Introduction

Thank you for participating in the Virtex®-7 FPGAs Engineering Sample Program. As part of this program, we are pleased to provide to you engineering samples of the devices listed in Table 1. Although Xilinx has made every effort to ensure the highest possible quality, these devices are subject to the limitations described in the following errata.

Devices

These errata apply to the devices shown in Table 1.

Table 1: Devices Affected by These Errata

<table>
<thead>
<tr>
<th>Product Family</th>
<th>Device</th>
<th>JTAG ID (Revision Code)</th>
<th>Packages</th>
<th>Speed Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtex-7</td>
<td>XC7VX485T CES</td>
<td>2</td>
<td>All</td>
<td>-1, -2</td>
</tr>
</tbody>
</table>

Hardware Errata Details

This section provides a detailed description of each hardware issue known at the release time of this document.

XADC

XADC On-Chip Reference Variation

The XADC on-chip reference source can exceed the DS183, Virtex-7 FPGAs Data Sheet: DC and Switching Characteristics specification of 1.25V ±1.0% by an additional 0.5% (1.25V ±1.5%). See Answer Record 44971 for more information on the impact to XADC measurements when the on-chip reference source is used.

GTX Transceivers

QPLL Upper Band Usage

When using the QPLL upper band VCO mode (QPLL_CFG[6]=0), the V\(_{MGTAGGCC}\) power supply must be 1.05V ±30mV.

The operating frequency range (\(F_{GCPLLRANGE}\)) of the QPLL upper band VCO mode (QPLL_CFG[6]=0) is 9.94 GHz to 10.3125 GHz. Due to this limitation, GTX data rates between 9.80 Gb/s to 9.93 Gb/s are not supported.

Out-of-Band Signaling

The GTX transceiver circuitry for out-of-band (OOB) signaling is always enabled.
CPLL Power Down

The GTX transceiver CPLL can become inoperative if conditions (1) and (2) persist for more than 8,000 hours:

1. Power has been applied to $V_{MGTAVCC}$ and $V_{MGTAVTT}$.
2. The device is in one of the following states:
 a. The FPGA is not configured.
 b. The FPGA is configured, but the transceiver is uninstantiated.
 c. The transceiver is instantiated, but the CPLL is held in power-down state.

When the QPLL is being used, enabling each CPLL will consume up to 30 mA on the $V_{MGTAVTT}$ supply and 20 mA on $V_{MGTAVCC}$. See Answer Record 45360 for more details.

GTX Transceiver Power-Up/Power-Down

If the recommended power sequences are not followed, then the GTX transceiver can become inoperative if $V_{MGTAVTT}$ is within its recommended operating range and $V_{MGTAVCC}$ is at a voltage less than 0.4V for more than 10,000 cumulative hours. An additional 100 mA per transceiver is drawn when $V_{MGTAVTT}$ is within its recommended operating range and $V_{MGTAVCC}$ is at a voltage less than 0.4V.

If the recommended sequence is followed, while $V_{MGTAVCC}$ is powered within its recommended operating range and $V_{MGTAVTT}$ is below 0.7V, an additional 50 mA per transceiver is drawn from $V_{MGTAVCC}$.

IEEE Std 1149.1 and IEEE Std 1149.6 for GTX Transceivers

IEEE Std 1149.1 (JTAG) boundary-scan test commands are not supported for the GTX transceiver. IEEE Std 1149.6 (ACJTAG) boundary-scan test commands EXTEST_PULSE and EXTEST_TRAIN are not supported.

GTX Transceiver Data Rate

The maximum GTX transceiver data rate (F_{GTXMAX}) is 6.6 Gb/s in the -1 speed grade.

Power

Static Power

All power supplies can exhibit up to 25% higher static current compared to the static current reported in XPE.

Also, up to an additional 30 mA per used transceiver, and up to an additional 50 mA per powered transceiver quad can be consumed by the $V_{MGTAVCC}$ supply. And, up to an additional 50 mA per powered transceiver quad can be consumed by the $V_{MGTAVTT}$ supply.

