
DS824 April 24, 2012 www.xilinx.com 11
Product Specification

AXI Bus Functional Models v2.1

MAX_OUTSTANDING_TRANSACTIONS This defines the maximum number of outstanding transactions. Any attempt to
generate more traffic while this limit has been reached is handled by stalling until at
least one of the outstanding transactions has finished.
Default is 8.

MEMORY_MODEL_MODE The parameter puts the slave BFM into a simple memory model mode. This means
that the slave BFM automatically responds to all transfers and does not require any
of the API functions to be called by the test.
The memory mode is very simple and only supports, aligned and normal INCR
transfers. Narrow transfers are not supported, and WRAP and FIXED bursts are
also not supported.
The size and address range of the memory are controlled by the parameters
SLAVE_ADDRESS and SLAVE_MEM_SIZE.
The value 1 enables this memory model mode. A value of 0 disables it.
Default is 0.
The slave channel level API and function level API should not be used while this
mode is active.

WRITE_RESPONSE_GAP This configuration variable controls the gap, measured in clock cycles, between the
reception of the last write transfer and the write response.
Default is 0.
This configuration variable can be changed during simulation.

READ_RESPONSE_GAP This configuration variable controls the gap, measured in clock cycles, between the
reception of the read address transfer and the start of the first read data transfer.
Default is 0.
This configuration variable can be changed during simulation.

RESPONSE_TIMEOUT This configuration variable, measured in clock cycles, is the value used to determine
if a task that is waiting for a response should timeout.
Default = 500 clock cycles.
A value of zero means that the timeout feature is disabled.
This configuration variable can be changed during simulation.

STOP_ON_ERROR This configuration variable is used to enable/disable the stopping of the simulation
on an error condition.
The default value of one stops the simulation on an error.
This configuration variable can be changed during simulation for error testing.
This is not used for timeout errors; such errors always stop simulation.

CHANNEL_LEVEL_INFO This configuration variable controls the printing of channel level information
messages. When set to 1 info messages are printed, when set to zero no channel
level information is printed.
The default (0) disables the channel level info messages.

FUNCTION_LEVEL_INFO This configuration variable controls the printing of function level information
messages. When set to 1 info messages are printed, when set to zero no function
level information is printed.
The default (1) enables the function level info messages.

Table 6: AXI4-Lite Slave BFM Parameters (Cont’d)

BFM Parameters Description

DS824 April 24, 2012 www.xilinx.com 12
Product Specification

AXI Bus Functional Models v2.1

AXI4-Stream Master BFM

Table 7 contains a list of parameters and configuration variables which are supported by the AXI4-Stream Master
BFM.

Table 7: AXI4-Stream BFM Parameters

BFM Parameters Description

NAME String name for the master BFM. This is used in the messages coming from the
BFMs. The default for the master BFM is “MASTER_0”.

DATA_BUS_WIDTH Read and write data buses can 32 or 64 bits wide.
Default is 32.

ID_BUS_WIDTH Default is 8.

DEST_BUS_WIDTH Default is 4.

USER_BUS_WIDTH Default is 8

MAX_PACKET_SIZE This parameter is an integer value that controls the maximum size of a packet. It is
used to size the packet data vector. The value must be specified as an integer
multiple of the DATA_BUS_WIDTH. For example, if DATA_BUS_WIDTH = 32 bits
and MAX_PACKET_SIZE = 2, then the maximum packet size is 64 bits.
The default value is 10.

MAX_OUTSTANDING_TRANSACTIONS This defines the maximum number of outstanding transactions. Any attempt to
generate more traffic while this limit has been reached is handled by stalling until at
least one of the outstanding transactions has finished.
Default is 8.

STROBE_NOT_USED Enables and disables the strobe signals.
• 0 = Strobe signals used.
• 1 = Strobe signals not used.
The default is 0. A value of 1 disables the associated checks.

KEEP_NOT_USED Enables and disables keeping unused signals.
• 0 = Keep signals used.
• 1 = Keep signals not used.
The default is 0. Changing the value to 1 disables the associated checks.

PACKET_TRANSFER_GAP The configuration variable controls the gap between the transfers in a packet. This
value is an integer number and is measured in clock cycles. The default is 0.
NOTE: If this is set to a value greater than zero and concurrent SEND_PACKET
tasks are called, then the BFM attempts to perform write data interleaving.

RESPONSE_TIMEOUT This value, measured in clock cycles, is the value used to determine if a task that
is waiting for a response should timeout.
Default is 500 clock cycles.
A value of zero means that the timeout feature is disabled.

STOP_ON_ERROR This configuration variable is used to enable/disable the stopping of the simulation
on an error condition.
The default value of 1 stops the simulation on an error.
This configuration variable can be changed during simulation for error testing.
NOTE: This is NOT used for timeout errors; such errors always stop simulation.

CHANNEL_LEVEL_INFO This configuration variable controls the printing of channel level information
messages. When set to 1, info messages are printed, when set to zero no channel
level information is printed.
The default (1) enables channel level info messages.

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 13
Product Specification

AXI Bus Functional Models v2.1

AXI4-Stream Slave BFM

Table 8 contains a list of parameters and configuration variables which are supported by the AXI4-Stream Slave
BFM.

Table 8: AXI4-Stream Slave BFM Parameters

BFM Parameters Description

NAME String name for the slave BFM. This is used in the messages coming from the
BFMs. The default for the slave BFM is “SLAVE_0”.

DATA_BUS_WIDTH Read and write data buses can be 32 or 64 bits wide only.
Default is 32.

ID_BUS_WIDTH Default is 8.

DEST_BUS_WIDTH Default is 4.

USER_BUS_WIDTH Default is 8

MAX_PACKET_SIZE This parameter is an integer value that controls the maximum size of a packet. It is
used to size the packet data vector. The value must be specified as an integer
multiple of the DATA_BUS_WIDTH. For example, if DATA_BUS_WIDTH = 32 bits
and MAX_PACKET_SIZE = 2, then the maximum packet size is 64 bits.
The default value is 10.

MAX_OUTSTANDING_TRANSACTIONS This defines the maximum number of outstanding transactions. Any attempt to
generate more traffic while this limit has been reached is handled by stalling until at
least one of the outstanding transactions has finished.
Default is 8.

STROBE_NOT_USED Enables and disables the strobe signals.
• 0 = Strobe signals used.
• 1 = Strobe signals not used.
The default is 0. A value of 1 only disables the associated checks.

KEEP_NOT_USED Enables and disables keeping unused signals.
• 0 = Keep signals used.
• 1 = Keep signals not used.
The default is 0. Changing the value to 1 only disables the associated checks.

RESPONSE_TIMEOUT This configuration variable, measured in clock cycles, is the value used to
determine if a task that is waiting for a response should timeout.
Default = 500 clock cycles.
A value of zero means that the timeout feature is disabled.
This configuration variable can be changed during simulation.

STOP_ON_ERROR This configuration variable is used to enable/disable the stopping of the simulation
on an error condition.
The default value of 1 stops the simulation on an error.
This configuration variable can be changed during simulation for error testing.
NOTE: This is not used for timeout errors; such errors always stop simulation.

CHANNEL_LEVEL_INFO This configuration variable controls the printing of channel level information
messages. When set to 1, info messages are printed, when set to zero no channel
level information is printed.
The default (1) enables the channel level info messages.

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 14
Product Specification

AXI Bus Functional Models v2.1

Test Writing API
The test writing API starts simple and is layered to implement more complex protocol features. This approach
enables very complex test cases to be written. For a complete overview of the general AXI BFM architecture, see
Overview, page 2.

For all functions in the API, the input and output values used for burst length and burst size are encoded as
specified in the AMBA® AXI Specifications [Ref 1]. For example, LEN = 0 as an input means a burst of length 1.

Tasks and functions common to all BFMs are described in Table 9.

Table 9: Utility API Tasks/Functions

API Task/Function Name and Description Inputs Outputs

report_status
This function can be called at the end of a test to
report the final status of the associated BFM.

dummy_bit: The value of this input
can be 1 or 0 and does not matter.
It is only required because a Verilog
function needs at least 1 input.

report_status: This is an integer
number which is calculated as:

report_status =
error_count + warning_count +
pending_transactions_count

report_config
This task prints out the current configuration as set by
the configuration parameters and variables. This task
can be called at any time.

None None

set_channel_level_info
This function sets the CHANNEL_LEVEL_INFO
internal control variable to the specified input value.

LEVEL: A bit input for the info level. None

set_function_level_info
This function sets the FUNCTION_LEVEL_INFO
internal control variable to the specified input value.

LEVEL: A bit input for the info level. None

set_stop_on_error
This function sets the STOP_ON_ERROR internal
control variable to the specified input value:

LEVEL: A bit input for the info level. None

set_read_burst_data_transfer_gap
This function sets the SLAVE
READ_BURST_DATA_TRANSFER_GAP internal
control variable to the specified input value.

TIMEOUT: An integer value
measured in clock cycles.

None

set_write_response_gap
This function sets the SLAVE
WRITE_RESPONSE_GAP internal control variable
to the specified input value.

TIMEOUT: An integer value
measured in clock cycles.

None

set_read_response_gap
This function sets the SLAVE
READ_RESPONSE_GAP internal control variable to
the specified input value.

TIMEOUT: An integer value
measured in clock cycles.

None

set_write_burst_data_transfer_gap
This function sets the MASTER
WRITE_BURST_DATA_TRANSFER_GAP internal
control variable to the specified input value:

TIMEOUT: An integer value
measured in clock cycles.

None

set_wrtie_burst_address_data_phase_gap
This function sets the AXI 4 FULL MASTER
WRITE_BURST_ADDRESS_DATA_PHASE_GAP
internal control variable to the specified input value:

GAP_LENGTH: An integer value
measured in clock cycles.

None

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 15
Product Specification

AXI Bus Functional Models v2.1

set_write_burst_data_address_phase_gap
This function sets the AXI 4 FULL MASTER
WRITE_BURST_DATA_ADDRESS_PHASE_GAP
internal control variable to the specified input value:

GAP_LENGTH: An integer value
measured in clock cycles.

None

set_packet_transfer_gap
This function sets the AXI 4 Streaming MASTER
PACKET_TRANSFER_GAP internal control variable
to the specified input value:

GAP_LENGTH: An integer value
measured in clock cycles.

None

set_bfm_clk_delay
This task sets the internal variable
BFM_CLK_DELAY to the specified input value. This
is used to move the BFM internal clock off the
simulation clock edge if needed. The default value is
zero. If used it must be applied to each BFM
separately.

CLK_DELAY: An integer value
used for the #BFM_CLK_DELAY
on BFM internal clocking.

None

set_task_call_and_reset_handling
This task sets the TASK_RESET_HANDLING
internal variable to the specified input value:
0 - Ignore reset and continue to process task (default)
1 - Stall task execution until out of reset and print info
message
2 - Issue an error and stop (depending on
STOP_ON_ERROR value)
3 - Issue a warning and continue

task_reset_handling: An integer
value used to define BFM behavior
during reset when a channel level
API task is called.

None

remove_pending_transaction
This task is only required if the test writer is using the
channel level API task RECEIVE_READ_DATA
instead of RECEIVE_READ_BURST. The
RECEIVE_READ_DATA does not decrement the
pending transaction counter so this task must be
called manually once the full read data transfer is
complete.

None None

Table 9: Utility API Tasks/Functions (Cont’d)

API Task/Function Name and Description Inputs Outputs

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 16
Product Specification

AXI Bus Functional Models v2.1

AXI3 Master BFM Test Writing API

The channel level API for the AXI3 Master BFM is detailed in Table 10.

