Introduction

The 7 series FPGAs memory interface solutions cores provide high-performance connections to DDR3 SDRAM and QDR II+ SRAM. For information on QDR II+ SRAM, see QDR II+ SRAM, page 3.

DDR3 SDRAM

This section discusses the features, applications, and functional description of 7 series FPGA memory interface solutions in DDR3 SDRAMs.

DDR3 SDRAM Features

- Component support for interface widths up to 72 bits
- 1 and 2 Gb density device support
- 8-bank support
- x8 and x16 device support
- 8:1 DQ:DQS ratio support
- Configurable data bus widths (multiples of 8, up to 72 bits)
- 8-word burst support
- Support for 5 to 14 cycles of column-address strobe (CAS) latency (CL)
- On-die termination (ODT) support
- Support for 5 to 10 cycles of CAS write latency (CWL)
- ZQ calibration – initial and periodic (configurable)
- Write leveling support for DDR3 (fly-by routing topology required for DDR3 component designs)
- JEDEC-compliant DDR3 initialization support
- Source code delivery in Verilog
- 4:1 memory to FPGA logic interface clock ratio
- ECC support

Notes:

1. Refer to DS182, 7 Series FPGAs Data Sheet: DC and Switching Characteristics, for performance information.

- Two controller request processing modes:
 - Normal: reorder requests to optimize system throughput and latency
 - Strict: memory requests are processed in the order received
Applications

Typical applications for the 7 series FPGA memory interface solutions include:

- DDR3 SDRAM interfaces

Figure 1 shows a high-level block diagram of the 7 series FPGA memory interface solution connecting a user design to a DDR3 SDRAM device. The physical layer (PHY) side of the design is connected to the DDR3 SDRAM device via FPGA I/O blocks (IOBs), and the user interface (UI) side is connected to the user design via FPGA logic. Refer to UG586, 7 Series FPGAs Memory Interface Solutions User Guide for more details regarding the design.

![Figure 1: DDR3 SDRAM Memory Interface Solution](DS176_01_00010)

Functional Description

As shown in Figure 1, the top-level functional blocks of the 7 series FPGAs memory interface solution include:

- The UI block:
 - Presents the user interface to a user design
 - Provides a simple and user-friendly alternative to the native interface
 - Buffers read and write data
 - Reorders read return data to match the request order
 - Presents a flat address space and translates it to the addressing required by the SDRAM

- The memory controller (MC) block:
 - Receives requests from the user design
 - Reorders requests to minimize dead states for maximum SDRAM performance
 - Manages SDRAM row/bank configuration
 - Performs high-level SDRAM management such as refresh and activate/precharge

- The PHY block:
 - Interfaces with the MC block over a simple interface and translates the signals into the actual signals sent to the SDRAM, and vice versa
 - Translates and synchronizes control and data over various clock domains
 - Initializes the SDRAM
 - Performs write leveling for DDR3 (fly-by routing topology required for component designs)
 - Performs calibration to center align capture clocks with read data
Figure 1 also shows a user design connecting to the memory interface. An example user design is provided with the core. Refer to UG586, 7 Series FPGAs Memory Interface Solutions User Guide for more details regarding the design.

AXI4 Slave Interface Features

These features are optional and selectable using the MIG GUI:

- AXI4 slave-compliant memory-mapped interface
- 1:1 clock rate to the controller
- AXI4 interface data widths can be 128, 256, or 512 bits to correspond with memory data widths of 16, 32, or 64 bits
- Support for memory data width of 72 bits with ECC enabled
- Parameterized address width support
- Support for incremental (INCR) burst up to 256 data beats
- WRAP burst support

QDR II+ SRAM

This section discusses the features, applications, and functional description of 7 series FPGA memory interface solutions in QDR II+ SRAMs.

Features

- QDR II+ SRAM device support
- x18 and x36 memory width support
- Configurable data bus widths (x18, x36) using three I/O banks
- 4-word burst support
- Source code delivery in Verilog
- 2:1 memory to FPGA logic interface clock ratio
- 2.0-cycle and 2.5-cycle read latency support
- Fixed latency mode support

Applications

QDR II+ SRAMs are the latest generation of QDR SRAM devices that offer high-speed data transfers on separate read and write buses on the rising and falling edges of the clock. These memory devices are used in high-performance systems as temporary data storage, such as:

- Look-up tables in networking systems
- Packet buffers in network switches
- Cache memory in high-speed computing
- Data buffers in high-performance testers
Figure 2 shows a high-level block diagram of the 7 series FPGA memory interface solution connecting a user design to a QDR II+ SRAM device.

![Figure 2: QDR II+ SRAM Memory Interface Core](image)

Functional Description

As shown in Figure 2, the top-level functional block is composed of a PHY that interfaces to the user and to the QDR II+ SRAM device. The PHY block:

- Translates simple user read and write commands to conform to QDR II+ SRAM protocol
- Enables the user to provide up to one read and one write transaction per clock cycle for maximum throughput
- Performs calibration to center align clocks with data
- Returns data to the user with a corresponding valid signal
- Translates and synchronizes over various clock domains
- Implements an optimized half-frequency design that eliminates the need for a memory controller

For more details regarding the design, refer to UG586, 7 Series FPGA Memory Interface Solutions User Guide provided with the core.

General Specifications

Refer to the 7 Series FPGAs Memory Interface Solutions User Guide for more details regarding specific banking, pin location, and internal clock resource requirements for all cores.

Verification

The 7 series FPGAs memory interface solutions cores have been verified in simulation. Verification tests include:

- Initialization sequence
- Read calibration
- Memory read operation
- Memory write operation
- Row/bank management
- Write leveling
Additional Resources

This material provides additional information related to this data sheet:

1. JEDEC Standard JESD79-3E: DDR3 SDRAM, JEDEC Solid State Technology Association
 http://www.jedec.org

Ordering Information

The Memory Interface Generator (MIG) is included at no additional charge with the Xilinx ISE® Design Suite software and is provided under the terms of the Xilinx End User License Agreement. The memory cores are generated using the Xilinx CORE Generator software, which is a standard component of the Xilinx ISE software. For more information, visit the MIG product page.

Revision History

The following table shows the revision history for this document:

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Description of Revisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/01/11</td>
<td>1.0</td>
<td>Initial Xilinx release.</td>
</tr>
</tbody>
</table>

Notice of Disclaimer

Xilinx is providing this product documentation, hereinafter “Information,” to you “AS IS” with no warranty of any kind, express or implied. Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to change without notice. XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx.