 FPGA ML605 Evaluation Board
- Universal 12V power supply
- Two (2) USB A/Mini-B cables (used for download and debug)
- CompactFlash Card
- DVI to VGA Adapter
- Ethernet Cat5 Cable
- ISE® Design Suite DVD
- ML605 Documentation
 - Welcome Letter
 - Hardware Setup Guide
 - Getting Started Guide
Key Features

What is Available on the Web

- Product Home Page: www.xilinx.com/ml605
- Reference design user guide, tutorials, and design files
- Schematics, Gerber, and board bill of materials (BOM)
- Additional detailed documentation

Key Features

Virtex-6 FPGA

- XC6VLX240T-1FFG1156 device

Configuration

- Onboard configuration circuitry (USB to JTAG)
- 16 MB Platform Flash XL
- 32 MB Parallel (BPI) Flash
- System ACE™ CompactFlash (CF) controller

Communication and Networking

- 10/100/1000 Tri-Speed Ethernet (GMII, RGMII, SGMII, MII)
- SFP transceiver connector
- GTX port (TX/RX,) with four SMA connectors
- USB to UART Bridge
- USB host port and USB peripheral port
- PCI Express® Gen1 8-lane (x8) and Gen2 4-lane (x4)

Memory

- DDR3 SODIMM (512 MB)
- Linear BPI Flash (32 MB) (Also available for configuration)
- IIC EEPROM (8 Kb)

Clocking

- 200 MHz oscillator (differential)
- 66 MHz socketed oscillator (single-ended)
- SMA connectors for external clock (differential)
- GTX clock port with two SMA connectors
Input/Output and Expansion Ports

- 16x2 LCD character display
- DVI output
- System Monitor
- User pushbuttons (5), DIP switches (8), LEDs (13)
- User GPIO with two SMA connectors
- Two FMC expansion ports
 - High Pin Count (HPC)
 - Eight GTX transceivers
 - 160 SelectIO™ interface signals
 - Low Pin Count (LPC)
 - One GTX transceiver
 - 68 SelectIO interface signals

Power

- 12V wall adapter or ATX
- Voltage and current measurement capability of 12V, 2.5V, 1.5V, 1.2V, and 1.0V supplies

Getting Started with the Flash Demonstration

Before installing the software, you can run some of the demonstration designs that are pre-installed on the BPI Flash, Platform Flash, and CompactFlash cards on the ML605 Evaluation Board. These demonstrations provide an overview of the board features. This evaluation kit comes with a number of pre-installed demonstrations and examples, as well as additional reference designs and application notes found on the Xilinx website. The default demonstrations on the Platform Flash and CompactFlash exercise some of the board features including verifying PCI Express connectivity and testing the UART, Ethernet, DDR3, IIC, LEDs, and other commonly used embedded processing features.
Board Features

The ML605 board features are shown in Figure 1-1. The default switch and jumper settings are shown in Figure 1-2.

Figure 1-1: Virtex-6 FPGA ML605 Board Features

Figure 1-2: Default Jumper and Switches Settings
Connecting the Cables and Power

The steps in this section outline how to connect the cables and power.

1. Connect one USB Type-A to mini-B 5-pin cables from your PC to J21 on the ML605 board.

2. Power on ML605 board for UART Drivers Installation

 Note: The drivers are also available on the USB flash drive shipped with the board.
Setting the System Properties

3. Right-click **My Computer** and select **Properties**
 a. Select the Hardware tab
 b. Click on **Device Manager**

Figure 1-4: Select the Device Manager
4. Expand the Ports Hardware
 a. Right-click on USB to UART Bridge and select **Properties**.
5. Under the Port Settings tab
 a. Click **Advanced**
 b. Set the COM Port to an open Com Port setting from COM1 to COM4.

6. Start the Tera Terminal Program (downloadable from http://www.ayera.com/teraterm)
 a. Select your USB com port from the Port drop down window
 b. Set the baud rate to 9600
Configuring the FPGA

7. Set the DIP switch S1 to 1000 (position 4 to position 1).

8. Insert the CompactFlash card into the card reader and press SW3, the System ACE Reset pushbutton. The CompactFlash card contains a Built-In System Test (BIST) design which is used for verification of the board’s functionality.
9. After FPGA configuration, a menu of feature tests appears as shown in the Tera Terminal window (Figure 1-10).

![Initial Test Menu after FPGA Configuration](image-url)
Running the BIST Application

Typing any number or character between 1 to D makes the bootloader copy the associated software application to the external DDR3 SODIMM memory and run it.

10. Type a 1 to start the UART test.

11. Type a 2 to start the LED test.
12. Type a 3 to start the Timer test.

![Tera Term - COM2 VT](image1.png)

13. Type a 4 to start the flash test.

![Tera Term - COM2 VT](image2.png)
14. Type a **5** to start the IIC EEPROM test.

15. Type a **6** to start the Ethernet Loopback (Temac) test. This takes approximately 10 seconds to complete.

Figure 1-15: 5. IIC EEPROM Test

Figure 1-16: 6. Temac Test
16. Type a 7 to start the GPIO Switch test.

![Tera Term - COM2 VT](image)

Figure 1-17: 7. GPIO Switch Test
17. Type an 8 to start the External Memory (Multi-Port Memory Controller, MPMC) test. This takes approximately 20 minutes to complete.

![Command Output](image)

Multi-Port Memory Controller Memory Test

Testing address range 0x50200000-0x5FFFFFFF.

Iteration 1 of 1

Pass A) ICache: On, DCache: On

TEST0: Write all memory to 0x00000000 and check
Writing...
Reading...
Test Complete Status = SUCCESS

TEST1: Write all memory to 0xFFFFFFFF and check
Writing...
Reading...
Test Complete Status = SUCCESS

TEST2: Testing for stuck together bank/row/col bits
Clearing memory to zeros...
Writing and Reading...
Test Complete Status = SUCCESS

TEST3: Testing for maximum ba/row/col noise
This test performs 16 word writes followed by 16 word reads
Each 64 bytes inverts the ba/row/col address
Initializing Memory to 0xA5A5A5A5...
Writing and Reading...
Test Complete Status = SUCCESS

TEST4: Testing for Inverse Data at Address
Writing...
Reading...
Test Complete Status = SUCCESS

Number of errors in this pass = 0

Figure 1-18: 8. MPMC Test
Figure 1-19 shows the MPMC test status.

![Tera Term - COM2 VT](image)

Pass B> ICache: Off, DCache: Off
 TEST0: Write all memory to 0x00000000 and check
 Writing...
 Reading...
 Test Complete Status = SUCCESS
 TEST1: Write all memory to 0xFFFFFFFF and check
 Writing...
 Reading...
 Test Complete Status = SUCCESS

 TEST2: Testing for stuck together bank/row/col bits
 Clearing memory to zeros...
 Writing and Reading...
 Test Complete Status = SUCCESS

 TEST3: Testing for maximum ba/row/col noise
 This test performs 16 word writes followed by 16 word reads
 Each 64 bytes inverts the ba/row/col address
 Initializing Memory to 0xA5A5A5A5...
 Writing and Reading...
 Test Complete Status = SUCCESS
 TEST4: Testing for Inverse Data at Address
 Writing...
 Reading...
 Test Complete Status = SUCCESS

 Number of errors in this pass = 0

MPMC memory test iteration #1 has PASSED!
Total number of errors for all iterations = 0
Program finished successfully
18. Type a 9 to start the System Monitor test.

![Tera Term - COM2 VT]

Figure 1-20: 9. System Monitor Test
19. Type an A to test the North, South, East, West, and Center pushbuttons (as shown in Figure 1-21).

![ML605 North, South, East, West, and Center Pushbuttons](image)

Figure 1-21: ML605 North, South, East, West, and Center Pushbuttons

Figure 1-22 shows the test menu.

![Tera Term VT window](image)

Figure 1-22: Pushbutton Test
20. Type a B to start the LCD test.
21. Type a C to start the System ACE CF test.
22. Connect a DVI monitor to the ML605 board using the connector shown in Figure 1-25. The DVI/VGA adapter provided in the ML605 Evaluation Kit can be used to connect a VGA monitor.

![ML605 DVI Connector](image)

Figure 1-25: ML605 DVI Connector

23. Type a D to start the DVI/VGA (TFT) test. The test patterns indicated in Figure 1-26 appear on the monitor.

![TFT Test](image)

Figure 1-26: TFT Test
Getting Started with PCI Express PIO Demonstration

The LogiCORE™ IP Virtex-6 Integrated Block for PCI Express® core is a high-bandwidth, scalable, and reliable serial interconnect building block for use with Virtex-6 FPGA devices. The Integrated Block for PCI Express solution supports 1-lane, 2-lane, 4-lane, and 8-lane Endpoint and Root Port configurations at up to Gen2 speed, all of which are compliant with the PCI Express Base Specification, v2.0.

For information about the internal architecture of the Virtex-6 FPGA Integrated Block, see the LogiCORE™ IP Virtex-6 FPGA Integrated Block User Guide for PCI Express. [Ref 18]

Figure 1-27 illustrates the interfaces to the core.

![Figure 1-27: Interfaces to the Core](UG533_11_101609)

The ML605 x8 PCI Express Gen 1 Programmed Input Output (PIO) design consists of a simple example that can accept read and write transactions and respond to requests. PIO transactions are generally used by a PCI Express system host CPU to access Memory Mapped Input Output (MMIO) and Configuration Mapped Input Output (CMIO) locations in the PCI Express fabric. Endpoints for PCI Express accept Memory and IO Write transactions and respond to Memory and IO Read transactions with Completion with Data transactions.

The ML605 PIO example design is included with the Endpoint for PCIe generated by the CORE Generator, which allows users to easily bring up their system board with a known established working design to verify the link and functionality of the board.

System Requirements, Installation, and Setup

Software Requirement

PciTree is a graphical Windows tool that can be used for checking the presence of PCI devices in PCIbus.

Software Installation and Setup

1. Download the free PciTree tool (Figure 1-28) from http://www.pcitree.de/download.html
2. Unzip PCITree.zip to your folder of choice
3. Click on PCITree.exe and proceed with the installation
4. Copy HLP.SYS to C:\WINDOWS\system32\drivers directory
5. Verify the installation

![About PciTree]

Figure 1-28: About the PciTree Tool
Hardware Requirement

- PC with Gen 1 x8 or x16 PCI Express slot fully dedicated for add-on end-point PCIe card (the slot should not be dedicated to graphic cards only)
- ML605 board

Hardware Installation and Setup

All jumpers on the ML605 should remain set to the factory default. As viewed from left-to-right in Figure 1-29, S2 is set to 011001. This will configure the FPGA from the Platform Flash XL device using Slave SelectMAP and the onboard external oscillator for CCLK. J42 should also have a shunt on pins 5 and 6 for x8 PCI Express configuration.

6. Ensure Configuration Mode Switch S2 is set to 011001 (position 6 to position 1)
7. Insert your ML605 board into a PCIe x8 slot (x16 as shown in Figure 1-29).
8. Connect your PC power to J25 and turn on the power switch.

Caution! Do not use the PCIe power connector from the PC power supply. Use only the 4-pin ATX connector.

![Figure 1-29: Board Insertion Location](image)
Running the PCI Express PIO Demonstration

9. Power on your PC and wait for your ML605 board to power up consequently.
10. The x8 PCI Express PIO design is pre-loaded on the ML605 board’s Platform Flash XL. Upon the board’s power up and successful configuration of the onboard LX240T FPGA, the DONE LED (DS13) should illuminate.
11. Launch the PciTree tool and verify the menu shown in Figure 1-30.