Table 10: Channel Level API for AXI3 Master BFM

API Task Name and Description Inputs Outputs

SEND_WRITE_ADDRESS
Creates a write address channel transaction. This task returns
after the write address has been acknowledged by the slave.
This task emits a “write_address_transfer_complete” event
upon completion.

ID: Write Address ID tag
ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type

None

SEND_WRITE_DATA
Creates a single write data channel transaction. The ID tag
should be the same as the write address ID tag it is associated
with. The data should be the same size as the width of the data
bus. This task returns after is has been acknowledged by the
slave. The data input is used as raw bus data, that is, no
realignment for narrow or unaligned data.
This task emits a “write_data_transfer_complete” event upon
completion.
NOTE: Should be called multiple times for a burst with correct
control of the LAST flag

ID: Write ID tag
STOBE: Strobe signals
DATA: Data for transfer
LAST: Last transfer flag

None

SEND_READ_ADDRESS
Creates a read address channel transaction. This task returns
after the read address has been acknowledged by the slave.
This task emits a “read_address_transfer_complete” event
upon completion.

ID: Read Address ID tag
ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type

None

RECEIVE_READ_DATA
This task drives the RREADY signal and monitors the read
data bus for read transfers coming from the slave that have the
specified ID tag. It then returns the data associated with the
transaction and the status of the last flag. The data output here
is raw bus data, that is, no realignment for narrow or unaligned
data.
This task emits a “read_data_transfer_complete” event upon
completion.
NOTE: This would need to be called multiple times for a burst
> 1.
Also, the user must call the ‘remove_pending_transaction’
task when all data is received to ensure that the pending
transaction counter is decremented. This is done
automatically by the RECEIVE_READ_BURST and
RECEIVE_WRITE_RESPONSE channel level API tasks.

ID: Read ID tag DATA: Data transferred by
the slave
RESPONSE: The slave read
response from the following:
[OKAY, EXOKAY, SLVERR,
DECERR]
LAST: Last transfer flag

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 17
Product Specification

AXI Bus Functional Models v2.1

RECEIVE_WRITE_RESPONSE
This task drives the BREADY signal and monitors the write
response bus for write responses coming from the slave that
have the specified ID tag. It then returns the response
associated with the transaction.
This task emits a “write_response_transfer_complete” event
upon completion.

ID: Write ID tag RESPONSE: The slave
write response from the
following:
[OKAY, EXOKAY, SLVERR,
DECERR]

RECEIVE_READ_BURST
This task receives a read channel burst based on the ID input.
The RECEIVE_READ_DATA from the channel level API is
used.
This task returns when the read transaction is complete. The
data returned by the task is the valid only data, that is,
re-aligned data. This task also checks each response and
issues a warning if it is not as expected.
This task emits a “read_data_burst_complete” event upon
completion.

ID: Read ID tag
ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type

DATA: Valid Data transferred
by the slave
RESPONSE: This is a vector
that
is created by concatenating
all slave
read responses together

SEND_WRITE_BURST
This task does a write burst on the write data lines. It does not
execute the write address transfer. This task uses the
SEND_WRITE_DATA task from the channel level API.
This task returns when the complete write burst is complete.
This task automatically supports the generation of narrow
transfers and unaligned transfers; that is, this task aligns the
input data with the burst so data padding is not required.
This task emits a “write_data_burst_complete” event upon
completion.

ID: Write ID tag
ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
DATA: Data to send
DATASIZE: The size in bytes
of the valid data contained in
the input data vector

None

Table 10: Channel Level API for AXI3 Master BFM (Cont’d)

API Task Name and Description Inputs Outputs

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 18
Product Specification

AXI Bus Functional Models v2.1

The function level API for the AXI3 Master BFM is detailed in Table 11.

Table 11: Function Level API for AXI3 Master BFM

API Task Name and Description Inputs Outputs

READ_BURST
This task does a full read process. It is composed
of the tasks SEND_READ_ADDRESS and
RECEIVE_READ_BURST from the channel level
API. This task returns when the read transaction is
complete.

ID: Read ID tag
ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type

DATA: Valid data transferred by the
slave
RESPONSE: This is a vector that is
created by concatenating all slave read
responses together

WRITE_BURST
This task does a full write process. It is composed
of the tasks SEND_WRITE_ADDRESS,
SEND_WRITE_BURST and
RECEIVE_WRITE_RESPONSE from the channel
level API.
This task returns when the complete write
transaction is complete.
This task automatically supports the generation of
narrow transfers and unaligned transfers.

ID: Write ID tag
ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
DATA: Data to send
DATASIZE: The size in bytes of
the valid data contained in the
input data vector

RESPONSE: The slave write response
from the following: [OKAY, EXOKAY,
SLVERR, DECERR]

WRITE_BURST_CONCURRENT
This task does the same function as the
WRITE_BURST task; however, it performs the
write address and write data phases concurrently.

ID: Write ID tag
ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
DATA: Data to send
DATASIZE: The size in bytes of
the valid data contained in the
input data vector

RESPONSE: The slave write response
from the following: [OKAY, EXOKAY,
SLVERR, DECERR]

WRITE_BURST_DATA_FIRST
This task does the same function as the
WRITE_BURST task; however, it sends the write
data burst before sending the associated write
address transfer on the write address channel.

ID: Write ID tag
ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
DATA: Data to send
DATASIZE: The size in bytes of
the valid data contained in the
input data vector

RESPONSE: The slave write response
from the following: [OKAY, EXOKAY,
SLVERR, DECERR]

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 19
Product Specification

AXI Bus Functional Models v2.1

AXI3 Slave BFM Test Writing API

The channel level API for the AXI3 Slave BFM is detailed in Table 12.

Table 12: Channel Level API for AXI3 Slave BFM

API Task Name and Description Inputs Outputs

SEND_WRITE_RESPONSE
Creates a write response channel transaction. The ID tag
must match the associated write transaction. This task
returns after it has been acknowledged by the master.
This task emits a “write_response_transfer_complete” event
upon completion.

ID: Write ID tag
RESPONSE: The chosen write
response from the following
[OKAY, EXOKAY, SLVERR,
DECERR]

None

SEND_READ_DATA
Creates a read channel transaction. The ID tag must match
the associated read transaction. This task returns after it has
been acknowledged by the master.
This task emits a “read_data_transfer_complete” event upon
completion.
NOTE: This would need to be called multiple times for a burst
> 1.

ID: Read ID tag
DATA: Data to send to the master
RESPONSE: The read response
to send to the master from the
following: [OKAY, EXOKAY,
SLVERR, DECERR]
LAST: Last transfer flag

None

RECEIVE_WRITE_ADDRESS
This task drives the AWREADY signal and monitors the write
address bus for write address transfers coming from the
master that have the specified ID tag (unless the IDValid bit
=0). It then returns the data associated with the write address
transaction.
If the IDValid bit is 0 then the input ID tag is not used and the
next available write address transfer is sampled.
This task uses the SLAVE_ADDRESS and
SLAVE_MEM_SIZE parameters to determine if the address
is valid.
This task emits a “write_address_transfer_complete” event
upon completion.

ID: Write Address ID tag
IDValid: Bit to indicate if the ID
input parameter is to be used.
When set to 1 the ID is valid and
used, when set to 0 it is ignored.

ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
IDTAG: Sampled ID tag

RECEIVE_READ_ADDRESS
This task drives the ARREADY signal and monitors the read
address bus for read address transfers coming from the
master that have the specified ID tag (unless the IDValid bit
=0). It then returns the data associated with the read address
transaction.
If the IDValid bit is 0 then the input ID tag is not used and the
next available read address transfer is sampled.
This task uses the SLAVE_ADDRESS and
SLAVE_MEM_SIZE parameters to determine if the address
is valid.
This task emits a “read_address_transfer_complete” event
upon completion.

ID: Read Address ID tag
IDValid: Bit to indicate if the ID
input parameter is to be used.
When set to 1 the ID is valid and
used, when set to 0 it is ignored.

ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
IDTAG: Sampled ID tag

RECEIVE_WRITE_DATA
This task drives the WREADY signal and monitors the write
data bus for write transfers coming from the master that have
the specified ID tag (unless the IDValid bit =0). It then returns
the data associated with the transaction and the status of the
last flag. NOTE: This would need to be called multiple times
for a burst > 1.
If the IDValid bit is 0 then the input ID tag is not used and the
next available write data transfer is sampled.
This task emits a “write_data_transfer_complete” event upon
completion.

ID: Write ID tag
IDValid: Bit to indicate if the ID
input parameter is to be used.
When set to 1 the ID is valid and
used, when set to 0 it is ignored.

DATA: Data transferred from
the master
STRB: Strobe signals used
to validate the data
LAST: Last transfer flag
IDTAG: Sampled ID tag

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 20
Product Specification

AXI Bus Functional Models v2.1

RECEIVE_WRITE_BURST
This task receives and processes a write burst on the write
data channel with the specified ID (unless the IDValid bit =0).
It does not wait for the write address transfer to be received.
This task uses the RECEIVE_WRITE_DATA task from the
channel level API.
If the IDValid bit is 0 then the input ID tag is not used and the
next available write burst is sampled.
This task returns when the complete write burst is complete.
This task automatically supports narrow transfers and
unaligned transfers; that is, this task aligns the output data
with the burst so the final output data should only contain
valid data (up to the size of the burst data, shown by the
output datasize).
This task emits a “write_data_burst_complete” event upon
completion.

ID: Write ID tag
IDValid: Bit to indicate if the ID
input parameter is to be used.
When set to 1 the ID is valid and
used, when set to 0 it is ignored.
ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type

DATA: Data received from
the write burst
DATASIZE: The size in bytes
of the valid data contained in
the output data vector
IDTAG: Sampled ID tag

RECEIVE_WRITE_BURST_NO_CHECKS
This task receives and processes a write burst on the write
data channel blindly, that is, with no checking of length, size
or anything else.
This task uses the RECEIVE_WRITE_DATA task from the
channel level API. This task returns when the complete write
burst is complete. This task automatically supports narrow
transfers and unaligned transfers; that is, this task aligns the
output data with the burst so the final output data should only
contain valid data (up to the size of the burst data, shown by
the output datasize).

ID: Write ID tag DATA: Data received from
the write burst
DATASIZE: The size in bytes
of the valid data contained in
the output data vector

SEND_READ_BURST
This task does a read burst on the read data lines. It does not
wait for the read address transfer to be received. This task
uses the SEND_READ_DATA task from the channel level
API.
This task returns when the complete read burst is complete.
 This task automatically supports the generation of narrow
transfers and unaligned transfers; that is, this task aligns the
input data with the burst so data padding is not required.
This task emits a “read_data_burst_complete” event upon
completion.

ID: Read ID tag
ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
DATA: Data to be sent over the
burst

None

SEND_READ_BURST_RESP_CTRL
This task is the same as SEND_READ_BURST except that
the response sent to the master can be specified.

ID: Read ID tag
ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
DATA: Data to be sent over the
burst
RESPONSE: This is a vector that
should contain all of the desired
responses for each read data
transfer

None

Table 12: Channel Level API for AXI3 Slave BFM (Cont’d)

API Task Name and Description Inputs Outputs

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 21
Product Specification

AXI Bus Functional Models v2.1

The function level API for the AXI3 Slave BFM is detailed in Table 13.

