

FIR Compiler v7.0 www.xilinx.com 82
PG149 March 20, 2013

Chapter 4: C Model Reference

The xip_fir_v7_0_cnfg_packet structure is supplied to the
xip_fir_v7_0_config_send function (see Send CONFIG Packet) to update the channel
pattern and coeff icient set used by the model.

num_coeffs unsigned int Specif ies the number of coeff icients in one filter

coeff_sets unsigned int Specif ies the number of coeff icient sets in the coeff
array

reloadable unsigned int Specif ies if the coeff icients are reloadable; 0 = No, 1 =
Yes

is_halfband unsigned int Specif ies if halfband coeff icients have been specif ied; 0
= No, 1 = Yes

quantization unsigned int Select from:
XIP_FIR_INTEGER_COEFF
XIP_FIR_QUANTIZED_ONLY
XIP_FIR_MAXIMIZE_DYNAMIC_RANGE

coeff_width unsigned int The model uses these parameters, if requested, to
quantize the supplied coeff icientscoeff_fract_width unsigned int

chan_seq unsigned int Select from:
XIP_FIR_BASIC_CHAN_SEQ
XIP_FIR_ADVANCED_CHAN_SEQ

num_channels unsigned int Specif ies the number of data channels supported

init_pattern xip_fir_v7_0_pattern Specif ies the initial channel pattern used by the model
when Advanced Interleaved Channels have been
selected

num_paths unsigned int Specif ies the number of datapaths supported

data_width unsigned int The model uses these parameters to quantize the input
samples of the modeldata_fract_width unsigned int

output_rounding_mode unsigned int Select from:
XIP_FIR_FULL_PRECISION
XIP_FIR_TRUNCATE_LSBS
XIP_FIR_SYMMETRIC_ZERO
XIP_FIR_SYMMETRIC_INF
XIP_FIR_CONVERGENT_EVEN
XIP_FIR_CONVERGENT_ODD
XIP_FIR_NON_SYMMETRIC_DOWN
XIP_FIR_NON_SYMMETRIC_UP

output_width unsigned int Ignored when XIP_FIR_FULL_PRECISION

output_fract_width unsigned int READ ONLY
Provides the number of fractional bits present in the
output word

config_method unsigned int Select from:
XIP_FIR_CONFIG_SINGLE
XIP_FIR_CONFIG_BY_CHANNEL

Table 4-6: xip_fir_v7_0_config (Cont’d)

Field Name Type Description

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 83
PG149 March 20, 2013

Chapter 4: C Model Reference

The xip_fir_v7_0_rld_packet structure is supplied to the
xip_fir_v7_0_reload_send function (see Send RELOAD Packet) to update a given
coeff icient set with new filter coeff icients. As with the core, a configuration packet must be
processed by the model to apply any pending reload packets.

Functions

Model Configuration Functions

Get Version

const char* xip_fir_v7_0_get_version(void);

The function returns a string describing the version of the model.

Get Default Configuration

xip_status
xip_fir_v7_0_get_default_config(

xip_fir_v7_0_config* config
)

This function populates the xip_fir_v7_0_config configuration structure pointed to by
config with the default configuration of the FIR Compiler v7.0 core.

Create Model Object

xip_fir_v7_0
xip_fir_v7_0_create(

const xip_fir_v7_0_config* config,
xip_msg_handler msg_handler,
void* msg_handle

)

This function creates a new model instance, based on the configuration data pointed to by
config.

Table 4-7: xip_fir_v7_0_cnfg_packet

Field Name Type Description

chanpat xip_fir_v7_0_pattern Specif ies the Advanced Interleaved Channel pattern to be used

fsel xip_array_uint* Filter set to use, 1-D array; specif ies one value for all channels
(XIP_FIR_CONFIG_SINGLE) or individually for each interleaved
channel (XIP_FIR_CONFIG_BY_CHANNEL)

Table 4-8: xip_fir_v7_0_rld_packet

Field Name Type Description

fsel Int Filter set to reload

coeff xip_array_real* Pointer to an array containing the new coefficients to be loaded, 1-D array.