![Figure 1-30: Launch the PciTree Tool](image)
Configuration Registers Test

12. Set the number of configuration registers to 64 (as shown in Figure 1-31) and click on the refresh dump: button.

![Configuration Registers](image)

Figure 1-31: Set Configuration Registers
13. Locate the Xilinx device as shown in figure Figure 1-32.
 - Xilinx PCI vendor ID is 0x10EE
 - Device ID of the x8 Gen1 configuration is 0x6018

![Figure 1-32: Locate the Xilinx Device]
14. Navigate to the linked list in the configuration space (as shown in Figure 1-33) to locate the PCIe capabilities structure.
15. With the Xilinx device selected, select register 0x40.
 ♦ Register 0x40 points to the next structure
 ♦ 0x48 is the address of the next structure
16. Select register 0x48 (as shown in Figure 1-34).
 ♦ Register 0x48 points to the next structure
 ♦ 0x60 is the address of the next structure, indicating the data at this offset is the PCIe Capabilities Structure.
17. Select register 0x60 (as shown in Figure 1-35).

- 0x60 is a type 0x10
18. Select register 0x6C, Link Capabilities Register (Figure 1-36).

- Indicates the maximum number of lanes and speed supported
- The value 0x81 shows this is an x8 Gen1 capable device
- The Link Status Register (0x70) shows the current link status
- This design is trained to Gen1 x8 as indicated by 0x81

![Select Register 0x6C](image.png)
Base Address Register (BAR) Test

19. Double-click on BAR 0 (as shown in Figure 1-37).
 - BAR 0 address is machine dependent

![Figure 1-37: Double-Click on BAR 0]

20. Click Yes on the dialog box (as shown in Figure 1-38).

![Figure 1-38: Click Yes]
21. Select auto read memory (as shown in Figure 1-39).
22. Click on the first memory location by holding <Shift-End> keys. This will select 1024 bytes as shown in Figure 1-40.

Figure 1-40: Select 1024 Bytes
23. Write to memory by selecting the count box and Write Memory button (as shown in Figure 1-41).

24. Verify the result (counting up to FF) by selecting the **refr. view:** button.

![Figure 1-41: Select to Write Memory](image)
25. Restore the memory by deselecting the count box and clicking the Write Memory button (as shown in Figure 1-42).

26. Review the result by clicking on the **refr. view** button.

![Figure 1-42: Restore Memory][1]

[1]: image.png
Getting Started with the Base Reference Design

The Base Reference Design targeting the ML605 evaluation board, will filter images that are transferred via Ethernet between the evaluation board and a PC. The images are stored in DDR3 SDRAM available on the evaluation board. The stored image is continuously read from SDRAM and filtered by the LX240T FPGA. The resulting image is continuously stored back in the DDR3 SDRAM. This filtered image is then retrieved by the Base Reference Design Interface Software and displayed on a PC.

Figure 1-43 shows a block diagram of the base reference design that has been implemented in the Virtex-6 LX240T FPGA. The reference design includes common functions for Ethernet SGMII communication, external memory interface, UART, and control.

Figure 1-43: Base Reference Design Block Diagram

A DDR3 Memory Controller Block is used to store both the unfiltered and filtered images in the DDR3 SDRAM. These images are sent from a PC via a series of Ethernet packets. This memory controller is continuously reading, filtering, and storing images back into this memory. The PC also periodically retrieves the filtered images via Ethernet for display. The Ethernet Management section includes an on-chip hard coded MAC and a Packet Processing Engine. This section provides a way to control various aspects of the demo, transfer images between the demo board and a PC, and receive status from the demo. A simple MDIO controller is implemented using a Xilinx PicoBlaze™ processor. The purpose of this controller is to determine presence of an Ethernet link as well as its operating speed.

