Table of Contents

Chapter 1: IP Facts ... 4
 Features .. 4
 IP Facts .. 4

Chapter 2: Overview .. 6
 Feature Summary .. 6
 Licensing and Ordering .. 6

Chapter 3: Product Specification ... 7
 Operation ... 7
 Control Status .. 8
 Performance and Resource Use .. 8
 Port Descriptions .. 9
 Register Space ... 10

Chapter 4: Designing with the Core .. 11
 Responding to Transactions in Shutdown Mode .. 11
 Connecting to the Reconfigurable Partition .. 12
 AXI Write Channel Timing .. 12
 General Design Guidelines ... 12

Chapter 5: Design Flow Steps .. 13
 Customizing and Generating the Core ... 13
 Constraining the Core ... 17
 Simulation .. 18
 Synthesis and Implementation ... 18

Appendix A: Upgrading .. 19

Appendix B: Debugging .. 21
 Finding Help on Xilinx.com .. 21
 Debug Tools .. 22
Appendix C: Additional Resources and Legal Notices

Xilinx Resources

Documentation Navigator and Design Hubs

References

Revision History

Please Read: Important Legal Notices
IP Facts

The Xilinx® Dynamic Function eXchange AXI Shutdown Manager (DFX AXI Shutdown Manager) IP core safely handles AXI4MM and AXI4-Lite interfaces on a Reconfigurable Partition when it is undergoing dynamic reconfiguration (DFX), preventing system deadlock that can occur if AXI transactions are interrupted by DFX.

Features

- AXI4MM and AXI4-Lite support
- Optional Signal based or AXI4-Lite control
- Optional AXI4-Lite status (signal status is always available)
- Optional termination control

IP Facts

<table>
<thead>
<tr>
<th>LogiCORE IP Facts Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Specifics</td>
</tr>
<tr>
<td>Supported Device Family¹</td>
</tr>
<tr>
<td>Supported User Interfaces</td>
</tr>
<tr>
<td>Resources</td>
</tr>
<tr>
<td>Provided with Core</td>
</tr>
<tr>
<td>Design Files</td>
</tr>
<tr>
<td>Example Design</td>
</tr>
<tr>
<td>Test Bench</td>
</tr>
<tr>
<td>Constraints File</td>
</tr>
<tr>
<td>Simulation Model</td>
</tr>
<tr>
<td>Supported S/W Driver</td>
</tr>
<tr>
<td>Tested Design Flows²</td>
</tr>
<tr>
<td>Design Entry</td>
</tr>
</tbody>
</table>
LogiCORE IP Facts Table

<table>
<thead>
<tr>
<th>Simulation</th>
<th>For supported simulators, see the Xilinx Design Tools: Release Notes Guide.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis</td>
<td>Vivado Synthesis</td>
</tr>
</tbody>
</table>

Support

<table>
<thead>
<tr>
<th>Release Notes and Known Issues</th>
<th>Master Answer Record: 73353</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Vivado IP Change Logs</td>
<td>Master Vivado IP Change Logs: 72775</td>
</tr>
</tbody>
</table>

Notes:

1. For a complete list of supported devices, see the Vivado IP catalog.
2. For the supported versions of the tools, see the Xilinx Design Tools: Release Notes Guide.
Overview

One or more DFX AXI Shutdown Manager cores can be used to make the AXI interfaces between a Reconfigurable Partition and the static logic safe during Dynamic Functions eXchange (DFX). When active, AXI transactions sent to the Reconfigurable Module (RM), and AXI transactions emanating from the Reconfigurable Module, are terminated by the core because the Reconfigurable Module might not be able to complete them. Failure to complete could cause system deadlock.

When inactive (In Pass Through mode), transactions are passed unaltered.

Feature Summary

Multiple Options for Status and Control
The DFX AXI Shutdown Manager core can be controlled and queried using single signals or an AXI4-Lite interface.

Dynamic Function eXchange Controller Core Interoperability
The DFX AXI Shutdown Manager core connects directly to the Dynamic Function eXchange Controller core using the signal based control interface.