Table 13: Function Level API for AXI3 Slave BFM

API Task Name and Description Inputs Outputs

READ_BURST_RESPOND
Creates a semi-automatic response to a read request
from the master. It checks if the ID tag for the read
request is as expected and then provides a read
response using the data provided. It is composed of the
tasks RECEIVE_READ_ADDRESS and
SEND_READ_BURST from the channel level API. This
task returns when the complete write transaction is
complete.
This task automatically supports the generation of narrow
transfers and unaligned transfers; that is, this task aligns
the input data with the burst so data padding is not
required.

ID: Read ID tag
DATA: Data to send in response to
the master read

None

WRITE_BURST_RESPOND
This is a semi-automatic task which waits for a write burst
with the specified ID tag and responds appropriately. The
data received in the write burst is delivered as an output
data vector.
This task is composed of the tasks
RECEIVE_WRITE_ADDRESS,
RECEIVE_WRITE_BURST and
SEND_WRITE_RESPONSE from the channel level API.
This task returns when the complete write transaction is
complete. This task automatically supports the
generation of narrow transfers and unaligned transfers;
that is, this task aligns the input data with the burst so
data padding is not required.

ID: Write ID tag DATA: Data received by slave
DATASIZE: The size in bytes of
the valid data contained in the
output data vector

WRITE_BURST_RESPOND_DATA_FIRST
This is a semi-automatic task which waits for a write burst
with the specified ID tag and responds appropriately. It
expects the write data to start arriving before the write
address phase. It returns the data received in the write as
a data vector. It is composed of the tasks
RECEIVE_WRITE_BURST_NO_CHECKS,
RECEIVE_WRITE_ADDRESS and
SEND_WRITE_RESPONSE from the channel level API.
This task returns when the complete write transaction is
complete.

ID: Write ID tag DATA: Data received by slave
DATASIZE: The size in bytes of
the valid data contained in the
output data vector

READ_BURST_RESP_CTRL
This task is the same as READ_BURST_RESPONSE
except that the responses sent to the master can be
specified.

ID: Read ID tag
DATA: Data to send in response to
the master read.
RESPONSE: This is a vector that
should contain all of the desired
responses for each read data
transfer.

None

WRITE_BURST_RESP_CTRL
This task is the same as WRITE_BURST_RESPONSE
except that the response sent to the master can be
specified.

ID: Write ID tag
RESPONSE: The chosen write
response from the following
[OKAY, EXOKAY, SLVERR,
DECERR]

DATA: Data received by slave
DATASIZE: The size in bytes of
the valid data contained in the
output data vector

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 22
Product Specification

AXI Bus Functional Models v2.1

AXI4 Master BFM Test Writing API

The channel level API for the AXI4 Master BFM is detailed in Table 14.

Table 14: Channel Level API for AXI4 Master BFM

API Task Name Inputs Outputs

SEND_WRITE_ADDRESS
Creates a write address channel transaction. This task returns
after the write address has been acknowledged by the slave.
This task emits a “write_address_transfer_complete” event
upon completion.

ID: Write Address ID tag
ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
REGION: Region Identifier
QOS: Quality of Service Signals
AWUSER: Address Write User
Defined Signals

None

SEND_WRITE_DATA
Creates a single write data channel transaction. The data
should be the same size as the width of the data bus. This task
returns after is has been acknowledged by the slave. The data
input is used as raw bus data; that is, no realignment for
narrow or unaligned data.
This task emits a “write_data_transfer_complete” event upon
completion.
NOTE: Should be called multiple times for a burst with correct
control of the LAST flag

STOBE: Strobe signals
DATA: Data for transfer
LAST: Last transfer flag
WUSER: Write User Defined
Signals

None

SEND_READ_ADDRESS
Creates a read address channel transaction. This task returns
after the read address has been acknowledged by the slave.
This task emits a “read_address_transfer_complete” event
upon completion.

ID: Read Address ID tag
ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
REGION: Region Identifier
QOS: Quality of Service Signals
ARUSER: Address Read User
Defined Signals

None

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 23
Product Specification

AXI Bus Functional Models v2.1

RECEIVE_READ_DATA
This task drives the RREADY signal and monitors the read
data bus for read transfers coming from the slave that have the
specified ID tag. It then returns the data associated with the
transaction and the status of the last flag. The data output here
is raw bus data; that is, no realignment for narrow or unaligned
data.
This task emits a “read_data_transfer_complete” event upon
completion.
NOTE: This would need to be called multiple times for a burst
> 1.
Also, the user must call the ‘remove_pending_transaction’
task when all data is received to ensure that the pending
transaction counter is decremented. This is done
automatically by the RECEIVE_READ_BURST and
RECEIVE_WRITE_RESPONSE channel level API tasks.

ID: Read ID tag DATA: Data transferred by
the slave
RESPONSE: The slave
read response from the
following: [OKAY, EXOKAY,
SLVERR, DECERR]
LAST: Last transfer flag
RUSER: Read User
Defined Signals

RECEIVE_WRITE_RESPONSE
This task drives the BREADY signal and monitors the write
response bus for write responses coming from the slave that
have the specified ID tag. It then returns the response
associated with the transaction.
This task emits a “write_response_transfer_complete” event
upon completion.

ID: Write ID tag RESPONSE: The slave
write response from the
following: [OKAY, EXOKAY,
SLVERR, DECERR]
BUSER: Write Response
User Defined Signals

RECEIVE_READ_BURST
This task receives a read channel burst based on the ID input.
The RECEIVE_READ_DATA from the channel level API is
used.
This task returns when the read transaction is complete. The
data returned by the task is the valid only data, that is,
re-aligned data. This task also checks each response and
issues a warning if it is not as expected.
This task emits a “read_data_burst_complete” event upon
completion.

ID: Read ID tag
ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type

DATA: Valid Data
transferred by the slave
RESPONSE: This is a
vector that is created by
concatenating all slave
read responses together
RUSER: This is a vector
that is created by
concatenating all slave
read user signal data
together

SEND_WRITE_BURST
This task does a write burst on the write data lines. It does not
execute the write address transfer. This task uses the
SEND_WRITE_DATA task from the channel level API.
This task returns when the complete write burst is complete.
This task automatically supports the generation of narrow
transfers and unaligned transfers; that is, this task aligns the
input data with the burst so data padding is not required.
This task emits a “write_data_burst_complete” event upon
completion.

ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
DATA: Data to send
DATASIZE: The size in bytes of
the valid data contained in the
input data vector
WUSER: This is a vector that is
created by concatenating all write
transfer user signal data together

None

Table 14: Channel Level API for AXI4 Master BFM (Cont’d)

API Task Name Inputs Outputs

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 24
Product Specification

AXI Bus Functional Models v2.1

The function level API for the AXI4 Master BFM is detailed in Table 15.

Table 15: Function Level API for AXI4 Master BFM

API Task Name and Description Inputs Outputs

READ_BURST
This task does a full read process. It is
composed of the tasks
SEND_READ_ADDRESS and
RECEIVE_READ_BURST from the channel
level API. This task returns when the read
transaction is complete.

ID: Read ID tag
ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
REGION: Region Identifier
QOS: Quality of Service Signals
ARUSER: Address Read User
Defined Signals

DATA: Valid data transferred by the
slave
RESPONSE: This is a vector that is
created by concatenating all slave read
responses together
RUSER: This is a vector that is created
by concatenating all slave read user
signal data together

WRITE_BURST
This task does a full write process. It is
composed of the tasks
SEND_WRITE_ADDRESS,
SEND_WRITE_BURST and
RECEIVE_WRITE_RESPONSE from the
channel level API.
This task returns when the complete write
transaction is complete.
This task automatically supports the
generation of narrow transfers and unaligned
transfers.

ID: Write ID tag
ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
DATA: Data to send
DATASIZE: The size in bytes of the
valid data contained in the input data
vector
REGION: Region Identifier
QOS: Quality of Service Signals
AWUSER: Address Write User
Defined Signals
WUSER: This is a vector that is
created by concatenating all write
transfer user signal data together

RESPONSE: The slave write response
from the following: [OKAY, EXOKAY,
SLVERR, DECERR]
BUSER: Write Response Channel User
Defined Signals

WRITE_BURST_CONCURRENT
This task does the same function as the
WRITE_BURST task; however, it performs the
write address and write data phases
concurrently.

ID: Write ID tag
ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
DATA: Data to send
DATASIZE: The size in bytes of the
valid data contained in the input data
vector
REGION: Region Identifier
QOS: Quality of Service Signals
AWUSER: Address Write User
Defined Signals
WUSER: This is a vector that is
created by concatenating all write
transfer user signal data together

RESPONSE: The slave write response
from the following: [OKAY, EXOKAY,
SLVERR, DECERR]
BUSER: Write Response Channel User
Defined Signals

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 25
Product Specification

AXI Bus Functional Models v2.1

AXI4 Slave BFM Test Writing API

The channel level API for the AXI4 Slave BFM is detailed in Table 16.

Table 16: Channel Level API for AXI4 Slave BFM

API Task Name Inputs Outputs

SEND_WRITE_RESPONSE
Creates a write response channel transaction. The ID tag
must match the associated write transaction. This task
returns after it has been acknowledged by the master.
This task emits a “write_response_transfer_complete”
event upon completion.

ID: Write ID tag
RESPONSE: The chosen write
response from the following
[OKAY, EXOKAY, SLVERR,
DECERR]
BUSER: Write Response User
Defined Signals

None

SEND_READ_DATA
Creates a read channel transaction. The ID tag must
match the associated read transaction. This task returns
after it has been acknowledged by the master.
This task emits a “read_data_transfer_complete” event
upon completion.
NOTE: This would need to be called multiple times for a
burst > 1.

ID: Read ID tag
DATA: Data to send to the master
RESPONSE: The read response
to send to the master from the
following: [OKAY, EXOKAY,
SLVERR, DECERR]
LAST: Last transfer flag
RUSER: Read User Defined
Signals

None

RECEIVE_WRITE_ADDRESS
This task drives the AWREADY signal and monitors the
write address bus for write address transfers coming from
the master that have the specified ID tag (unless the
IDValid bit =0). It then returns the data associated with the
write address transaction.
If the IDValid bit is 0 then the input ID tag is not used and
the next available write address transfer is sampled.
This task uses the SLAVE_ADDRESS and
SLAVE_MEM_SIZE parameters to determine if the
address is valid.
This task emits a “write_address_transfer_complete”
event upon completion.

ID: Write Address ID tag
IDValid: Bit to indicate if the ID
input parameter is to be used.
When set to 1 the ID is valid and
used, when set to 0 it is ignored.

ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
REGION: Region Identifier
QOS: Quality of Service
Signals
AWUSER: Address Write User
Defined Signals
IDTAG: Sampled ID tag

RECEIVE_READ_ADDRESS
This task drives the ARREADY signal and monitors the
read address bus for read address transfers coming from
the master that have the specified ID tag (unless the
IDValid bit =0). It then returns the data associated with the
read address transaction.
If the IDValid bit is 0 then the input ID tag is not used and
the next available read address transfer is sampled.
This task uses the SLAVE_ADDRESS and
SLAVE_MEM_SIZE parameters to determine if the
address is valid.
This task emits a “read_address_transfer_complete”
event upon completion.

ID: Read Address ID tag
IDValid: Bit to indicate if the ID
input parameter is to be used.
When set to 1 the ID is valid and
used, when set to 0 it is ignored.

ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
CACHE: Cache Type
PROT: Protection Type
REGION: Region Identifier
QOS: Quality of Service
Signals
ARUSER: Address Read User
Defined Signals
IDTAG: Sampled ID tag

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 26
Product Specification

AXI Bus Functional Models v2.1

RECEIVE_WRITE_DATA
This task drives the WREADY signal and monitors the
write data bus for write transfers coming from the master.
It then returns the data associated with the transaction
and the status of the last flag. NOTE: This would need to
be called multiple times for a burst > 1.
This task emits a “write_data_transfer_complete” event
upon completion.

None DATA: Data transferred from
the master
STRB: Strobe signals used to
validate the data
LAST: Last transfer flag
WUSER: Write User Defined
Signals

RECEIVE_WRITE_BURST
This task receives and processes a write burst on the
write data channel. It does not wait for the write address
transfer to be received. This task uses the
RECEIVE_WRITE_DATA task from the channel level API.
This task returns when the complete write burst is
complete.
This task automatically supports narrow transfers and
unaligned transfers; that is, this task aligns the output data
with the burst so the final output data should only contain
valid data (up to the size of the burst data).
This task emits a “write_data_burst_complete” event
upon completion.

ADDR: Write Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type

DATA: Data received from the
write burst
DATASIZE: The size in bytes of
the valid data contained in the
output data vector
WUSER: This is a vector that is
created by concatenating all
master write user signal data
together

SEND_READ_BURST
This task does a read burst on the read data lines. It does
not wait for the read address transfer to be received. This
task uses the SEND_READ_DATA task from the channel
level API.
This task returns when the complete read burst is
complete.
 This task automatically supports the generation of narrow
transfers and unaligned transfers; that is, this task aligns
the input data with the burst so data padding is not
required.
This task emits a “read_data_burst_complete” event upon
completion.

ID: Read ID tag
ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
LOCK: Lock Type
DATA: Data to be sent over the
burst
RUSER: This is a vector that is
created by concatenating all
required slave read user signal
data together

None

SEND_READ_BURST_RESP_CTRL
This task does a read burst on the read data lines. It does
not wait for the read address transfer to be received. This
task uses the SEND_READ_DATA task from the channel
level API.
This task returns when the complete read burst is
complete.
 This task automatically supports the generation of narrow
transfers and unaligned transfers; that is, this task aligns
the input data with the burst so data padding is not
required.
This task emits a “read_data_burst_complete” event upon
completion.

ID: Read ID tag
ADDR: Read Address
LEN: Burst Length
SIZE: Burst Size
BURST: Burst Type
DATA: Data to be sent over the
burst
RESPONSE: This is a vector that
should contain all of the desired
responses for each read data
transfer
RUSER: This is a vector that is
created by concatenating all
required slave read user signal
data together

None

Table 16: Channel Level API for AXI4 Slave BFM (Cont’d)

API Task Name Inputs Outputs

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 27
Product Specification

AXI Bus Functional Models v2.1

The function level API for the AXI4 Slave BFM is detailed in Table 17.

Table 17: Function Level API for AXI4 Slave BFM

API Task Name and Description Inputs Outputs

READ_BURST_RESPOND
Creates a semi-automatic response to a read request
from the master. It checks if the ID tag for the read
request is as expected and then provides a read
response using the data provided. It is composed of
the tasks RECEIVE_READ_ADDRESS and
SEND_READ_BURST from the channel level API.
This task returns when the complete write transaction
is complete.
This task automatically supports the generation of
narrow transfers and unaligned transfers; that is, this
task aligns the input data with the burst so data
padding is not required.

ID: Read ID tag
DATA: Data to send in response to
the master read
RUSER: This is a vector that is
created by concatenating all
required read user signal data
together

None

WRITE_BURST_RESPOND
This is a semi-automatic task which waits for a write
burst with the specified ID tag and responds
appropriately. The data received in the write burst is
delivered as an output data vector.
This task is composed of the tasks
RECEIVE_WRITE_ADDRESS,
RECEIVE_WRITE_BURST and
SEND_WRITE_RESPONSE from the channel level
API.
This task returns when the complete write transaction
is complete. This task automatically supports the
generation of narrow transfers and unaligned
transfers; that is, this task aligns the input data with
the burst so data padding is not required.

ID: Write ID tag
BUSER: Write Response Channel
User Defined Signals

DATA: Data received by slave
DATASIZE: The size in bytes of the
valid data contained in the output
data vector
WUSER: This is a vector that is
created by concatenating all
master write transfer user signal
data together

READ_BURST_RESP_CTRL
Creates a semi-automatic response to a read request
from the master. It checks if the ID tag for the read
request is as expected and then provides a read
response using the data and response vector
provided. It is composed of the tasks
RECEIVE_READ_ADDRESS and
SEND_READ_BURST_RESP_CTRL from the
channel level API. This task returns when the
complete write transaction is complete.
This task automatically supports the generation of
narrow transfers and unaligned transfers; that is, this
task aligns the input data with the burst so data
padding is not required.

ID: Read ID tag
DATA: Data to send in response to
the master read
RESPONSE: This is a vector that
should contain all of the desired
responses for each read data
transfer
RUSER: This is a vector that is
created by concatenating all
required read user signal data
together

None

WRITE_BURST_RESP_CTRL
This is a semi-automatic task which waits for a write
burst with the specified ID tag and responds
appropriately using the specified response. The data
received in the write burst is delivered as an output
data vector.
This task is composed of the tasks
RECEIVE_WRITE_ADDRESS,
RECEIVE_WRITE_BURST and
SEND_WRITE_RESPONSE from the channel level
API.
This task returns when the complete write transaction
is complete. This task automatically supports the
generation of narrow transfers and unaligned
transfers; that is, this task aligns the input data with
the burst so data padding is not required.

ID: Write ID tag
RESPONSE: The chosen write
response from the following
[OKAY, EXOKAY, SLVERR,
DECERR]
BUSER: Write Response Channel
User Defined Signals

DATA: Data received by slave
DATASIZE: The size in bytes of the
valid data contained in the output
data vector
WUSER: This is a vector that is
created by concatenating all
master write transfer user signal
data together

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 28
Product Specification

AXI Bus Functional Models v2.1

AXI4-Lite Master BFM Test Writing API

The channel level API for the AXI4-Lite Master BFM is detailed in Table 18.

Table 18: Channel Level API for AXI4-Lite Master BFM

API Task Name and Description Inputs Outputs

SEND_WRITE_ADDRESS
Creates a write address channel transaction.
This task returns after the write address has
been acknowledged by the slave.
This task emits a
“write_address_transfer_complete” event upon
completion.

ADDR: Write Address
PROT: Protection Type

None

SEND_WRITE_DATA
Creates a single write data channel transaction.
The data should be the same size as the width of
the data bus. This task returns after is has been
acknowledged by the slave.
This task emits a
“write_data_transfer_complete” event upon
completion.

STOBE: Strobe signals
DATA: Data for transfer

None

SEND_READ_ADDRESS
Creates a read address channel transaction.
This task returns after the read address has
been acknowledged by the slave.
This task emits a
“read_address_transfer_complete” event upon
completion.

ADDR: Read Address
PROT: Protection Type

None

RECEIVE_READ_DATA
This task drives the RREADY signal and
monitors the read data bus for read transfers
coming from the slave. It returns the data
associated with the transaction and the
response from the slave.
This task emits a “read_data_transfer_complete”
event upon completion.

None DATA: Data transferred by the slave
RESPONSE: The slave read
response from the following:
[OKAY, SLVERR, DECERR]

RECEIVE_WRITE_RESPONSE
This task drives the BREADY signal and
monitors the write response bus for write
responses coming from the slave. It returns the
response associated with the transaction.
This task emits a
“write_response_transfer_complete” event upon
completion.

None RESPONSE: The slave write
response from the following:
[OKAY, SLVERR, DECERR]

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 29
Product Specification

AXI Bus Functional Models v2.1

The function level API for the AXI4-Lite Master BFM is detailed inTable 19.

Table 19: Function Level API for AXI4-Lite Master BFM

API Task Name and Description Inputs Outputs

READ_BURST
This task does a full read process. It is
composed of the tasks
SEND_READ_ADDRESS and
RECEIVE_READ_DATA from the channel
level API. This task returns when the read
transaction is complete.

ADDR: Read Address
PROT: Protection Type

DATA: Valid data transferred by the
slave
RESPONSE: The slave write response
from the following: [OKAY, SLVERR,
DECERR]

WRITE_BURST
This task does a full write process. It is
composed of the tasks
SEND_WRITE_ADDRESS,
SEND_WRITE_DATA and
RECEIVE_WRITE_RESPONSE from the
channel level API.
This task returns when the complete write
transaction is complete.

ADDR: Write Address
PROT: Protection Type
DATA: Data to send
DATASIZE: The size in bytes of the
valid data contained in the input data
vector

RESPONSE: The slave write response
from the following: [OKAY, SLVERR,
DECERR]

WRITE_BURST_CONCURRENT
This task does the same function as the
WRITE_BURST task; however, it performs the
write address and data phases concurrently.

ADDR: Write Address
PROT: Protection Type
DATA: Data to send
DATASIZE: The size in bytes of the
valid data contained in the input data
vector

RESPONSE: The slave write response
from the following: [OKAY, SLVERR,
DECERR]

WRITE_BURST_DATA_FIRST
This task does the same function as the
WRITE_BURST task; however, it sends the
write data burst before sending the associated
write address transfer on the write address
channel.

ADDR: Write Address
PROT: Protection Type
DATA: Data to send
DATASIZE: The size in bytes of the
valid data contained in the input data
vector

RESPONSE: The slave write response
from the following: [OKAY, SLVERR,
DECERR]

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 30
Product Specification

AXI Bus Functional Models v2.1

AXI4-Lite Slave BFM Test Writing API

The channel level API for the AXI4-Lite Slave BFM is detailed in Table 20.

Table 20: Channel Level API for AXI4-Lite Slave BFM

API Task Name and Description Inputs Outputs

SEND_WRITE_RESPONSE
Creates a write response channel transaction.
This task returns after it has been acknowledged
by the master.
This task emits a
“write_response_transfer_complete” event upon
completion.

RESPONSE: The chosen write
response from the following [OKAY,
SLVERR, DECERR]

None

SEND_READ_DATA
Creates a read channel transaction. This task
returns after it has been acknowledged by the
master.
This task emits a “read_data_transfer_complete”
event upon completion.

DATA: Data to send to the master
RESPONSE: The read response to
send to the master from the following:
[OKAY, SLVERR, DECERR]

None

RECEIVE_WRITE_ADDRESS
This task drives the AWREADY signal and
monitors the write address bus for write address
transfers coming from the master. It returns the
data associated with the write address
transaction.
This task uses the SLAVE_ADDRESS and
SLAVE_MEM_SIZE parameters to determine if
the address is valid.
This task emits a
“write_address_transfer_complete” event upon
completion.

ADDR: Write Address
ADDRValid: Bit to indicate if the
address input parameter is to be
used. When set to 1 the ADDR is
valid and used, when set to 0 it is
ignored.

PROT: Protection Type
SADDR: Sampled Write Address

RECEIVE_READ_ADDRESS
This task drives the ARREADY signal and
monitors the read address bus for read address
transfers coming from the master. It returns the
data associated with the read address
transaction.
This task uses the SLAVE_ADDRESS and
SLAVE_MEM_SIZE parameters to determine if
the address is valid.
This task emits a
“read_address_transfer_complete” event upon
completion.

ADDR: Read Address
ADDRValid: Bit to indicate if the
address input parameter is to be
used. When set to 1 the ADDR is
valid and used, when set to 0 it is
ignored.