The Image Processing structure consists of a 5x5 pixel 2D FIR filter.
Setting up the Hardware for the Base Reference Design

1. Power-off the ML605
2. Connect one end of the provided Ethernet cable to the RJ45 connector P2 on the ML605 and the other end to the Ethernet port on your PC. This connection will be used for communication between the ML605 board and your PC.
3. Set the Ethernet Jumpers for SGMII mode
 - J66: Shunt over pins 2 and 3
 - J67: Shunt over pins 2 and 3
 - J68: No shunt
4. Insert the provided CompactFlash (CF) card into the ML605 CF reader (U73)
5. Set the SACE MODE switch S1 to 1011 (Position 4 to Position 1). This will configure the FPGA from the ACE file stored at configuration address 3 on the CF card
6. Do not change any other factory default settings
7. Power-on the ML605

Installing Base Reference Design Application GUI

The Base Reference Design includes an application GUI that must be installed before you will be able to run the demo. Locate the USB flash drive shipped with your ML605 evaluation kit. Insert the USB drive into your PC and using Windows Explorer, navigate to the USB drive. You should see the following directory structure:

 ML605_BRD_Application
 ML605_BRD_Images
 ML605_BRD_Src
 Ready_For_Download

Note: As an option, you can copy all the necessary files, directories, and images to a local directory on a PC.

Navigate into the ML605_BRD_Application directory. In there you will find an install image, BaseRefDISetup2_0_6.msi. This is an application GUI that is used to display the graphical information for the Base Reference Design. Please double click on this application to install the software.
Click Run.
Getting Started with the Base Reference Design

Welcome to the Base Reference Design Interface Setup Wizard

The installer will guide you through the steps required to install Base Reference Design Interface on your computer.

WARNING: This computer program is protected by copyright law and international treaties. Unauthorized duplication or distribution of this program, or any portion of it, may result in severe civil or criminal penalties, and will be prosecuted to the maximum extent possible under the law.

Click **Next** to run the BRD Setup Wizard.
Click Next.
Confirm the Installation by clicking Next.

Figure 1-47: Confirm BRD Installation
Figure 1-48: BRD Installation in Progress
Click Next.
Click Next.
Click I Agree if you agree with the WinPCAP license terms and conditions.
Completing the WinPcap 4.0.2 Setup Wizard

WinPcap 4.0.2 has been installed on your computer.

Click Finish to close this wizard.

Figure 1-52: WinPcap Installation Wizard Successful

Click Finish.
Installation Complete

Base Reference Design Interface has been successfully installed.

Click "Close" to exit.

Please use Windows Update to check for any critical updates to the .NET Framework.

Click Close.
Running the Base Reference Design

Now that you have the ML605 set up and the Base Reference Design Application software installed, you can run the demo. You should have the Ethernet cable connected between the ML605 board and your PC Ethernet port.

Note: Turn off any wireless cards while running this demonstration.

To start the application GUI, please go to your Windows START menu and select **All Programs → XILINX → Base Reference Design → Base Reference Design Interface**

The GUI shown in Figure 1-54 will start.

![Figure 1-54: Network Link Setup Request](image.png)

You will notice in the Status field at the bottom of the GUI that the Link needs to be set.
Select the menu item Setup, then select the appropriate Wired Network. Wait for few seconds and then press SW3 on the ML605 to configure the FPGA using the System ACE CF controller and the CompactFlash card.
You can now select an image. It is best to select an image smaller than 1024 pixels wide. To select one of the images provided on the USB flash drive, look in the ML605_BRD_Images directory.
In the Image section of the GUI, use the browse button to navigate to an image. After you have selected the image, click the Show Display button. This will display two side-by-side images. The leftmost image is the unaltered image, and the rightmost image is the image that has been filtered by the FPGA. Unless the effect has been changed, the default effect is Identity (**Figure 1-57**).

Figure 1-57: Original and FPGA Filtered Images using Identity Effect
Using the pull-down menu, select a different effect. For example, select SobelX. The filtering transform will display. As you can see in Figure 1-58, the image is updated using the selected filter operation.

Figure 1-58: Original and FPGA Filtered Images using SobelX Effect
Select **Smooth effect** and notice how the 2-D FIR filter coefficient matrix values change. **Figure 1-59** shows how the image display changes as well.

Figure 1-59: Original and FPGA Filtered Images using Smooth Effect
Choose Edge Detect from the effect menu. The filtering transform shown in Figure 1-60 will be displayed.

![Image of Edge Detect Effect](image)

Figure 1-60: Original and FPGA Filtered Images using Edge Detect Effect

Different effects can be set automatically by selecting the **Auto** mode button.