Licensing and Ordering

This Xilinx® LogiCORE™ IP module is provided at no additional cost with the Xilinx Vivado® Design Suite under the terms of the Xilinx End User License.

For more information about this core, visit the DFX AXI Shutdown Manager product web page.

Information about other Xilinx® LogiCORE™ IP modules is available at the Xilinx Intellectual Property page. For information about pricing and availability of other Xilinx LogiCORE IP modules and tools, contact your local Xilinx sales representative.
Chapter 3

Product Specification

Introduction to Shutdown

Designers of dynamically reconfigurable systems must ensure that there are no AXI transactions in-flight at a Reconfigurable Module’s interfaces when it is removed from a system, and that no transactions are sent to a Reconfigurable Partition that has no active RM. Failure to ensure this can lead to system deadlock.

For example, if an AXI master in the static requests a 256 word read from a Reconfigurable Module, and the RM is removed before supplying all of the data, that master may hang indefinitely. Alternatively, the RM might have launched a 256 word write transaction and been removed before it could supply all the data. The attached slave might hang waiting on the rest of the data, which will no longer be sent.

If the design cannot ensure through normal operation (for example, in the software stack) that all AXI Transactions will be completed, then the DFX AXI Shutdown Manager core can be used.

Operation

Modes of Operation

The core works in two modes - Pass Through and Shutdown.

- **In Pass Through mode**, the core is functionally transparent but adds some latency to the AXI transactions. Transactions from the upstream master are received on the slave side of the core, passed to the master side of the core, and sent to the downstream slave. Responses from the downstream slave are received on the master side of the core, passed to the slave side of the core, and sent to the upstream master.

- **In Shutdown mode**, transactions that are received on the master side of the core are handled by the Shutdown Manager based on a configuration option. They are either terminated by the Shutdown Manager, or held until the mode is switched back to Pass Through mode. See **Responding to Transactions in Shutdown Mode** for more information.
Changing the Mode of Operation

The core changes mode when requested and all the previously accepted transactions have been resolved. Each AXI channel contains a small FIFO, so 16 transactions can be outstanding. A mode change can be requested using the request_shutdown signal, or the request_shutdown register bit, depending on which is enabled.

All AXI transactions are stored with the value of request_shutdown that existed when the transaction was received. For example, if a transaction is received when request_shutdown is asserted, it is stored as a transaction that is to be handled by the Shutdown Manager IP. Deasserting request_shutdown before the transaction is processed will not change how it is handled by the core. The reverse is also true. A transaction received when request_shutdown is deasserted will be handled as such regardless of the value of request_shutdown when the transaction is processed.

Control Status

The DFX AXI Shutdown Manager core provides a signal interface and an AXI4-Lite register interface to control the core. Only one of these can be enabled at a time. It also provides signal and AXI4-Lite register access to the core's status. The AXI4-Lite interface is optional, but the status signals are always present. They can be left unconnected if not required.

Integration with Dynamic Function eXchange Controller Core

The DFX AXI Shutdown Manager core has been designed to operate with the Dynamic Function eXchange Controller core. The vsm_<name>_rm_shutdown_req output of the appropriate Virtual Socket Manager can be connected directly to the Shutdown Manager's request_shutdown control signal. If multiple Shutdown Managers are used, the vsm_<name>_rm_shutdown_req signal can be connected to each's request_shutdown control signal directly. See Dynamic Function eXchange Controller IP LogiCORE IP Product Guide (PG374) for more information.