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 84
PG149 March 20, 2013

Chapter 4: C Model Reference

The msg_handler argument is a pointer to a function taking three arguments as
previously defined in Type Definitions. This function pointer is retained by the model object
and is called whenever the model wishes to issue a note, warning or error message. Its
arguments are:

1. A generic pointer (void*). This is always the value that was passed in as the msg_handle
argument to the create function.

2. An integer (int) indicating whether the message is an error (1) or a note or warning (0).

3. The message string itself.

If the handler argument is a null pointer, then the C model outputs no messages at all.
Using this mechanism, you can choose whether to output messages to the console, log
them to a f ile or ignore them completely.

The create function returns a pointer to the newly created object. If the object cannot be
created, then a diagnostic error message is emitted using the supplied handler function (if
any) and a null pointer is returned.

If the data and coeff icient widths, number of coeff icients and output precision result in an
output precision greater than supported by the double (xip_real) data type then the
model uses the mpz_t data type [Ref 8] (xip_mpz) and issues a warning indicating this
requirement when this function is executed.

Get Model Configuration

xip_status
xip_fir_v7_0_get_config (

xip_fir_v7_0* model,
xip_fir_v7_0_config* config

)

This function returns the full configuration of the model. The function is intended to be
primarily used to determine the output width and output fractional width of the model.

Note: The coeff pointer of the returned xip_fir_v7_0_config structure is set to NULL.

Reset Model Object

xip_status
xip_fir_v7_0_reset(

xip_fir_v7_0* model
);

This function resets in the internal state of the FIR Compiler model object pointed to by
model. A reset causes all data and pending configuration packets to be cleared from the
model. As per the core, any pending reload packets are retained.

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 85
PG149 March 20, 2013

Chapter 4: C Model Reference

Destroy Model Object

xip_status
xip_fir_v7_0_destroy(

xip_fir_v7_0* model
);

This function deallocates the model object pointed to by model. Any system resources or
memory belonging to the model object are released on return from this function. The
model object becomes undefined, and any further attempt to use it is an error.

Set Output Data Array

xip_status
xip_fir_v7_0_set_data_sink(

xip_fir_v7_0* model,
xip_array_real* data,
xip_array_complex* cmplx_data

);
xip_status
xip_fir_v7_0_set_data_sink_mpz(

xip_fir_v7_0* model,
xip_array_mpz* data,
xip_array_mpz_complex* cmplx_data

);

This function registers an array (the data sink), pointed to by data or cmplx_data, to push
the generated f ilter output when the xip_fir_v7_0_data_send function is called. Only
data or cmplx_data can be set, the other should be set to NULL (or 0).

If the data sink is undefined the filter output must be explicitly pulled using the
xip_fir_v7_0_data_get function.

The array is automatically sized by the model given the size of the input request. The owner
f ield of xip_array_<type> is ignored and forced to 0.

Note: The complex data sink is intended for the Hilbert f ilter type but is populated for other f ilter
types with im set to 0.

Set Data Handler

xip_status
xip_fir_v7_0_set_data_handler(

xip_fir_v7_0* model,
xip_array_real_handler data_handler,
void* handle,
void* opt_arg

);

This function registers a data handler call back function that is called when the output data
array is f illed following a call to xip_fir_v7_0_data_send. The FIR Compiler C model
API contains a function, xip_fir_v7_0_data_send_handler (see Send DATA Packet),
to send data to an instance of the model whose signature matches that of a data handler.

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 86
PG149 March 20, 2013

Chapter 4: C Model Reference

The intention of this facility is to enable multiple instances of the model to be chained
together such that only the f irst and last instance of the chain need to be directly controlled
using the xip_fir_v7_0_data_send and xip_fir_v7_0_data_get functions.

The model only supports data handlers for output data arrays of type xip_array_real
and the value passed to the (*xip_array_real_handler) function for the data
argument is the value set by the xip_fir_v7_0_set_data_sink function. See Type
Definitions for details of the data handler function signature. Its arguments are:

1. data: A pointer to the xip_array_real type containing the data to be processed. The
array registered by the xip_fir_v7_0_set_data_sink function.

2. handle: A void pointer used to point to the next model instance in the f ilter chain.

3. opt_arg: An extra generic argument not currently used by the FIR Compiler C model.

Calculate Output Size

xip_status
xip_fir_v7_0_data_calc_size(

xip_fir_v7_0* model,
const xip_array_real* data_in,
xip_array_real* data_out,
xip_array_complex* cmplx_data_out

)
xip_status
xip_fir_v7_0_data_calc_size_mpz(

xip_fir_v7_0* model,
const xip_array_real* data_in,
xip_array_mpz* data_out,
xip_array_mpz_complex cmplx_data_out

)

This function calculates the size of an output packet/array given the size of the supplied
input packet/array.

The data_out or cmplx_data_out array dimensions are modified to reflect the size of
output the model produces, given the data_in array. The array dimensions, dim and
data_size element are updated but the function does not allocate more space. Ensure
that the correct amount of space is allocated for the data element of the array.

Note: Only one of data_out or cmplx_data_out can be set; the other should be set to NULL (or 0).

Model Operation Functions

Send CONFIG Packet

xip_status
xip_fir_v7_0_config_send(

xip_fir_v7_0* model,
const xip_fir_v7_0_cnfg_packet* cnfg_packet

)

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 87
PG149 March 20, 2013

Chapter 4: C Model Reference

This function passes a configuration packet, pointed to by cnfg_packet (see Table 4-7), to
the model. The model implements an internal f ifo/queue. A configuration packet is
consumed from the queue for every data packet processed, that is, every call to
xip_fir_v7_0_data_send.

Note: If the fsel f ield of the cnfg_packet is not sized correctly the function returns
XIP_STATUS_ERROR.

Send RELOAD Packet

xip_status
xip_fir_v7_0_reload_send(

xip_fir_v7_0* model,
const xip_fir_v7_0_rld_packet* rld_packet

)

This function passes a reload packet, pointed to by rld_packet (see Table 4-8), to the
model.

Note: If the coeff f ield of the rld_packet is not sized correctly the function returns
XIP_STATUS_ERROR.

Send DATA Packet

xip_status
xip_fir_v7_0_data_send(

xip_fir_v7_0* model,
const xip_array_real* data

);
void
xip_fir_v7_0_data_send_handler(

const xip_array_real* data,
void* model,
void* dummy

);

This function sends a new data packet, pointed to by data, to the model for processing.

The second version of the function, xip_fir_v7_0_data_send_handler, is supplied to
be used as a (*xip_array_real_handler) call back function, see Set Data Handler for
further details.

Input data is provided using the xip_array_real structure pointed to by data and is
expected to be sized:
Number of paths x Number of interleaved channels x number of input vectors.

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 88
PG149 March 20, 2013

Chapter 4: C Model Reference

The 3-D structure shown in Figure 4-1 is translated to the 1-D array of the
xip_array_<type> data element in the order; Paths, Channels, Vectors. The helper
functions, xip_array_<type>_set_chan (Set Channel) and
xip_array_<type>_get_chan (Get Channel) implement this translation.

The Advanced Channel implementation requires redundant channel positions to be
remapped to higher rate channels. The helper functions, xip_array_<type>_set_chan
(Set Channel) and xip_array_<type>_get_chan (Get Channel), simplify referencing
each channel by presenting a flat index for each channel.

Figure 4-1 shows the remapping for three different pattern sequences:

• P4_4 (4 channels x 1/4fs);

• P4_3 (1 channel x 1/2fs and 2 channels x 1/4fs);

• P4_2 (1 channel x 3/4fs and 1 channel x 1/4fs).

X-Ref Target - Figure 4-1

Figure 4-1: Input and Output Data Packet Structure

X-Ref Target - Figure 4-2

Figure 4-2: Advanced Channel Pattern Data Packet Remapping

Num vectors

UG853_01_081011

0 1 N-1

V-1

0
1

Num paths

P-1

0

1

Dim [2]

Dim [0]

Num channels
Dim [1]

UG853_02_081011

vect 0

vect 1

P4-4 (4 channels x 1/4fs)

C00 C10 C20 C30

P4-2 (1 channel x 3/4fs and
1 channel x 1/4fs)

C01 C11 C21 C31

vect 0

vect 1

C00 C01 C02 C10

C03 C04 C05 C11

vect 0

vect 1

P4-3 (1 channel x 1/2fs and
2 channels x 1/4fs)

C00 C10 C01 C20

C02 C11 C03 C21

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 89
PG149 March 20, 2013

Chapter 4: C Model Reference

Get DATA Packet

xip_status
xip_fir_v7_0_data_get(

xip_fir_v7_0* model,
xip_array_real* data,
xip_array_complex* cmplx_data

);
xip_status
xip_fir_v7_0_data_get_mpz(

xip_fir_v7_0* model,
xip_array_mpz* data,
xip_array_mpz_complex* cmplx_data

);

This function retrieves a filtered data packet from the model into the xip_array_<type>
pointed to by data or cmplx_data. Only one of data or cmplx_data maybe set, the
other should be set to NULL (or 0).