FPGA temperature, VCCINT, VCCAUX, Image dimensions, and processing time are also reported by the Status field.

You have now completed running the reference design.

Installing the ISE Software

The ML605 evaluation kit includes entitlement to a seat that permits the ISE Design Suite: Logic Edition to be used with a Virtex-6 XC6VLX240T-1FFG1156C FPGA. This software can be installed from the DVD provided with the kit. The latest version can also be downloaded from http://www.xilinx.com/support/download/index.htm.

The ML605 evaluation kit also works with the software listed here:

- ISE Design Suite: Embedded Edition
- ISE Design Suite: DSP Edition
- ISE Design Suite: System Edition

Update the software before working with the evaluation kit. Updates can be downloaded from http://www.xilinx.com/support/download/index.htm

To install the ISE Design Suite: Logic Edition software from the DVD included with the ML605 evaluation kit:

1. Activate the software license. See “Redeeming the Software and IP License.”
2. Insert the DVD provided with the ML605 kit in the host computer’s drive.
3. Follow the instructions provided by the installation software.

 Redeeming the Software and IP License

A software voucher similar to the example shown in Figure 1-61 is included with each ML605 evaluation kit. The voucher contains the code that is used to create a device-locked software license for the ISE software and/or the IP included with the evaluation kit.

![Software Voucher](UG525_c1_21_110110)

Figure 1-61: Software Voucher

To create a license:

1. Go to www.xilinx.com/getlicense/ (Figure 1-62).
2. If you have a Xilinx account, enter your User ID, Password and click Sign In. If you don’t have an account, click Create Account to create one.

 Note: If you have questions or need help, contact Xilinx customer service at: http://www.xilinx.com/support/techsup/tappinfo.htm.

3. After signing in, confirm your contact information is correct and click Next.

4. Under the Create New Licenses tab, enter the 22-digit code from the voucher in the field shown in Figure 1-63. Click Redeem Now.
Installing the ISE Software

The software represented by the voucher code is added to the product table and is selected (checked) for licensing as shown in Figure 1-64.

Note: The software descriptions shown in Figure 1-64 are examples and might differ from the descriptions shown on the actual page.

5. Click **Generate Node Locked License** at the bottom of the page to start the license generation flow (Figure 1-64).
6. When prompted to select a host name for the license, select a host ID. The host ID can be a dongle serial number, Ethernet MAC address, or a disk volume ID.

7. When license generation is complete, the license will be emailed to you. Follow the instructions in the Xilinx License email to complete the licensing process (Figure 1-65).
Installing the ISE Software

8. Go back to the Xilinx License Configuration Manager dialog and click **Copy License...** (Figure 1-66).

![Figure 1-65: Xilinx License Notification E-mail](image)

9. Navigate to the location where the `Xilinx.lic` file is saved and select it (Figure 1-67).

![Figure 1-66: Manage Xilinx License Tab](image)
Now What?

After following the steps in this Getting Started Guide, you can test the features of the board using the ML605 Board Diagnostic Flash and PCI Express demonstrations. You now have a complete and updated installation of the Xilinx ISE Device-Locked to Virtex-6 LX240T FPGA software, and should have been able to open your first project.

Additional resources are located on the ML605 product page at http://www.xilinx.com/ml605. You are encouraged to check the ML605 Evaluation Kit home page regularly for the latest in documentation, FAQs, reference design examples, product updates, and known issues.
Getting Additional Help and Support

Support

For questions regarding products within your Product Entitlement Account or if you feel you have received this notification in error, send an email message to your regional Customer Service Representative:

Canada, USA and South America - isscs_cases@xilinx.com
Europe, Middle East, and Africa - eucases@xilinx.com
Asia Pacific including Japan - apaccase@xilinx.com

For technical support including the installation and use of your product license file you may contact Xilinx Online Technical Support at www.support.xilinx.com. On this site you will also find the following resources for assistance:

Software, IP and Documentation Updates
Access to Technical Support Web Tools
Searchable Answer Database with Over 4,000 Solutions
User Forums
Warranty