PROT: Protection Type
SADDR: Sampled Read Address

RECEIVE_WRITE_DATA
This task drives the WREADY signal and
monitors the write data bus for write transfers
coming from the master. It returns the data
associated with the transaction.
This task emits a
“write_data_transfer_complete” event upon
completion.

None DATA: Data transferred from the
master
STRB: Strobe signals used to
validate the data

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 31
Product Specification

AXI Bus Functional Models v2.1

The function level API for the AXI4-Lite Slave BFM is detailed in Table 21.

Table 21: Function Level API for AXI4-Lite Slave BFM

API Task Name and Description Inputs Outputs

READ_BURST_RESPOND
Creates a semi-automatic response to a read
request from the master. It is composed of the tasks
RECEIVE_READ_ADDRESS and
SEND_READ_DATA from the channel level API.
This task returns when the complete write
transaction is complete.
If ADDRVALID = 0 the input ADDR is ignored and
the first read request is used and responded to.
If the ADDRVALID = 1 then the ADDR input is used
and the DATA input is used to respond to the read
burst with the specified address.

ADDR: Read Address
ADDRValid: Bit to indicate if the
address input parameter is to be used.
When set to 1 the ADDR is valid and
used, when set to 0 it is ignored.
DATA: Data to send in response to the
master read

None

WRITE_BURST_RESPOND
This is a semi-automatic task which waits for a write
burst from the master and responds appropriately.
The data received in the write burst is delivered as
an output data vector.
This task is composed of the tasks
RECEIVE_WRITE_ADDRESS,
RECEIVE_WRITE_DATA and
SEND_WRITE_RESPONSE from the channel level
API.
This task returns when the complete write
transaction is complete.
If ADDRVALID = 0 the input ADDR is ignored and
the first write request is used for the DATA output.
If the ADDRVALID = 1 then the ADDR input is used
and the DATA associated with that transfer is output
using the DATA output.

ADDR: Write Address
ADDRValid: Bit to indicate if the
address input parameter is to be used.
When set to 1 the ADDR is valid and
used, when set to 0 it is ignored.

DATA: Data received by slave
DATASIZE: The size in bytes of
the valid data contained in the
output data vector

READ_BURST_RESP_CTRL
This task is the same as
READ_BURST_RESPOND except that the
response sent to the master can be specified.

ADDR: Read Address
ADDRValid: Bit to indicate if the
address input parameter is to be used.
When set to 1 the ADDR is valid and
used, when set to 0 it is ignored.
DATA: Data to send in response to the
master read
RESPONSE: The chosen write
response from the following [OKAY,
SLVERR, DECERR]

None

WRITE_BURST_RESP_CTRL
This task is the same as
WRITE_BURST_RESPOND except that the
response sent to the master can be specified.

ADDR: Write Address
ADDRValid: Bit to indicate if the
address input parameter is to be used.
When set to 1 the ADDR is valid and
used, when set to 0 it is ignored.
RESPONSE: The chosen write
response from the following [OKAY,
SLVERR, DECERR]

DATA: Data received by slave
DATASIZE: The size in bytes of
the valid data contained in the
output data vector

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 32
Product Specification

AXI Bus Functional Models v2.1

AXI4-Stream Master BFM Test Writing API

The channel level API for the AXI4-Stream Master BFM is detailed in Table 22.

AXI4-Stream Slave BFM Test Writing API

The channel level API for the AXI4-Stream Slave BFM is detailed in Table 23.

Table 22: Channel Level API for AXI4-Stream Master BFM

API Task Name and Description Inputs Outputs

SEND_TRANSFER
Creates a single AXI4-Stream transfer.
This task emits a “transfer_complete” event upon
completion.

ID: Transfer ID Tag
DEST: Transfer Destination
DATA: Transfer Data
STRB: Transfer Strobe Signals
KEEP: Transfer Keep Signals
LAST: Transfer Last Signal
USER: Transfer User Signals

None

SEND_PACKET
This task sends a complete packet over the
streaming interface. It uses the SEND_TRANSFER
task from the channel level API.
This task returns when the whole packet has been
sent, and emits a “packet_complete” event upon
completion.

ID: Transfer ID Tag
DEST: Transfer Destination
DATA: Vector of Transfer data to send
DATASIZE: The size in bytes of the valid
data contained in the input data vector
(This must be aligned to the multiples of
the data bus width)
USER: This is a vector that is created
by concatenating all transfer user signal
data together

None

Table 23: Channel Level API for AXI4-Stream Slave BFM

API Task Name and Description Inputs Outputs

RECEIVE_TRANSFER
Receives a single AXI4-Stream transfer.
This task emits a “transfer_complete” event
upon completion.

None ID: Transfer ID Tag
DEST: Transfer Destination
DATA: Transfer Data
STRB: Transfer Strobe Signals
KEEP: Transfer Keep Signals
LAST: Transfer Last Signal
USER: Transfer User Signals

RECEIVE_PACKET
This task receives and processes a packet
from the transfer channel. It returns when
the complete packet has been sampled, and
emits a “packet_complete” event upon
completion.
This task uses the RECEIVE_TRANSFER
task from the channel level API.
If the IDValid or DESTValid bits are 0, the
input ID tag and the DEST values are not
used. In this case, the next values from the
first valid transfer are sampled and used for
the full packet irrespective of the ID tag or
DEST input values.

ID: Packet ID Tag
IDValid: Bit to indicate if the ID input
parameter is to be used. When set to 1,
the ID is valid and used; when set to 0,
it is ignored
DEST: Packet Destination
DESTValid: Bit to indicate if the DEST
input parameter is to be used

PID: Packet ID Tag
PDEST: Packet Destination
DATA: Packet data vector
DATASIZE: The size in bytes of the valid
data contained in the output packet data
vector
USER: This is a vector that is created by
concatenating all master user signal
data together

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 33
Product Specification

AXI Bus Functional Models v2.1

Protocol Checking
The purpose of the AXI BFMs is to verify connectivity and basic functionality of AXI masters and AXI slaves. A
basic level of protocol checking is included with the AXI BFMs. For comprehensive protocol checking, the Cadence
AXI UVC should be deployed [Ref 2].

The following aspects of the AXI3 and AXI4 protocol are checked by the AXI BFMs:

• Reset conditions are checked:

• Reset values of signals

• Synchronous release of reset

• Inputs into the test writing API are checked to ensure they are valid to prevent protocol violations.

• Signal inputs into master and slave BFMs, respectively, are checked to ensure they are valid to prevent protocol
violations.

• Address ranges are checked in the Slave BFMs.

This section describes the checkers that are implemented as Verilog tasks.

Common BFM Checkers

The AXI checkers that are implemented as Verilog tasks and are common to both the master and slave BFMs are
described in Table 24.

The AXI3 and AXI4 checkers that are implemented as tasks and are common to the master and slave BFMs are
located in the following Verilog files:

• cdn_axi3_bfm_checkers.v - AXI3 common checking tasks

• cdn_axi4_bfm_checkers.v - AXI4 common checking tasks

• cdn_axi4_lite_bfm_checkers.v - AXI4-Lite common checking tasks

• cdn_axi4_streaming_bfm_checkers.v - AXI4-Stream common checking tasks

Table 24: Common BFM Checker Tasks

Checker Task Name Inputs Description

check_burst_type BURST_TYPE Checks to see if the burst type value is valid.

check_burst_length BURST_TYPE
LENGTH
LOCK_TYPE

Checks to see if the burst length value is valid given the burst type.
NOTE: LOCK_TYPE input added for AXI4 only. In AXI4, exclusive accesses
must be 16 beats or less in length. Also only INCR bursts can be greater than 16
beats in length.

check_burst_size SIZE Checks that the burst size is not greater than the data bus size.

check_lock_type LOCK_TYPE Checks if the lock type value is valid.
NOTE: AXI4 reduces this to a single bit: Normal access = 0, Exclusive access
=1.

check_cache_type CACHE_TYPE Checks if the cache type value is valid.
NOTE: Different valid ranges for AXI4.

check_address ADDRESS
BURST_TYPE
SIZE

Checks to see if the address is valid given the burst type and the transfer size.
For example, a WRAP burst with an address which is not aligned to the transfer
size is illegal.

check_byte_qualifications STROBE
KEEP

This is an AXI 4 Streaming check only. It checks that only valid combinations of
strobe and keep signals are used.

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 34
Product Specification

AXI Bus Functional Models v2.1

BFM Specific Checkers

Table 25 details the Verilog checking tasks added to each BFM for a specific check. These checkers are only required
for the BFM that they are located in; so, they are not included in a common file.

Using AXI BFM for Standalone RTL design
The AXI BFM can be used to verify connectivity and basic functionality of AXI masters and AXI slaves with the
custom RTL design flow. The AXI BFM provides example test benches and tests that demonstrate the abilities of
AXI3, AXI4, AXI4-Lite and AXI4-Stream Master/Slave BFM pair. These examples can be used as a starting point to
create tests for custom RTL design with AXI3, AXI4, AXI4-Lite and AXI4-Stream interface.

Generating AXI BFM Examples and Test Benches from CORE Generator

The AXI BFM is delivered with ISE Design Suite installation at:

• <ISE_Version_Number>/ise_ds/ise/secureip/mti/axi_bfm_mti

• <ISE_Version_Number>/ise_ds/ise/secureip/ncsim/axi_bfm_ncsim

• <ISE_Version_Number>/ise_ds/ise/secureip/vcs/axi_bfm_vcs

• <ISE_Version_Number>/ise_ds/ise/secureip/aldec/axi_bfm_aldec

The examples and test benches can be obtained by generating the AXI BFM IP available in the “AXI Infrastructure”
or “Debug & Verification” folder of the CORE Generator™ IP catalog. When generated, the AXI BFM IP delivers the
user-specified <component_name> directory.

The <component_name>/simulation/functional directory contains the shell scripts for different simulators.

Table 25: BFM Specific Checker Tasks

Checker Task Name Inputs Checker
Location/s Description

check_address_range ADDRESS
BURST_TYPE
LENGTH

SLAVE BFM Checks to see if address is valid with respect to the SLAVE
configuration, the burst_type and length.

check_strobe STROBE
TRANSFER_NUMBER
ADDRESS
LENGTH
SIZE
BURST_TYPE

SLAVE BFM Checks to see if the input strobe is correct. This check
handles normal, narrow and unaligned transfers.

Shell Script Simulator

simulate_isim.sh ISim

simulate_mti.sh Mentor Graphics ModelSim

simulate_ncsim.sh Cadence IES

simulate_vcs.sh Synopsys VCS

simulate_aldec.sh Aldec Riviera-PRO

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 35
Product Specification

AXI Bus Functional Models v2.1

AXI BFM Example Designs

This section describes the example test benches and example tests used to demonstrate the abilities of each AXI
BFM pair. Example tests are delivered either in VHDL or Verilog based on the design entry while generating the
core. These example designs are available in the AXI_BFM installation area. Each AXI master is connected to a
single AXI slave, and then direct tests are used to transfer data from the master to the slave and from the slave to the
master.