Performance and Resource Use

For full details about performance and resource use, visit the Performance and Resource Use web page.
Port Descriptions

Port Names

Table 1: Port Descriptions

<table>
<thead>
<tr>
<th>Port Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clk</td>
<td>I</td>
<td>Clock</td>
</tr>
<tr>
<td>reset/resetn</td>
<td>I</td>
<td>Reset. Active-High/Low depending on core configuration</td>
</tr>
<tr>
<td>s_axi_ctrl_*</td>
<td>I, O</td>
<td>AXI4-Lite register interface</td>
</tr>
<tr>
<td>request_shutdown</td>
<td>I</td>
<td>Assert to request entry to Shutdown Mode. Deassert to request entry to Pass Through mode</td>
</tr>
<tr>
<td>shutdown_requested</td>
<td>O</td>
<td>Asserted when shutdown has been requested, either by the request_shutdown signal, or through the register interface. This signal can be used to drive the request_shutdown input of other Shutdown Manager instances</td>
</tr>
<tr>
<td>in_shutdown</td>
<td>O</td>
<td>Asserted when shutdown has been requested and all pending transactions have been handled. This signal signifies that both the Read Channel and the Write Channel have entered Shutdown Mode</td>
</tr>
<tr>
<td>wr_in_shutdown</td>
<td>O</td>
<td>Write Channel In Shutdown. Asserted when shutdown has been requested and all pending write transactions have been handled. This signal signifies that the Write Channel has entered Shutdown Mode</td>
</tr>
<tr>
<td>rd_in_shutdown</td>
<td>O</td>
<td>Read Channel In Shutdown. Asserted when shutdown has been requested and all pending read transactions have been handled. This signal signifies that the Read Channel has entered Shutdown Mode</td>
</tr>
<tr>
<td>wr_irq</td>
<td>O</td>
<td>A level-based interrupt that is asserted for a clock cycle when a write transaction is received and request_shutdown is asserted. This transaction will not be passed on by the core, and the interrupt is to alert the system that something is trying to communicate with a Reconfigurable Module that is no longer present.</td>
</tr>
<tr>
<td>rd_irq</td>
<td>O</td>
<td>A level-based interrupt that is asserted for a clock cycle when a read transaction is received and request_shutdown is asserted. This transaction will not be passed on by the core, and the interrupt is to alert the system that something is trying to communicate with a Reconfigurable Module that is no longer present.</td>
</tr>
<tr>
<td>irq</td>
<td>O</td>
<td>A level-based interrupt that is asserted when either wr_irq or rd_irq is asserted</td>
</tr>
<tr>
<td>s_axi_*</td>
<td>O</td>
<td>The AXI slave interface that the upstream master attaches to</td>
</tr>
<tr>
<td>m_axi_*</td>
<td>I, O</td>
<td>The AXI master interface that the downstream slave attaches to</td>
</tr>
</tbody>
</table>

Notes:
1. For a description of AXI4, AXI4-Lite and AXI4-Stream signals, see the *Vivado Design Suite: AXI Reference Guide* (UG1037).
2. If the core is configured to use back-pressure (see *Responding to Transactions in Shutdown Mode*), then the transaction will be passed on to the downstream slave once the core has exited Shutdown Mode.
Register Space

The following table describes the DFX AXI Shutdown Manager core register space.

Table 2: Register Address Space

<table>
<thead>
<tr>
<th>Address (hex)</th>
<th>Register Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>CONTROL</td>
<td>Control register</td>
</tr>
<tr>
<td>00h</td>
<td>STATUS</td>
<td>Status register</td>
</tr>
</tbody>
</table>

CONTROL (Control Register – Offset 00h)

The CONTROL register is write only, and is mapped to the same address as the STATUS register.

Table 3: Control Register

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:1</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
| 0 | request_shutdown| 1: Enter Shutdown mode
0: Enter Pass Through mode |

STATUS (Status Register – Offset 00h)

The STATUS register is read only and is mapped to the same address as the CONTROL register.