The size of the array dim[2] (Figure 4-1) determines how much data is fetched from the
model. If the request is greater than available, then the array size is reduced to reflect this.
The model does not modify the amount of space allocated. Both versions of the functions
maybe used regardless of the internal implementation method of the model. If double data
(xip_real) is requested when mpz_t (xip_mpz) has been used internally by the model
the output data is truncated, as per the mpz_get_d function (see [Ref 9]).

mpz_t (xip_mpz) is an integer type so the model scales the input data and coeff icients
by their specif ied fractional width to use an integer representation. The output is also
supplied as an integer value when mpz_t is requested. To correctly interpret the mpz_t
output the model configuration, returned by the xip_fir_v7_0_get_config function
(see Get Model Configuration), should be interrogated to determine the output fractional
width.

Compiling
Compilation of user code requires access to the
fir_compiler_v7_0_bitacc_cmodel.h header f ile and the header file of the MPIR
[Ref 8] dependent library, gmp.h. The header f iles should be copied to a location where
they are available to the compiler. Depending on the location chosen, the ‘include’ search
path of the compiler might need to be modif ied.

The fir_compiler_v7_0_bitacc_cmodel.h header f ile includes the MPIR header f ile,
so these do not need to be explicitly included in source code that uses the C model. When
compiling on Windows, the symbol NT must be defined, either by a compiler option, or in
user source code before the fir_compiler_v7_0_bitacc_cmodel.h header f ile is
included.

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 90
PG149 March 20, 2013

Chapter 4: C Model Reference

Linking
To use the C model the user executable must be linked against the correct libraries for the
target platform.

Note: The C model uses the MPIR library. Pre-compiled MPIR libraries are provided with the C
model. It is also possible to use GMP or MPIR, libraries from other sources, for example, compiled
from source code. For details, see Dependent Libraries.

Linux

The executable must be linked against the following shared object libraries:

• libgmp.so.7

• libIp_fir_compiler_v7_0_bitacc_cmodel.so

Using GCC, linking is typically achieved by adding the following command line options:

-L. -lgmp -lIp_fir_compiler_v7_0_bitacc_cmodel

This assumes the shared object libraries are in the current directory. If this is not the case,
the -L. option should be changed to specify the library search path to use.

Using GCC, the provided example program run_bitacc_cmodel.c can be compiled and
linked using the following command:

gcc run_bitacc_cmodel.c -o run_bitacc_cmodel -I. -L. -lgmp
-lIp_fir_compiler_v7_0_bitacc_cmodel

Note: The C model dynamically links to gmpxx.so.1 and therefore must be visible to the model while
running.

Windows

The executable must be linked against the following dynamic link libraries:

• libgmp.dll

• libIp_fir_compiler_v7_0_bitacc_cmodel.dll

Depending on the compiler, the import libraries might also be required:

• libgmp.lib

• libIp_fir_compiler_v7_0_bitacc_cmodel.lib

Using Microsoft Visual Studio, linking is typically achieved by adding the import libraries to
the Additional Dependencies entry under the Linker section of Project Properties.

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 91
PG149 March 20, 2013

Chapter 4: C Model Reference

Example
The run_bitacc_cmodel.c f ile contains example code to show the basic operation of
the C model in various configurations.

MATLAB Interface
A MEX function and MATLAB® software class are provided to simplify the integration with
MATLAB. The MEX function provides a low-level wrapper around the underlying C model,
while the class f ile provides a convenient interface to the MEX function.

Compiling
Source code for a MATLAB MEX function is provided. This can be compiled within MATLAB
by changing to the directory that contains the code and running the
make_fir_compiler_v7_0_bitacc_mex.m script.