It is worth remembering that the BFMs are not fully autonomous. For example, the AXI Master BFM is only a
user-driven verification component that enables the user to generate valid AXI protocol scenarios. Furthermore, if
tests are written using the channel level API it is possible that the AXI protocol can be accidentally violated. For this
reason, Xilinx recommends using the function level API for each BFM. The AMBA AXI protocol specification
[Ref 1], Section 3.3, Dependencies between Channel Handshake Signals, states that:

• the slave can wait for AWVALID or WVALID, or both, before asserting AWREADY

• the slave can wait for AWVALID or WVALID, or both, before asserting WREADY

This implies that the slave does not need to support all three possible scenarios. However, if the AXI Master BFM
operates in such a way that is not supported by the slave, then the simulation will stall. Each scenario is handled by
the function level API:

Scenario 1

Before the slave asserts AWREADY and/or WREADY, the slave can wait for AWVALID. This is modeled using the
function level API, WRITE_BURST.

Scenario 2

Before the slave asserts AWREADY and/or WREADY, the slave can wait for WVALID. This is modeled using the
function level API, WRITE_BURST_DATA_FIRST.

Scenario 3

Before the slave asserts AWREADY and/or WREADY, the slave can wait for both AWVALID and WVALID. This is
modeled using the function level API, WRITE_BURST_CONCURRENT.

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 36
Product Specification

AXI Bus Functional Models v2.1

AXI3 BFM Example Test Bench and Tests

The Verilog example test bench and example test for the AXI3 BFMs is shown in Figure 3.

The example test bench has the master and slave BFMs connected directly to each other. This gives visibility into
both sides of the code (master code and slave code) required to hit the scenarios detailed in the example tests.

cdn_axi3_example_test.v

The example test (simulation/cdn_axi3_example_test.v) contains the master and slave test code to
simulate the following scenarios:

1. Simple sequential write and read burst transfers example

2. Looped sequential write and read transfers example

3. Parallel write and read burst transfers example

4. Narrow write and read transfers example

5. Unaligned write and read transfers example

6. Narrow and unaligned write and read transfers example

7. Out of order write and read burst example

8. Write Bursts performed in two different ways; Data before address, and data with address concurrently

9. Write data interleaving example

10. Read data interleaving example

11. Outstanding transactions example

12. Slave read and write bursts error response example

13. Write and read bursts with different length gaps between data transfers example

14. Write and Read bursts with different length gaps between channel transfers example

15. Write burst that is longer than the data it is sending example

X-Ref Target - Figure 3

Figure 3: Verilog Example Test Bench and Test Case Structure

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 37
Product Specification

AXI Bus Functional Models v2.1

cdn_axi3_example_memory_mode_test.v

The example test (simulation/cdn_axi3_example_memory_mode_test.v) contains the slave code to ensure
that the slave BFM is configured as a 4 KB memory model. The master code in this test writes maximum length
bursts into the memory and reads them back. It does this with two different sets of test values.

The VHDL example test bench and example test for the AXI3 BFMs is shown in Figure 4.

The example test bench has the master and slave BFMs connected directly to each other. This gives visibility into
both sides of the code (master code and slave code) required to hit the scenarios detailed in the example tests.

cdn_axi3_example_test1.vhd to cdn_axi3_example_test15.vhd

The example test (simulation/cdn_axi3_example_test1.vhd to cdn_axi3_example_test15.vhd)
contains the master and slave test code to simulate the following scenarios (scenario#1 is covered in Test1,
scenario#2 in Test2 and so on):

1. Simple sequential write and read burst transfers example

2. Looped sequential write and read transfers example

3. Parallel write and read burst transfers example

4. Narrow write and read transfers example

5. Unaligned write and read transfers example

6. Narrow and unaligned write and read transfers example

7. Out of order write and read burst example

8. Write Bursts performed in two different ways; Data before address, and data with address concurrently

9. Write data interleaving example

10. Read data interleaving example

X-Ref Target - Figure 4

Figure 4: AXI3 BFM VHDL Example Test Bench and Example Test

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 38
Product Specification

AXI Bus Functional Models v2.1

11. Outstanding transactions example

12. Slave read and write bursts error response example

13. Write and read bursts with different length gaps between data transfers example

14. Write and Read bursts with different length gaps between channel transfers example

15. Write burst that is longer than the data it is sending example

cdn_axi3_example_memory_model_test.vhd

The example test (simulation/ cdn_axi3_example_memory_model_test.vhd) contains the slave code to
ensure that the slave BFM is configured as a 4K memory model. The master code in this test writes maximum length
bursts into the memory and reads them back. It does this with two different sets of test values.

AXI4 BFM Example Test Bench and Tests

The AXI4 Verilog example test bench structure is identical to the one used for AXI3 shown in Figure 3. The
following sections provide details about the example tests available.

cdn_axi4_example_test.v

The example test (simulation/cdn_axi4_example_test.v) contains the master and slave test code to
simulate the following scenarios:

1. Simple sequential write and read burst transfers example

2. Looped sequential write and read transfers example

3. Parallel write and read burst transfers example

4. Narrow write and read transfers example

5. Unaligned write and read transfers example

6. Narrow and unaligned write and read transfers example

7. Write Bursts performed with address and data channel transfers concurrently

8. Outstanding transactions example

9. Slave read and write bursts error response example

10. Write and read bursts with different length gaps between data transfers example

11. Write and Read bursts with different length gaps between channel transfers example

12. Write burst that is longer than the data it is sending example

13. Read data interleaving example

cdn_axi4_example_memory_mode_test.v

The example test (simulation/cdn_axi4_example_memory_mode_test.v) contains the slave code to ensure
that the slave BFM is configured as a 4 KB memory model. The master code in this test writes maximum length
bursts into the memory and reads them back. It does this with two different sets of test values.

The AXI4 VHDL example test bench structure is identical to the one used for AXI3 shown in Figure 4. The following
sections provide details about the example tests available.

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 39
Product Specification

AXI Bus Functional Models v2.1

cdn_axi4_example_test1.vhd to cdn_axi4_example_test13.vhd

The example test (simulation/cdn_axi4_example_test1.vhd to cdn_axi4_example_test13.vhd)
contains the master and slave test code to simulate the following scenarios (scenario#1 is covered in Test1,
scenario#2 in Test2 and so on):

1. Simple sequential write and read burst transfers example

2. Looped sequential write and read transfers example

3. Parallel write and read burst transfers example

4. Narrow write and read transfers example

5. Unaligned write and read transfers example

6. Narrow and unaligned write and read transfers example

7. Write Bursts performed with address and data channel transfers concurrently

8. Outstanding transactions example

9. Slave read and write bursts error response example

10. Write and read bursts with different length gaps between data transfers example

11. Write and Read bursts with different length gaps between channel transfers example

12. Write burst that is longer than the data it is sending example

13. Read data interleaving example

cdn_axi4_example_memory_model_test.vhd

The example test (simulation/cdn_axi4_example_memory_model_test.vhd) contains the slave code to
ensure that the slave BFM is configured as a 4K memory model. The master code in this test writes maximum length
bursts into the memory and reads them back. It does this with two different sets of test values.

AXI4-Lite BFM Example Test Bench and Tests

The AXI4-Lite Verilog example test bench structure is identical to the one used for AXI3 shown in Figure 3. The
following sections provide details about the example tests available.

cdn_axi4_lite_example_test.v

The example test (simulation/cdn_axi4_lite_example_test.v) contains the master and slave test code to
simulate the following scenarios:

1. Simple sequential write and read burst transfers example

2. Looped sequential write and read transfers example

3. Parallel write and read burst transfers example

4. Write Bursts performed in two different ways; Data before address, and data with address concurrently

5. Outstanding transactions example

6. Slave read and write bursts error response example

7. Write and Read bursts with different length gaps between channel transfers example

8. Unaligned write and read transfers example

9. Write burst that has valid data size less than the data bus width

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 40
Product Specification

AXI Bus Functional Models v2.1

cdn_axi4_lite_example_memory_mode_test.v

The example test (simulation/cdn_axi4_lite_example_memory_mode_test.v) contains the slave code to
ensure that the slave BFM is configured as a 4 KB memory model. The master code in this test writes data transfers
into the memory and reads them back. It does this with two different sets of test values.

The AXI4-Lite VHDL example test bench structure is identical to the one used for AXI3 shown in Figure 4. The
following sections provide details about the example tests available.

cdn_axi4_lite_example_test1.vhd to cdn_axi4_lite_example_test9.vhd

The example test (simulation/ cdn_axi4_lite_example_test1.vhd to
cdn_axi4_lite_example_test9.vhd) contains the master and slave test code to simulate the following
scenarios (scenario#1 is covered in Test1, scenario#2 in Test2 and so on):

1. Simple sequential write and read burst transfers example

2. Looped sequential write and read transfers example

3. Parallel write and read burst transfers example

4. Write Bursts performed in two different ways; Data before address, and data with address concurrently

5. Outstanding transactions example

6. Slave read and write bursts error response example

7. Write and Read bursts with different length gaps between channel transfers example

8. Unaligned write and read transfers example

9. Write burst that has valid data size less than the data bus width

cdn_axi4_lite_example_memory_model_test.vhd

The example test (simulation/cdn_axi4_lite_example_memory_model_test.vhd) contains the slave
code to ensure that the slave BFM is configured as a 4K memory model. The master code in this test writes data
transfers into the memory and reads them back. It does this with two different sets of test values.

AXI4-Stream BFM Example Test Bench and Tests

The AXI4-Stream Verilog example test bench structure is identical to the one used for AXI3 shown in Figure 3. The
following sections provide details about the example tests available.

cdn_axi4_streaming_example_test.v

The example test (simulation/cdn_axi4_streaming_example_test.v) contains the master and slave test
code to simulate the following scenarios:

1. Simple master to slave transfer example

2. Looped master to slave transfers example

3. Simple master to slave packet example

4. Looped master to slave packet example

5. Ragged (less data at the end of the packet than can be supported) master to slave packet example

6. Packet data interleaving example

The AXI4-Stream VHDL example test bench structure is identical to the one used for AXI3 shown in Figure 4. The
following sections provide details about the example tests available.

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 41
Product Specification

AXI Bus Functional Models v2.1

cdn_axi4_streaming_example_test1.vhd to cdn_axi4_streaming_example_test6.vhd

The example test (simulation/ cdn_axi4_streaming_example_test1.vhd to
cdn_axi4_streaming_example_test6.vhd) contains the master and slave test code to simulate the following
scenarios (scenario#1 is covered in Test1, scenario#2 in Test2 and so on):

1. Simple master to slave transfer example

2. Looped master to slave transfers example

3. Simple master to slave packet example

4. Looped master to slave packet example

5. Ragged (less data at the end of the packet than can be supported) master to slave packet example

6. Packet data interleaving example

Useful Coding Guidelines and Examples

Loop Construct Simple Example

While coding directed tests, 'for loops' are typically employed frequently to efficiently generate large volumes of
stimulus for both the master and/or slave BFMs. For example:

for (m=0;m<2;m =m+1) begin // Burst Type variable
 for (k=0;k<3;k=k+1) begin // Burst Size variable
 $display(“--”);
 $display(“EXAMPLE TEST LOCKED and NORMAL “);
 $display("--");

 for (i=0; i<16;i=i+1) begin // Burst Length variable
 tb.master_0.WRITE_BURST(mtestID+i, // Master ID
 mtestAddr, // Master Address
 i, // Master Burst Length
 k, // Master Burst Size
 m, // Master Access Type FIXED, INCR
 `LOCKED_TYPE_FIXED, // Use define
 4'b0000, // Buffer/Cachable Hardcoded
 3'b000, // Protection Type Hardcoded
 test_data[i],// Write Data from array
 response, // response from slave
 end
 end
end

This ‘for loop’ cycles through the following stimulus:

• Access Type (m): FIXED, INCR

• Burst Size (k): 1_BYTE, 2_BYTES, 4_BYTES

• Burst Length (i): 1 to 16

Nested for loops can be used to generate numerous combinations of traffic types, but care must be taken to not
violate protocol. The AXI BFMs check the input parameters of the API calls, but this does not prevent higher level
protocol being violated.