Table 4: Status Register

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:4</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
| 3 | rd_in_shutdown | 1: The read channel is in the Shutdown Mode
0: The read channel is in the Pass Through mode |
| 2 | wr_in_shutdown | 1: The write channel is in the Shutdown Mode
0: The write channel is in the Pass Through mode |
| 1 | in_shutdown | 1: Both the read and write channels are in the Shutdown Mode
0: The read or the write channel (or both) are in the Pass Through mode |
| 0 | shutdown_requested| 1: Entry to Shutdown mode has been requested
0: Entry to Pass Through mode has been requested |
Responding to Transactions in Shutdown Mode

The core offers a number of ways to handle transactions that are received in Shutdown Mode:

- Terminate the transaction with a SLVERR response
- Terminate the transaction with a DECERR response
- Terminate the transaction with an OKAY response
- Hold the transaction until the core exits Shutdown Mode and then pass it on to the downstream slave. The master will not get a response until after the core exits Shutdown Mode

The best response to use depends on the target system. Although SLVERR is the correct response to use, it can be treated as fatal by some operating systems, and require a reboot.

Note: The AXI4 MM Specification states that a SLVERR should be used when “access [is] attempted to a disabled or powered-down function.”

DECERR can have the same impact. An OKAY response is safer, but can give the false impression that the transaction completed when in fact it failed. Backpressure can cause deadlock on shared busses, cause timeouts, and can lead to transactions for one Reconfigurable Module being sent to the Reconfigurable Module that replaced it, with unknown effect.

In all cases, the core generates an interrupt to let the system know that a transaction was terminated by the core.
Connecting to the Reconfigurable Partition

If the channel’s AXI Master is in the Reconfigurable Module (see RP_IS_MASTER in User Parameters), then the slave side of the core (the side attached to the channel’s AXI Master) is internally held in reset when in Shutdown Mode. This is to prevent spurious signals from the RM being recognised as transactions and corrupting the core. One visible effect of this configuration is that the READY signals on the slave side of the core (the ones that attach to the master interface on the RP) will deassert in Shutdown Mode.

Related Information
User Parameters

AXI Write Channel Timing

The AXI4 protocol allows write data to be sent before the command is sent on the address channel. The DFX AXI Shutdown Manager core only begins processing an AXI write transaction when the command appears on the address channel. This has the following implications:

- The transaction is sent downstream with the address and data channels aligned. Data is not sent on before the command has appeared on the address channel.
- The data channel only has a 16 element FIFO to buffer data. Once this is full, it stops accepting data. The upstream master must send a command on the address channel to unblock this FIFO.
- The treatment of a transaction with respect to request_shutdown is solely based on when the command is received on the address channel. For example, if data is received when request_shutdown is 0 and the command is received when request_shutdown is 1, the transaction will be stored with request_shutdown = 1, and handled by the Shutdown Manager accordingly.

General Design Guidelines

Make Only Allowed Modifications

You should not modify the core. Any modifications can have adverse effects on system timing and protocol compliance. Supported user configurations of the core can only be made by selecting the options in the customization IP dialog box when the core is generated.
Design Flow Steps

This section describes customizing and generating the core, constraining the core, and the simulation, synthesis, and implementation steps that are specific to this IP core. More detailed information about the standard Vivado® design flows and the IP integrator can be found in the following Vivado Design Suite user guides:

- Vivado Design Suite User Guide: Designing with IP (UG896)
- Vivado Design Suite User Guide: Getting Started (UG910)
- Vivado Design Suite User Guide: Logic Simulation (UG900)

Customizing and Generating the Core

This section includes information about using Xilinx® tools to customize and generate the core in the Vivado® Design Suite.

If you are customizing and generating the core in the Vivado IP integrator, see the Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) for detailed information. IP integrator might auto-compute certain configuration values when validating or generating the design. To check whether the values do change, see the description of the parameter in this chapter. To view the parameter value, run the validate_bd_design command in the Tcl console.

You can customize the IP for use in your design by specifying values for the various parameters associated with the IP core using the following steps:

1. Select the IP from the IP catalog.
2. Double-click the selected IP or select the Customize IP command from the toolbar or right-click menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) and the Vivado Design Suite User Guide: Getting Started (UG910).

Figures in this chapter are illustrations of the Vivado IDE. The layout depicted here might vary from the current version.
Customization GUI

The parameters in the customization GUI are shown in the following figure.