Installation
To use the MEX function, the compiled MEX function must be present on the MATLAB
search path. This can be achieved in either of two ways:

1. Add the directory where the compiled MEX function is located to the MATLAB search
path (see the MATLAB addpath function)

or

2. Copy the f iles to a location already on the MATLAB search path.

As with all uses of the C model, the correct C model libraries also need to be present on the
platform library search path (that is, PATH or LD_LIBRARY_PATH).

MATLAB Class Interface
The @fir_compiler_v7_0_bitacc class handles the create/destroy semantics on the C
model. The class provides objects for each of the data, configuration and control structures,
defined for the C model and previously described in Structures. All structure elements have
MATLAB type double. MATLAB arrays are used with the mapping of types as in Table 4-9.

Table 4-9: MATLAB to C Model Type Mapping

C Model Type MATLAB Type

xip_uint32 uint32

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 92
PG149 March 20, 2013

Chapter 4: C Model Reference

The class provides the methods:

Constructor

[model]=fir_compiler_v7_0_bitacc
[model]=fir_compiler_v7_0_bitacc(config)
[model]=fir_compiler_v7_0_bitacc(field, value [, field,value]*)

Note: * indicates an optional parameter.

The first version of the function call constructs a model object using the default
configuration.

The second version constructs a model object from a structure that specif ies the
configuration parameter values to use.

The third version is the same as the second, but allows the configuration to be specified as
a series of (parameter name, value) pairs rather than a single structure.

The names and valid values of configuration parameters are identical to those previously
described for the C model in Structures.

The MATLAB configuration structure can contain an additional element,
PersistentMemory. When the element is set to TRUE the internal data memory state of
the model is retained following a call to the Filter function. Otherwise, the model is Reset
after the f iltered data is returned. PersistentMemory is set to FALSE by default.

Get Version

[version]=get_version(model)

This method returns the version string of the C model library used.

Get Configuration

[config]=get_configuration(model)

This method returns the current parameters structure of a model object. If the model object
is empty, the method returns the default configuration. If the model object has been
created, the method returns the configuration parameters that were used to create it.

xip_complex complex double

xip_real double

Table 4-9: MATLAB to C Model Type Mapping

C Model Type MATLAB Type

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 93
PG149 March 20, 2013

Chapter 4: C Model Reference

Reset

[model]=reset(model)

This function resets the model, see Reset Model Object for further details.

Send CONFIG Packet

[model]=config_send(model,cnfg_packet)

This function passes a configuration packet (see Table 4-7), to the model. See Send CONFIG
Packet for further details.

Send RELOAD Packet

[model]=reload_send(model,rld_packet)

This function passes a reload packet (see Table 4-8), to the model. See Send RELOAD Packet
for further details.

Filter

[model,data_out]=filter(model,data_in)

This function passes a MATLAB double array to the model and returns the f iltered output.
data_in can be a 1, 2 or 3 dimensional array:

• A 1-D array is only supported by a single channel, single path f ilter configuration.

• A 2-D array is only supported by a multichannel, single path f ilter configuration.

• All f ilter configurations support a 3-D array.

See Send DATA Packet and Figure 4-1 for further details on the data array structure.

Example
The run_fir_compiler_v7_0_bitacc_mex.m f ile contains a MATLAB script with an
example of how to run the C model using the MEX function.

To run the sample script:

1. Compile the MEX function with the make_fir_compiler_v7_0_bitacc_mex.m
script (see Compiling).

2. Install the MEX function (see Installation).

3. Execute the run_fir_compiler_v7_0_bitacc_mex.m script.

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 94
PG149 March 20, 2013

Chapter 4: C Model Reference

Dependent Libraries
The C model uses MPIR libraries. Pre-compiled MPIR libraries are provided with the C
model, using the following versions of the libraries:

• MPIR 2.2.1

Because MPIR is a compatible alternative to GMP, the GMP library can be used in place of
MPIR. It is possible to use GMP or MPIR libraries from other sources, for example, compiled
from source code.

GMP and MPIR in particular contain many low level optimizations for specific processors.
The libraries provided are compiled for a generic processor on each platform, not using
optimized processor-specific code. These libraries work on any processor, but run more
slowly than libraries compiled to use optimized processor-specif ic code. For the fastest
performance, compile libraries from source on the machine on which you run the
executables.