Loop Construct Complex Example

In some cases, a nested for loop can lead to invalid stimulus if not used correctly. A good example of this is WRAP
bursts. The AXI Specification requires that WRAP bursts must be 2,4,8 or 16 transfers in length. For this type of
burst, the nested for loop from the Loop Construct Simple Example cannot be used because the nested for loop

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 42
Product Specification

AXI Bus Functional Models v2.1

cycles through burst lengths of 1 to 16. For exhaustive WRAP tests, another for loop declaration is widely used to
drive legal stimulus:

for (i=2; i <= 16; i=i*2) begin

thus giving a burst length of 2, 4, 8 and 16 transfers.

DUT Modeling using the AXI BFMs: Memory Model Example

In most cases, the behavior of a master or slave is more complicated than simple transfer generation. For this reason,
the AXI BFM API enables the end user to model higher level DUT functionality. A simple example is a slave
memory model. Such a memory model is available as a configuration option in most of the AXI slave BFMs. This
example shows the code used for the AXI3 Slave BFM memory model mode, starting with the write datapath.

//--// Write Path
//--
always @(posedge ACLK) begin : WRITE_PATH
 //--
 //- Local Variables
 //--
 reg [ID_BUS_WIDTH-1:0] id;
 reg [ADDRESS_BUS_WIDTH-1:0] address;
 reg [`LENGTH_BUS_WIDTH-1:0] length;
 reg [`SIZE_BUS_WIDTH-1:0] size;
 reg [`BURST_BUS_WIDTH-1:0] burst_type;
 reg [`LOCK_BUS_WIDTH-1:0] lock_type;
 reg [`CACHE_BUS_WIDTH-1:0] cache_type;
 reg [`PROT_BUS_WIDTH-1:0] protection_type;
 reg [ID_BUS_WIDTH-1:0] idtag;
 reg [(DATA_BUS_WIDTH*(`MAX_BURST_LENGTH+1))-1:0] data;
 reg [ADDRESS_BUS_WIDTH-1:0] internal_address;
 reg [`RESP_BUS_WIDTH-1:0] response;
 integer i;
 integer datasize;
 //--
 // Implementation Code
 //--
 if (MEMORY_MODEL_MODE == 1) begin
 // Receive the next available write address
 RECEIVE_WRITE_ADDRESS(id,`IDVALID_FALSE,address,length,size,
 burst_type,lock_type,cache_type,protection_type,idtag);
 // Get the data to send to the memory.
 RECEIVE_WRITE_BURST(idtag,`IDVALID_TRUE,address,length,size,
 burst_type,data,datasize,idtag);
 // Put the data into the memory array
 internal_address = address - SLAVE_ADDRESS;
 for (i=0; i < datasize; i=i+1) begin
 memory_array[internal_address+i] = data[i*8 +: 8];
 end
 // End the complete write burst/transfer with a write response
 // Work out which response type to send based on the lock type.
 response = calculate_response(lock_type);
 repeat(WRITE_RESPONSE_GAP) @(posedge ACLK);
 SEND_WRITE_RESPONSE(idtag,response);
 end
end

As shown in the code above, it is possible to create the write datapath for a simple memory model using three of the
tasks from the slave channel level API. This is achieved in the following four steps:

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 43
Product Specification

AXI Bus Functional Models v2.1

1. The first step is to wait for any write address request on the write address bus. This is done by calling
RECEIVE_WRITE_ADDRESS with `IDVALID_FALSE. This ensures that the first detected and valid write
address handshake is recorded and the details passed back. This task is blocking; so the WRITE_PATH process
does not proceed until it has found a write address channel transfer.

2. The second step is to get the write data burst that corresponds to the write address request in the previous step.
This is done by calling RECEIVE_WRITE_BURST with the id tag output from the RECEIVE_WRITE_ADDRESS
call and with IDVALID_TRUE. This ensures that the entire write data burst that has the specified id tag is
captured before execution returns to the WRITE_PATH process.

3. The third step is to take the data from the write data burst and put it into a memory array. In this case, the
memory array is an array of bytes.

4. The last step to complete the AXI3 protocol is to send a response. The internal function 'calculate_reponse' is
used to work out if the transfer was exclusive or not and to deliver an EXOKAY or OK response (NOTE: More
code could be added here to support DECERR or SLVERR response types). When the response has been
calculated, the WRITE_PATH process waits for the defined internal control variable WRITE_RESPONSE_GAP
in clock cycles before sending the response back to the slave with the same ID tag as the write data transfer.

The following code illustrates the steps required to make the read datapath for a simple slave memory model:

//---
// Read Path
//---always @(posedge ACLK)
begin : READ_PATH
 //---
 // Local Variables
 //---
 reg [ID_BUS_WIDTH-1:0] id;
 reg [ADDRESS_BUS_WIDTH-1:0] address;
 reg [`LENGTH_BUS_WIDTH-1:0] length;
 reg [`SIZE_BUS_WIDTH-1:0] size;
 reg [`BURST_BUS_WIDTH-1:0] burst_type;
 reg [`LOCK_BUS_WIDTH-1:0] lock_type;
 reg [`CACHE_BUS_WIDTH-1:0] cache_type;
 reg [`PROT_BUS_WIDTH-1:0] protection_type;
 reg [ID_BUS_WIDTH-1:0] idtag;
 reg [(DATA_BUS_WIDTH*(`MAX_BURST_LENGTH+1))-1:0] data;
 reg [ADDRESS_BUS_WIDTH-1:0] internal_address;
 integer i;
 integer number_of_valid_bytes;
 //---
 // Implementation Code
 //---
 if (MEMORY_MODEL_MODE == 1) begin
 // Receive a read address transfer
 RECEIVE_READ_ADDRESS(id,`IDVALID_FALSE,address,length,size,
 burst_type,lock_type,cache_type,protection_type,idtag);
 // Get the data to send from the memory.
 internal_address = address - SLAVE_ADDRESS;
 data = 0;
 number_of_valid_bytes =
(decode_burst_length(length)*transfer_size_in_bytes(size))-(address % (DATA_BUS_WIDTH/8));

 for (i=0; i < number_of_valid_bytes; i=i+1) begin
 data[i*8 +: 8] = memory_array[internal_address+i];
 end
 // Send the read data
 repeat(READ_RESPONSE_GAP) @(posedge ACLK);
 SEND_READ_BURST(idtag,address,length,size,burst_type,
 lock_type,data);
 end
end

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 44
Product Specification

AXI Bus Functional Models v2.1

As shown in the code above, it is possible to create the read datapath for a simple memory model using two of the
tasks from the slave channel level API. This is achieved in the following two steps:

1. The first step is to wait for any read address request on the read address bus. This is done by calling
RECEIVE_READ_ADDRESS with IDVALID_FALSE. This ensures that the first detected and valid read address
handshake is recorded and the details are passed back. This task is blocking; so the READ_PATH process does
not proceed until it has found a read address channel transfer.

2. The second step is to take the requested data from the memory array and send it in a read burst. This is done by
extracting the data byte by byte into a data vector which is used as an input into the SEND_READ_BURST task.
Before sending the read data burst, the READ_PATH process waits for the clock cycles determined in the
internal control variable READ_RESPONSE_GAP.

Using AXI BFM for Embedded Designs with XPS
For Xilinx Platform Studio (XPS)-based systems, pcore wrappers around the AXI BFMs are provided under
Verification in the EDK Install IP catalog. Additionally, the XPS Create IP (CIP) Wizard creates simple example
projects. See Getting Started with EDK and AXI BFM, page 46 for detailed steps.

This section only applies to AXI BFM cores that are instantiated inside the EDK XPS project with the following
requirements:

• Xilinx EDK and AXI BFM Licenses

• Supported simulator

Adding AXI BFMs to EDK

The AXI BFMs are wrapped into EDK pcores to allow easy integration into an XPS project. The BFMs are added and
connected to an EDK system in the same way other Xilinx AXI-based IP cores: add the core to the project,
parameterize the core, then connect the ‘Bus Interface’ of the related AXI interface to the rest of the system.

See Configuration Options, page 3 for more information on the BFM-specific parameters on the pcores. Additional
parameters exist in the XPS Core Config GUI under the Interconnect Settings for BUSIF tab to modify the
function of an attached AXI Interconnect block. For more information on these parameters, see [Ref 3].

Providing Stimulus

User control/stimulus for the AXI BFMs is provided by making function calls to a hierarchy-specific AXI BFM core
instance. For example, to initiate a write burst transaction with a AXI4 Master BFM, the WRITE_BURST()
function-level API command might be issued in the test bench:

dut. my_master0.my_master0.cdn_axi4_master_bfm_inst.WRITE_BURST(arguments);

This command specifies the hierarchy of the AXI BFM instance, and stimulates the core to perform the write burst
with the address, data and other transfer qualifiers specified in the arguments, as documented in Test Writing API,
page 14.

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 45
Product Specification

AXI Bus Functional Models v2.1

Determining Fully-Qualified Instance Name

One design challenge is to determine the fully-qualified instance name for EDK AXI BFM pcores for use in the API
commands. In general, the path in a standalone XPS project resembles:

 <Project Instance>.<MHS Instance>. <MHS Instance>.<BFM Core Name>

where:

• <Project Instance> is the instance name of the EDK system, not including the test bench name.

• <MHS Instance> is the instance name given to the AXI BFM core name in the user MHS file.

• < BFM Core Name > is the core name of the AXI BFM pcore in EDK. Options include:

• cdn_axi4_master_bfm_wrap

• cdn_axi4_slave_bfm_wrap

• cdn_axi4_lite_master_bfm_wrap

• cdn_axi4_lite_slave_bfm_wrap

• cdn_axi4_streaming_master_bfm_wrap

• cdn_axi4_streaming_slave_bfm_wrap

• cdn_axi3_master_bfm_wrap

• cdn_axi3_slave_bfm_wrap

Any additional levels of hierarchy, such as when using with ISE Project Navigator, are added to the left of the path.

To determine the fully-qualified name of the AXI BFM core in EDK, elaborate the design in a simulator, before
specifying the API function calls. This is shown in Figure 5 for the example above, using ModelSim.

X-Ref Target - Figure 5

Figure 5: ModelSim Example Hierarchy

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 46
Product Specification

AXI Bus Functional Models v2.1

Getting Started with EDK and AXI BFM

This section describes how to use CIP Wizard in XPS to create an AXI-based IP with AXI BFM simulation. By
creating a custom IP core, the CIP wizard provides a matching AXI BFM project to aid in development and
verification of the custom IP core.

1. In XPS GUI, select Hardware -> Create or Import Peripherals to enable CIP wizard.

2. Click Next and choose Create templates for a new peripheral.

3. Click Next and choose the repository for storing the peripheral.

4. Click Next and name the AXI-based IP my_axi_ip.

5. For this example, choose AXI4 bus interface and click Next.

X-Ref Target - Figure 6

Figure 6: Select the Repository Path

X-Ref Target - Figure 7

Figure 7: Name the Peripheral

X-Ref Target - Figure 8

Figure 8: Choose a Bus

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 47
Product Specification

AXI Bus Functional Models v2.1

6. Check User Logic Master Support in IPIF Services tab if an AXI4-based master IP is needed, and then click
Next until the Peripheral Simulation Support tab.