Figure 1: Customization GUI

General Core Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESET ACTIVE LEVEL</td>
<td>0</td>
</tr>
</tbody>
</table>

Is the RP the Master of this AXI channel?

This option specifies if the upstream AXI master is in the Reconfigurable Partition. If it is, the slave side of the Shutdown Manager is held in reset during Shutdown Mode.

RESET ACTIVE LEVEL

This option sets the active level of the core reset.

0: The reset is active low, and the “resetn” signal is enabled

1: The reset is active high, and the “reset” signal is enabled

Is the RP the Master of this AXI channel?

TRUE: The AXI Master is in the RP

FALSE: The AXI Master is not in the RP
Control Interface Type
This option enables or disables the AXI4-Lite register interface. Valid values are:

0: Disable the AXI4-Lite interface
1: Enable the AXI4-Lite interface

Control Address Width
This option sets the address width used by the AXI4-Lite register interface. Valid values are 1 to 64 inclusive.

Datapath Protocol
This option sets the protocol of the datapath. Valid values are:
- AXI4MM
- AXI4-LITE

AXI Response to rejected transaction
This option configures how the core will respond to a transaction that is received when `request_shutdown` is 1. That is, a transaction that will be handled by the core and not passed on to the downstream slave. Valid options are:

- SLVERR: Return an AXI SLVERR response
- DECERR: Return an AXI DECERR response
- OKAY: Return an AXI OKAY response
- BACKPRESSURE: Holds the transaction until the core exits Shutdown Mode. This prevents a response from being sent back to the initiating master, and causes back-pressure on the AXI bus

AXI Datapath Address Width (in bits)
This option sets the address width used by the data path. Valid values are 1 to 64 inclusive.

AXI Datapath Data Width (in bits)
This option sets the data width used by the data path. When the Datapath Protocol is AXI4MM, valid values are:

- 32
- 64
- 128
- 256
• 512
• 1024

When the Datapath Protocol is AXI4-Lite, valid values are:

• 32
• 64

ID Width (in bits)

This option sets the ID width used by the data path. Valid values are 0 to 32 inclusive. This option is disabled when the Datapath Protocol is AXI4-Lite.

AXI Datapath AW User Width (in bits)

This option sets the width of the AWUSER signal in the data path. Valid values are 0 to 1024 inclusive. This option is disabled when the Datapath Protocol is AXI4-Lite.

AXI Datapath W User Width (in bits)

This option sets the width of the WUSER signal in the data path. Valid values are 0 to 1024 inclusive. This option is disabled when the Datapath Protocol is AXI4-Lite.

AXI Datapath B User Width (in bits)

This option sets the width of the BUSER signal in the data path. Valid values are 0 to 1024 inclusive. This option is disabled when the Datapath Protocol is AXI4-Lite.

AXI Datapath AR User Width (in bits)

This option sets the width of the ARUSER signal in the data path. Valid values are 0 to 1024 inclusive. This option is disabled when the Datapath Protocol is AXI4-Lite.

AXI Datapath R User Width (in bits)

This option sets the width of the RUSER signal in the data path. Valid values are 0 to 1024 inclusive. This option is disabled when the Datapath Protocol is AXI4-Lite.

User Parameters

The following table shows the relationship between the fields in the Vivado® IDE and the user parameters (which can be viewed in the Tcl Console).

Table 5: User Parameters

<table>
<thead>
<tr>
<th>Vivado IDE Parameter/Value</th>
<th>User Parameter/Value</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset Active Level</td>
<td>RESET_ACTIVE_LEVEL</td>
<td>0</td>
</tr>
</tbody>
</table>

Send Feedback
Table 5: User Parameters (cont’d)

<table>
<thead>
<tr>
<th>Vivado IDE Parameter/Value</th>
<th>User Parameter/Value</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the RP the Master of this AXI channel?</td>
<td>RP_IS_MASTER</td>
<td>TRUE</td>
</tr>
<tr>
<td>Control Interface Type</td>
<td>CTRL_INTERFACE_TYPE</td>
<td>0</td>
</tr>
<tr>
<td>Control Address Width</td>
<td>CTRL_ADDR_WIDTH</td>
<td>32</td>
</tr>
<tr>
<td>Datapath Protocol</td>
<td>DP_PROTOCOL</td>
<td>AXI4MM</td>
</tr>
<tr>
<td></td>
<td>AXI4MM</td>
<td></td>
</tr>
<tr>
<td>AXI Response to rejected transaction</td>
<td>DP_AXI_RESP</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SLVERR : 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DECERR : 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OKAY : 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BACKPRESSURE : 3</td>
<td></td>
</tr>
<tr>
<td>AXI Datapath Address Width (in bits)</td>
<td>DP_AXI_ADDR_WIDTH</td>
<td>32</td>
</tr>
<tr>
<td>AXI Datapath Data Width (in bits)</td>
<td>DP_AXI_DATA_WIDTH</td>
<td>32</td>
</tr>
<tr>
<td>ID Width (in bits)</td>
<td>DP_AXI_ID_WIDTH</td>
<td>0</td>
</tr>
<tr>
<td>AXI Datapath AW User Width (in bits)</td>
<td>DP_AXI_AWUSER_WIDTH</td>
<td>0</td>
</tr>
<tr>
<td>AXI Datapath W User Width (in bits)</td>
<td>DP_AXI_WUSER_WIDTH</td>
<td>0</td>
</tr>
<tr>
<td>AXI Datapath B User Width (in bits)</td>
<td>DP_AXI_BUSER_WIDTH</td>
<td>0</td>
</tr>
<tr>
<td>AXI Datapath AR User Width (in bits)</td>
<td>DP_AXI_ARUSER_WIDTH</td>
<td>0</td>
</tr>
<tr>
<td>AXI Datapath R User Width (in bits)</td>
<td>DP_AXI_RUSER_WIDTH</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:
1. Parameter values are listed in the table where the Vivado IDE parameter value differs from the user parameter value. Such values are shown in this table as indented below the associated parameter.

Related Information

Connecting to the Reconfigurable Partition

Output Generation

For details, see the *Vivado Design Suite User Guide: Designing with IP (UG896).*

Constraining the Core

Required Constraints

This section is not applicable for this IP core.
Device, Package, and Speed Grade Selections
This section is not applicable for this IP core.

Clock Frequencies
This section is not applicable for this IP core.

Clock Management
This section is not applicable for this IP core.

Clock Placement
This section is not applicable for this IP core.

Banking
This section is not applicable for this IP core.

Transceiver Placement
This section is not applicable for this IP core.

I/O Standard and Placement
This section is not applicable for this IP core.

Simulation
For comprehensive information about Vivado® simulation components, as well as information about using supported third-party tools, see the *Vivado Design Suite User Guide: Logic Simulation (UG900).*

Synthesis and Implementation
For details about synthesis and implementation, see the *Vivado Design Suite User Guide: Designing with IP (UG896).*
Upgrading

The DFX AXI Shutdown Manager IP core supersedes the Partial Reconfiguration AXI Shutdown Manager IP core. This section identifies any required migration changes.

Upgrading from the Partial Reconfiguration AXI Shutdown Manager to the DFX AXI Shutdown Manager

The DFX AXI Shutdown Manager IP core is a direct replacement for the Partial Reconfiguration AXI Shutdown Manager IP core and is functionally equivalent. When adding a Partial Reconfiguration AXI Shutdown Manager IP core to a project in Vivado® 2020.1 or newer, or when calling create_ip to generate a Partial Reconfiguration AXI Shutdown Manager IP core, you will see a message like this:

```
WARNING: [IP_Flow 19-2162] IP 'my_shutdown_manager' is locked:
* IP definition 'Partial Reconfiguration Shutdown Manager (1.0)' for IP 'my_shutdown_manager' has been replaced in the IP Catalog by 'DFX Shutdown Manager (1.0)'. * IP definition 'Partial Reconfiguration Shutdown Manager (1.0)' for IP 'my_shutdown_manager' (customized with software release 2019.2) has a different revision in the IP Catalog.
```

You can perform a direct upgrade from an existing Partial Reconfiguration AXI Shutdown Manager IP instance to the DFX AXI Shutdown Manager core through the standard upgrade process. With a DFX project or a Managed IP project open, select Reports → Report IP Status to identify any IP in need of upgrading. This IP will appear as locked in its current state.