THIS LIMITED WARRANTY applies solely to standard hardware development boards and standard hardware programming cables manufactured by or on behalf of Xilinx (“Development Systems”). Subject to the limitations herein, Xilinx warrants that Development Systems, when delivered by Xilinx or its authorized distributor, for ninety (90) days following the delivery date, will be free from defects in material and workmanship and will substantially conform to Xilinx publicly available specifications for such products in effect at the time of delivery. This limited warranty excludes:
(i) engineering samples or beta versions of Development Systems (which are provided “AS IS” without warranty); (ii) design defects or errors known as “errata”; (iii) Development Systems procured through unauthorized third parties; and (iv) Development Systems that have been subject to misuse, mishandling, accident, alteration, neglect, unauthorized repair or installation. Furthermore, this limited warranty shall not apply to the use of covered products in an application or environment that is not within Xilinx specifications or in the event of any act, error, neglect or default of Customer.

For any breach by Xilinx of this limited warranty, the exclusive remedy of Customer and the sole liability of Xilinx shall be, at the option of Xilinx, to replace or repair the affected products, or to refund to Customer the price of the affected products. The availability of replacement products is subject to product discontinuation policies at Xilinx. Customer may not return product without first obtaining a customer return material authorization (RMA) number from Xilinx.

THE WARRANTIES SET FORTH HEREIN ARE EXCLUSIVE. XILINX DISCLAIMS ALL OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, AND ANY WARRANTY THAT MAY ARISE FROM COURSE OF DEALING, COURSE OF PERFORMANCE, OR USAGE OF TRADE. (2008.10)

Do not throw Xilinx products marked with the “crossed out wheelie bin” in the trash. Directive 2002/96/EC on waste electrical and electronic equipment (WEEE) requires the separate collection of WEEE. Your cooperation is essential in ensuring the proper management of WEEE and the protection of the environment and human health from potential effects arising from the presence of hazardous substances in WEEE. Return the marked products to Xilinx for proper disposal. Further information and instructions for free-of-charge return available at: http:\\www.xilinx.com\ehs\weee.htm.
Appendix A

References

This section provides references to documentation supporting Virtex-6 FPGAs, tools, and IP. For additional information, see www.xilinx.com/support/documentation/index.htm.

1. **UG534**, ML605 Hardware User Guide
3. **DS150**, Virtex-6 Family Overview
4. **DS152**, Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
5. **UG360**, Virtex-6 FPGA Configuration User Guide
6. **UG361**, Virtex-6 FPGA SelectIO Resources User Guide
7. **UG362**, Virtex-6 FPGA User Guide: Clocking Resources
8. **UG363**, Virtex-6 FPGA Memory Resources User Guide
9. **UG364**, Virtex-6 FPGA Configurable Logic Block User Guide
10. **UG365**, Virtex-6 FPGA Packaging and Pinout Specifications
12. **UG369**, Virtex-6 FPGA DSP48E1 Slice User Guide
13. **DS186**, Virtex-6 FPGA Memory Interface Solutions Data Sheet
15. **DS643**, Multi-Port Memory Controller (MPMC) (v5.02a) Data Sheet
16. **UG086**, Memory Interface Solutions User Guide
18. **UG517**, LogiCORE™ IP Virtex-6 FPGA Integrated Block User Guide v1.3 for PCI Express
19. **DS715**, Virtex-6 FPGA Integrated Block v1.3 for PCI Express Data Sheet
20. **Platform Studio EDK**

ML605 tutorials and design files are located at http://www.xilinx.com/products/boards/ml605/reference_designs.htm:

21. **ML605 Built-In Self Test Flash Application**
22. **ML605 MIG Design Creation**
23. **ML605 PCIe x8 Gen1 Design Creation**
24. **ML605 PCIe x4 Gen2 Design Creation**
25. **ML605 MultiBoot Design**
26. **ML605 GTX IBERT Design Creation**
27. **ML605 System Monitor**
28. **ML605 Restoring Flash Contents**