Source code and compilation scripts are provided for the version of MPIR that were used to
compile the provided libraries. Source code and compilation scripts for any version of the
libraries can be obtained from the GMP [Ref 9] and MPIR [Ref 8] web sites.

Note: If compiling MPIR using its configure script (for example, on Linux platforms), use the
--enable-gmpcompat option when running the configure script. This generates a libgmp.so library
and a gmp.h header f ile that provide full compatibility with the GMP library.

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 95
PG149 March 20, 2013

Chapter 5

Customizing and Generating the Core
This chapter includes information about using Xilinx tools to customize and generate the
core in the Vivado™ Design Suite environment.

GUI
The FIR Compiler GUI contains four pages used to configure the core plus four
informational/analysis tabs.

Tool Tips appear when hovering the mouse over each parameter and a brief description
appears, as well as feedback about how their values or ranges are affected by other
parameter selections. For example, the Coeff icient Structure Tool Tip displays the inferred
structure when Inferred is selected from the drop-down list.

Tab 1: IP Symbol
The IP Symbol tab shows the core pinout.

Tab 2: Freq. Response
The Freq. Response tab displays the f ilter frequency response (magnitude only).

The frequency response of the currently selected coefficient set is plotted against
normalized frequency. Where the Quantization option is set to Integer Coeff icients, there is
only a single plot based on the specif ied coefficient values. Where the Quantization option
has been set to Quantize Only, an ideal plot is displayed based on the provided values
alongside a Quantized plot based on a set of coeff icient values quantized according to the
specified coefficient bit width. Where the Quantization option is set to Maximize Dynamic
Range, the coeff icients are f irst scaled to take full advantage of the available dynamic
range, then quantized according to the specified coeff icient bit width. The quantized
coeff icients are summed to determine the resulting gain factor over the provided real
coeff icient set, and the resulting scale factor is used to correct the f ilter response of the
quantized coeff icients such that the gain is factored out. The scale factor is reported in the
legend text of the frequency response plot and on the Summary page. See Coefficient
Quantization for more details.

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 96
PG149 March 20, 2013

Chapter 5: Customizing and Generating the Core

The f ilter gain displayed is for a single rate implementation and does not take into account
the zero insertion between output samples in the up-sampling processes in a interpolating
f ilter. Therefore, following the zero insertion the average filter gain is reduced by the
up-sampling rate.

• Set to Display: This selects which of multiple coeff icient sets (if applicable) is displayed
in the Frequency Response Graph.

• Passband Range: Two fields are available to specify the passband range, the left-most
being the minimum value and the right-most the maximum value. The values are
specified in the same units as on the graph x-axis (for example, normalized to pi
radians per second). For the specif ied range the passband maximum, minimum and
ripple values are calculated and displayed (in dB).

• Stopband Range: Two fields are available to specify the stopband range, the left-most
being the minimum value and the right-most the maximum value. The values are
specified in the same units as on the graph x-axis (for example, normalized to pi
radians per second). For the specified range the stopband maximum value is calculated
and displayed (in dB).

You can specify any range for the passband or stopband, allowing closer analysis of any
region of the response. For example, examination of the transition region can be done to
more accurately examine the f ilter roll-off.

Tab 3: Implementation Details
The Implementation Details tab displays Resource Estimation information, core latency,
actual calculated coefficients, selected interleaved data channel sequences and the internal
structure of AXI4-Stream TDATA and TUSER ports.

The number of DSP slices/Multipliers is displayed in addition to a count of the number of
block RAM elements required to implement the design. Usage of general slice logic is not
currently estimated.

It should be noted that the results presented in the Resource Estimation are estimates only
using equations that model the expected core implementation structure. It is not
guaranteed that the resource estimates provided in the GUI match the results of a mapped
core implementation.

For some configurations, the number of coeff icients calculated by the core might be
greater than specif ied. In this circumstance, you can increase the number coeff icients used
to specify the filter at little or no cost in resource usage.

The AXI4-Port Structure pane describes f ields internal to the AXI4-Stream ports and the
number of bus transactions the core expects. This pane allows you to see how individual
f ields map to the indexes of the compound port as a whole.