Figure 2: Locked Status

![Locked Status](image)

Check any Partial Reconfiguration AXI Shutdown Manager IP and select Upgrade Selected. You will be given a choice of which IP to upgrade to; select the DFX version.
The conversion replaces the Partial Reconfiguration AXI Shutdown Manager IP with the equivalent DFX AXI Shutdown Manager IP, with the same set of options and settings. The feature set is identical if upgrading from Partial Reconfiguration AXI Shutdown Manager 1.0 to DFX AXI Shutdown Manager 1.0.
Debugging

This appendix includes details about resources available on the Xilinx Support website and debugging tools.

Finding Help on Xilinx.com

To help in the design and debug process when using the core, the Xilinx Support web page contains key resources such as product documentation, release notes, answer records, information about known issues, and links for obtaining further product support. The Xilinx Community Forums are also available where members can learn, participate, share, and ask questions about Xilinx solutions.

Documentation

This product guide is the main document associated with the core. This guide, along with documentation related to all products that aid in the design process, can be found on the Xilinx Support web page or by using the Xilinx® Documentation Navigator. Download the Xilinx Documentation Navigator from the Downloads page. For more information about this tool and the features available, open the online help after installation.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual property at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting tips.

Answer Records

Answer Records include information about commonly encountered problems, helpful information on how to resolve these problems, and any known issues with a Xilinx product. Answer Records are created and maintained daily ensuring that users have access to the most accurate information available.
Answer Records for this core can be located by using the Search Support box on the main Xilinx support web page. To maximize your search results, use keywords such as:

- Product name
- Tool message(s)
- Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Master Answer Record for the Core

AR 73353.

Technical Support

Xilinx provides technical support on the Xilinx Community Forums for this LogiCORE™ IP product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support if you do any of the following:

- Implement the solution in devices that are not defined in the documentation.
- Customize the solution beyond that allowed in the product documentation.
- Change any section of the design labeled DO NOT MODIFY.

To ask questions, navigate to the Xilinx Community Forums.

Debug Tools

There are many tools available to address DFX AXI Shutdown Manager design issues. It is important to know which tools are useful for debugging various situations.

Vivado Design Suite Debug Feature

The Vivado® Design Suite debug feature inserts logic analyzer and virtual I/O cores directly into your design. The debug feature also allows you to set trigger conditions to capture application and integrated block port signals in hardware. Captured signals can then be analyzed. This feature in the Vivado IDE is used for logic debugging and validation of a design running in Xilinx® devices.

The Vivado logic analyzer is used to interact with the logic debug LogiCORE IP cores, including:

- ILA 2.0 (and later versions)
• VIO 2.0 (and later versions)

See the Vivado Design Suite User Guide: Programming and Debugging (UG908).
Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx Support.

Documentation Navigator and Design Hubs

Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and support resources, which you can filter and search to find information. To open DocNav:

- From the Vivado® IDE, select Help → Documentation and Tutorials.
- On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.
- At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics, which you can use to learn key concepts and address frequently asked questions. To access the Design Hubs:

- In DocNav, click the Design Hubs View tab.
- On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.
References

These documents provide supplemental material useful with this product guide:

Revision History

The following table shows the revision history for this document.

<table>
<thead>
<tr>
<th>Section</th>
<th>Revision Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>06/03/2020 Version 1.0</td>
<td>N/A</td>
</tr>
<tr>
<td>Initial release.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Please Read: Important Legal Notices

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.

Copyright

© Copyright 2020 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.