7. Check Generate BFM simulation platform and Next.

8. Click Next and Finish.

Figure 11 shows the directory structure of the generated AXI4-based IP (named my_axi_ip).

X-Ref Target - Figure 9

Figure 9: Select Master Support

X-Ref Target - Figure 10

Figure 10: Generate Simulation Platform

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 48
Product Specification

AXI Bus Functional Models v2.1

The AXI BFM simulation can be run from \devl\bfmsim.

Running AXI BFM simulation with ModelSim

This section describes how to run AXI BFM simulation on the generated AXI-based IP within ModelSim.

1. Start XPS and open the BFM_SYSTEM project in the directory \devl\bfmsim.

Xilinx has provided AXI BFM wrapper files to be used with AXI-based IP BFM simulations. When an AXI-based
master/slave IP is generated, a corresponding AXI BFM core is added to assist in developing the custom core.

In this example, “User Logic Master Support” is enabled. Therefore, my_axi_ip has an AXI4 Master interface
and an AXI4-Lite Slave interface, which is connected through an AXI4 bus and AXI4-Lite bus interface, respectively.
In the AXI BFM simulation directory, the simulation uses AXI4_MASTER_BFM_WRAPPER,
AXI4_LITE_MASTER_BFM_WRAPPER and AXI4_SLAVE_BFM_WRAPPER for the simulation. Figure 12 shows
the XPS GUI.

2. Click Simulation -> Launch HDL Simulator to launch ModelSim (assuming the EDK and BFM libraries have
been properly compiled within ModelSim simulator).

3. Copy the test bench file (bfm_system_tb.v) from \devl\bfmsim\scripts to
\devl\bfmsim\simulation\behavioral.

X-Ref Target - Figure 11

Figure 11: CIP Wizard Output Directory Structure

X-Ref Target - Figure 12

Figure 12: XPS CIP AXI BFM Project

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 49
Product Specification

AXI Bus Functional Models v2.1

4. Make run.do script and save it in \devl\bfmsim\simulation\behavioral.

do bfm_system_setup.do
Compile BFM test modules
c
Load BFM test platform
s
Load Wave window
w
Run test time
run 100 us

5. After launching ModelSim, type do run.do in the ModelSim console.

The AXI BFM simulation starts running and activity is seen on the AXI4 and AXI4-Lite interfaces.

Analyzing AXI BFM Simulation

This section describes how to analyze the simulation results to verify custom IP function. With the default visibility,
the following AXI BFM configuration details can be seen from the ModelSim console.

BFM Xilinx: License succeeded for Xilinx_AXI_BFM, version 2010.100000
**
* Cadence AXI 4 LITE MASTER BFM *
**
* VERSION NUMBER : 1.9
**
* CONFIGURATION:
* NAME = MASTER_0
* DATA_BUS_WIDTH = 32
* ADDRESS_BUS_WIDTH = 32
* MAX_OUTSTANDING_TRANSACTIONS = 8
* RESPONSE_TIMEOUT = 500
* STOP_ON_ERROR = 1
* CHANNEL_LEVEL_INFO = 0
* FUNCTION_LEVEL_INFO = 1
**
BFM Xilinx: License succeeded for Xilinx_AXI_BFM, version 2010.100000
**
* Cadence AXI 4 MASTER BFM *
**
* VERSION NUMBER : 1.9
**
* CONFIGURATION:
* NAME = MASTER_0
* DATA_BUS_WIDTH = 32
* ADDRESS_BUS_WIDTH = 32
* ID_BUS_WIDTH = 1
* AWUSER_BUS_WIDTH = 1
* ARUSER_BUS_WIDTH = 1
* RUSER_BUS_WIDTH = 1
* WUSER_BUS_WIDTH = 1
* BUSER_BUS_WIDTH = 1
* MAX_OUTSTANDING_TRANSACTIONS = 8
* EXCLUSIVE_ACCESS_SUPPORTED = 0
* WRITE_BURST_DATA_TRANSFER_GAP = 0
* RESPONSE_TIMEOUT = 500
* STOP_ON_ERROR = 1
* CHANNEL_LEVEL_INFO = 0
* FUNCTION_LEVEL_INFO = 1

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 50
Product Specification

AXI Bus Functional Models v2.1

**
BFM Xilinx: License succeeded for Xilinx_AXI_BFM, version 2010.100000

* Cadence AXI 4 SLAVE BFM *

* VERSION NUMBER : 1.9

* CONFIGURATION:
* NAME = SLAVE_0
* DATA_BUS_WIDTH = 32
* ADDRESS_BUS_WIDTH = 32
* ID_BUS_WIDTH = 2
* AWUSER_BUS_WIDTH = 1
* ARUSER_BUS_WIDTH = 1
* RUSER_BUS_WIDTH = 1
* WUSER_BUS_WIDTH = 1
* BUSER_BUS_WIDTH = 1
* SLAVE_ADDRESS = 0x40000000
* SLAVE_MEM_SIZE = 0x10000
* MAX_OUTSTANDING_TRANSACTIONS = 8
* MEMORY_MODEL_MODE = 1
* EXCLUSIVE_ACCESS_SUPPORTED = 0
* READ_BURST_DATA_TRANSFER_GAP = 0
* WRITE_RESPONSE_GAP = 0
* READ_RESPONSE_GAP = 0
* RESPONSE_TIMEOUT = 500
* STOP_ON_ERROR = 1
* CHANNEL_LEVEL_INFO = 0
* FUNCTION_LEVEL_INFO = 1

The test bench shows BFM_BURST_PROCESSOR doing two WRITE bursts and one READ burst to BFM_MEMORY
peripheral through the AXI4 bus.

In Figure 13, BFM_BURST_PROCESSOR is performing two WRITE bursts to BFM_MEMORY at address 0x4000000
and then to 0x40000040. Next it performs a READ burst from BFM_MEMORY at address 0x40000040. The
ModelSim console output is:

X-Ref Target - Figure 13

Figure 13: BFM_BURST_PROCESSOR Simulation Waveform

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 51
Product Specification

AXI Bus Functional Models v2.1

Master Verification

Initializing first 16 locations of AXI Slave BFM memory with value
[830] : MASTER_0 : *INFO : WRITE_BURST Task Call - id = 0x0, address = 0x40000000, length
= 16, size = 4, burst_type = 0x1, lock_type = 0x0, cache_type = 0x0, protection_type = 0x0,
valid data size (in bytes) = 64, region = 0x0, qos = 0x0, awuser = 0x0
EXAMPLE TEST 1 : Burst 64,WRITE DATA =
0x03d3c3b3a393837363534333231302f2e2d2c2b2a292827262524232221201f1e1d1c1b1a191817161514131
211100f0e0d0c0b0a09080706050403020100, response = 0x0
Initializing second 16 locations of AXI Slave BFM memory with value
[1590] : MASTER_0 : *INFO : WRITE_BURST Task Call - id = 0x0, address = 0x40000040, length
= 16, size = 4, burst_type = 0x1, lock_type = 0x0, cache_type = 0x0, protection_type = 0x0,
valid data size (in bytes) = 64, region = 0x0, qos = 0x0, awuser = 0x0
EXAMPLE TEST 1 : Burst 64,WRITE DATA =
0x00
0000000000000000000000000000000000000, response = 0x0
Requesting master to read the data and write to different location
[6190] : MASTER_0 : *INFO : READ_BURST Task Call - id = 0x0, address = 0x40000040, length
= 16, size = 4, burst_type = 0x1, lock_type = 0x0, cache_type = 0x0, protection_type = 0x0,
region = 0x0, qos = 0x0, aruser = 0x0
EXAMPLE TEST 1 : READ DATA =
0x03d3c3b3a393837363534333231302f2e2d2c2b2a292827262524232221201f1e1d1c1b1a191817161514131
211100f0e0d0c0b0a09080706050403020100, vresponse = 0x00000000
--
Peripheral Verification Completed Successfully
--

At the AXI4 bus interface, my_axi_ip is another master that does a continuous single READ and single WRITE to
BFM_MEMORY.

In Figure 14, my_axi_ip issues Read commands and BFM_MEMORY responds with read data. In addition,
my_axi_ip issues Write commands with the date and BFM_MEMORY responds WREADY to accept the date from
the master

At the AXI4-Lite bus interface, the BFM_Lite_Processor is the master that performs single-transfer Write and Read
transactions to my_axi_ip.

X-Ref Target - Figure 14

Figure 14: my_axi_ip Waveform

http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 52
Product Specification

AXI Bus Functional Models v2.1

In Figure 15, BFM_Lite_Processor is performing a single Write at address 0x30000000 with data = 0x03020100.
my_axi_ip responds with WREAD/WVALID signals for each of the Write transactions from the master.

In Figure 16, BFM_Lite_Processor issues a single Read command to my_axi_ip, and my_axi_ip responds with
read data.

As a result of these transactions, the ModelSim console outputs:

--
Full Registers write followed by a full Registers read
--
Writing to Slave Register addr=0x30000000 data=0x03020100
Reading from Slave Register addr=0x30000000 data=0x03020100

References
1. ARM® AMBA® AXI Protocol v2.0 Specification (ARM IHI 0022C)

2. Cadence AXI UVC User Guide (VIPP 9.2/VIPP 10.2 releases)

3. AXI Interconnect IP Data Sheet (DS768)

Support
Xilinx provides technical support for this product when used as described in the product documentation. Xilinx
cannot guarantee functionality or support of this product not defined in the documentation, if modified in a way
not described in the product documentation, or if changes are made to any section of the design labeled DO NOT
MODIFY.

Ordering Information
The AXI Bus Functional Model is provided under the terms of the Xilinx Core License Agreement. A full license
for the model must be purchased and obtained from Xilinx. To access the full functionality of the core, visit the AXI
Bus Functional Model web page. Contact your local Xilinx sales representative for pricing and availability of
additional Xilinx modules and software. Information about additional Xilinx solutions is available on the Xilinx IP
Center.

X-Ref Target - Figure 15

Figure 15: BFM_Lite_Processor Write Waveform

X-Ref Target - Figure 16

Figure 16: BFM_Lite_Processor Read Waveform

http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/products/intellectual-property/index.htm
www.xilinx.com/products/intellectual-property/DO-AXI-BFM.htm
www.xilinx.com/support/documentation/axi_ip_documentation.htm
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022c/index.html
http://www.xilinx.com

DS824 April 24, 2012 www.xilinx.com 53
Product Specification

AXI Bus Functional Models v2.1

Revision History
The following table shows the revision history for this document:

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To
the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby
DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT
LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of
liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including
your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss
of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such
damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no
obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent.
Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at
http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to
you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe
performance; you assume sole risk and liability for use of Xilinx products in Critical Applications:
http://www.xilinx.com/warranty.htm#critapps.

Date Version Description of Revisions

06/22/2011 1.0 Initial Xilinx release. This document was previously released as UG783. Added additional
details in Using AXI BFM for Standalone RTL design, page 34 and Using AXI BFM for
Embedded Designs with XPS, page 44.

10/19/11 1.1 Updated for Release 13.3. Added write burst address and data parameters to Table 3 and
Table 9. Added clk_delay and call_and_reset handling to Table 9. Added section on possible
scenarios in AXI BFM Example Designs, page 35.

04/24/12 1.2 Updated for Release 14.1. Version 2.1 of core. Core now CORE Generator compliant; added
VHDL example tests.

http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com