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 97
PG149 March 20, 2013

Chapter 5: Customizing and Generating the Core

The Interleaved Channel Pattern pane displays the enumerated list of channel sequences
that have been selected. The enumerated value is used to select the desired pattern using
the chanpat f ield of the s_axis_config_tdata port. See CONFIG Channel for details of
the CONFIG channel.

Tab 4: Coefficient Reload
The Coefficient Reload tab provides the facility to generate re-ordered filter coefficient f iles
for use with the RELOAD channel. The tab also displays the coeff icient reload order.

Reload Coefficients MIF File Generation pane is enabled when Use Reloadable Coefficients
has been selected. Reload files can be generated for the coeff icients used to specify the
f ilter configuration (Coefficient Vector or Coefficient File) or for coefficients specified using
the Reload Coefficient File parameter. It uses the same COE format as the Coefficient File
parameter. See Filter Coeff icient Data for more details. The reload f ilter coeff icient
characteristics must match those of the coeff icients used to specify the filter configuration.

The re-ordered coeff icients are output in a multiple binary text f iles formatted to the width
of the s_axis_reload_tdata port.

The output file names have the following format, given their source:

where x specif ies the coefficient set.

The coefficient reload order is displayed when Use Reloadable Coefficients has been
selected and Display Reload Order is checked. This information is also contained in the
<component_name>_reload_order.txt f ile produced during core generation. See
Coefficient Reload for more details.

Filter Options Tab
The Filter Specification screen is used to define the basic configuration and performance of
the filter.

• Component Name: The user-defined filter component instance name.

FIlter Coefficients

• Coefficient Source: Specif ies which coeff icient input method to use, directly in the
GUI using the Coefficient Vector parameter or from a .coe f ile specif ied by the
Coeff icient File parameter.

• Coefficient Vector: Used to specify the filter coeff icients directly in the GUI. The f ilter
coeff icients are specif ied in decimal using a comma delimited list as for the coefdata

Filter Specification Coeff icients: <component_name>_rld_src_<x>.txt

Reload Coeff icient File: <component_name>_rld_coe_<x>.txt

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 98
PG149 March 20, 2013

Chapter 5: Customizing and Generating the Core

f ield in the Filter Coefficient Data file. As with the .coe f ile, the f ilter coeff icients can be
specified using non-integer real numbers which the FIR Compiler quantizes
appropriately, given your requirements. See Coefficient Quantization for more details.

• Coefficients File: Coefficient f ile name. This is the file of f ilter coeff icients. The f ile has
a .coe extension, and the f ile format is described in theFilter Coefficient Data section.
The file can be selected through the dialog box activated by the Browse.

• Show Coefficients: Selecting this button displays the filter coeff icient data defined in
the specified Coeff icient f ile in a pop-up window.

• Number of Coefficient Sets: The number of sets of f ilter coeff icients to be
implemented. The value specif ied must divide without remainder into the number of
coeff icients derived from the .coe f ile or Coefficient Vector.

• Number of Coefficients (per set): The number of f ilter coeff icients per f ilter set. This
value is automatically derived from the specif ied coeff icient data and the specif ied
number of coeff icient sets.

• Use Reloadable Coefficients: When the Reloadable option is selected, a coeff icient
reload interface is provided on the core.

Filter Specification

• Filter Type: Five f ilter types are supported: Single-rate FIR, Interpolating FIR,
Decimating FIR, Hilbert transform and Interpolated FIR.

• Inferred Coefficient Structure(s): Displays the coefficient structures, that can be
supported for the selected f ilter type, detected by the GUI in the specified coefficients.
The inferred coeff icient structure (the f irst item in the list) can be overridden using the
Coefficient Structure parameter later in the GUI. Supported coeff icient structures are:
Non-symmetric, Symmetric, Negative Symmetric, Half-band and Hilbert.

The combination of Filter Type, Coefficient Structure and Filter Architecture selects the
implementation used by the core.

• Rate Change Type: This f ield is applicable to Interpolation and Decimation f ilter types.
Used to specify an Integer or Fixed Fractional rate change.