Design Tool Requirements

The devices listed in Table 1, unless otherwise specified, require the following Xilinx Design Tools:

- Speed specification v1.03 (or later) of Xilinx® ISE® Design Suite 13.4 (or later) available at http://www.xilinx.com/support/download/. The -2 speed grade devices designed with ISE Design Suite 14.2 require a patch; see Answer Record 50886.
- For GTX transceiver attribute updates, refer to Answer Record 45360.
- See Virtex-7 FPGA Answer Record 46345 for known issues and work-arounds for Xilinx Design Tools.
Operational Guidelines

Hardware Validation for Memory Interfaces

The memory interfaces listed in Table 2 have been validated in hardware across the operating conditions for these devices at the time of publication. See Answer Record 46521 for the latest hardware validation information.

Table 2: Hardware Validated Memory Interfaces

<table>
<thead>
<tr>
<th>Type</th>
<th>Condition</th>
<th>Bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDR3</td>
<td>DIMM and Component Single Rank</td>
<td>HP</td>
</tr>
<tr>
<td>QDRII+</td>
<td>Component Single Rank</td>
<td>HP</td>
</tr>
<tr>
<td>RLDRAMII</td>
<td>Component Single Rank</td>
<td>HP</td>
</tr>
<tr>
<td>DDR2</td>
<td>DIMM and Component Single Rank</td>
<td>HP</td>
</tr>
</tbody>
</table>

Traceability

Figure 1 shows an example device top mark for the devices listed in Table 1.

![Figure 1: Example Device Top Mark](image)

Additional Questions or Clarifications

For additional questions regarding these errata, contact Xilinx Technical Support: http://www.xilinx.com/support/clearexpress/websupport.htm or your Xilinx Sales Representative: http://www.xilinx.com/company/contact/index.htm.
Revision History

The following table shows the revision history for this document:

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Description of Revisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/16/12</td>
<td>1.0</td>
<td>Initial Xilinx release.</td>
</tr>
<tr>
<td>02/28/12</td>
<td>1.1</td>
<td>Updated XADC. Added QPLL Upper Band Usage and Hardware Validation for Memory Interfaces.</td>
</tr>
<tr>
<td>10/25/12</td>
<td>1.2</td>
<td>Added XC7VX485T to the document. Updated GTX Transceiver Data Rate. Updated XADC section to remove specifications that were updated in DS183, Virtex-7 T and XT FPGAs Data Sheet: DC and Switching Characteristics v1.4, May 23, 2012. Updated GTX Transceiver Power-Up/Power-Down, Design Tool Requirements, and Hardware Validation for Memory Interfaces. Removed Physical Interface Rate for Memory Interfaces because the DDR3 requirement for data rates above 800 Mb/s was added to DS183, Virtex-7 T and XT FPGAs Data Sheet: DC and Switching Characteristics v1.4, May 23, 2012.</td>
</tr>
<tr>
<td>02/26/13</td>
<td>1.3</td>
<td>Updated IEEE Std 1149.1 and IEEE Std 1149.6 for GTX Transceivers.</td>
</tr>
</tbody>
</table>

Notice of Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

Engineering Sample Disclaimer

ENGINEERING SAMPLE (ES) DEVICES ARE MADE AVAILABLE SOLELY FOR PURPOSES OF RESEARCH, DEVELOPMENT AND Prototyping. ALL ES DEVICES ARE SOLD “AS-IS” WITH NO WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED. XILINX DOES NOT WARRANT THAT ES DEVICES ARE FULLY VERIFIED, TESTED, OR WILL OPERATE IN ACCORDANCE WITH DATA SHEET SPECIFICATIONS. XILINX DISCLAIMS ANY OBLIGATIONS FOR TECHNICAL SUPPORT AND BUG FIXES. XILINX SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION DIRECT, INDIRECT, INCIDENTAL, SPECIAL, RELIANCE, OR CONSEQUENTIAL DAMAGES ARISING FROM OR IN CONNECTION WITH THE USE OF ES DEVICES IN ANY MANNER WHATSOEVER, EVEN IF XILINX HAS BEEN ADVISED OF THE POSSIBILITY THEREOF. XILINX MAKES NO REPRESENTATION THAT ES DEVICES PROVIDE ANY PARTICULAR FUNCTIONALITY, OR THAT ES DEVICES WILL MEET THE REQUIREMENTS OF A PARTICULAR USER APPLICATION. XILINX DOES NOT WARRANT THAT ES DEVICES ARE ERROR-FREE, NOR DOES XILINX MAKE ANY OTHER REPRESENTATIONS OR WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THE FOREGOING STATES THE ENTIRE LIABILITY OF XILINX WITH RESPECT TO ES DEVICES.