• Interpolation Rate Value: This f ield is applicable to all Interpolation filter types and
Decimation f ilter types for Fractional Rate Change implementations. The value
provided in this f ield defines the up-sampling factor, or P for Fixed Fractional Rate (P/
Q) resampling f ilter implementations.

• Decimation Rate Value: This f ield is applicable to the all Decimation and Interpolation
f ilter types for Fractional Rate Change implementations. The value provided in this f ield
defines the down-sampling factor, or Q for Fixed Fractional Rate (P/Q) resampling filter
implementations.

• Zero Packing Factor: This f ield is applicable to the interpolated f ilter only. The zero
packing factor specif ies the number of 0s inserted between the coefficient data

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 99
PG149 March 20, 2013

Chapter 5: Customizing and Generating the Core

specified by you. A zero packing factor of k inserts k-1 zeros between the supplied
coeff icient values.

Channel Specification Tab

Interleaved Channel Specification

• Channel Sequence: This f ield selects between Basic and Advanced interleaved data
channel sequences. The Basic implementation processes interleaved data channels
starting at channel 0 incrementing in steps of 1 to Number of Channels - 1. The
Advanced implementation can processes interleaved data channels in multiple
pre-defined sequences. The desired sequences are specif ied using the Sequence ID List
parameter. The CONFIG channel is used to select the active channel sequence. See
Interleaved Data Channel Filters for more details.

• Number of Channels: The maximum number of interleaved data channels to be
processed by the filter. For Advanced channel sequences this parameter specif ies the
channel sequence length, which also specif ies the maximum number of interleave data
channels.

• Select Sequence: This f ield can be used to select which of the supported channel
sequences are to be implemented. Selecting All populates the Sequence ID List with all
the available channel sequences. Similarly, Clear All removes all the sequences apart
from default f irst channel sequence supported. Selecting a specif ic channel sequence
toggles its entry in the Sequence ID List parameter.

• Sequence ID List: A comma delimited list that specifies which channel sequences are
implemented by the core. The Interleaved Channel Pattern pane of Implementation Tab,
Tab 3: Implementation, displays the enumerated list of selected patterns. The Select
Sequence parameter can be used to populate the list. See Interleaved Data Channel
Filters for details of the supported channel sequences.

Parallel Channel Specification

• Number of Paths: Specif ies the number of parallel datapaths the filter is to process.
Each parallel datapath is extended to a byte boundary, for both the input and output
widths selected. The padding can be signed extended or set to zero.

Hardware Oversampling Specification

• Select format: Selects which format is used to specify the hardware oversampling rate,
the number of clock cycles available to the core to process an input sample and
generate an output. This value directly affects the level of parallelism in the core
implementation and resources used. When Frequency Specification is selected, you can
specify the Input Sampling Frequency and Clock Frequency. The ratio between these
values along with other core parameters determine the hardware oversampling rate.

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 100
PG149 March 20, 2013

Chapter 5: Customizing and Generating the Core

When Sample Period is selected, you can specify the integer number of clock cycles
between input samples.

• Input Sample Period: Integer number of clock cycles between input samples. When
the multiple channels have been specif ied, this value should be the integer number of
clock cycles between the time division multiplexed input sample data stream. When a
f ixed fractional decimation filter has been specif ied, this parameter specifies the
integer number of clock cycles between output samples. Specifying the output sample
period enables a more efficient use of the available clock cycles.

• Input Sampling Frequency: This f ield can be an integer or real value; it specif ies the
sample frequency for one channel. The upper limit is set based on the clock frequency
and f ilter parameters such as Interpolation Rate and number of channels.

• Clock Frequency: This f ield can be an integer or real value. The limits are set based on
the sample frequency, interpolation rate, and number of channels. This field
influences architecture choices only; the specified clock rate might not be
achievable by the final implementation.

Implementation Tab
The Implementation Options screen is used to define the coeff icient structure to use and to
configure the various datapath and coefficient options.

Coefficient Options

• Coefficient Type: The coeff icient data can be specif ied as either signed or unsigned.
When the signed option is selected, conventional two’s complement representation is
assumed.

• Quantization: Specif ies the quantization method to be used. Available options are
Integer Coeff icients, Quantize Only, or Maximize Dynamic Range.

° The Integer Coefficients option is only available when the f ilter coefficients have
been specif ied using only integer values.

° The Quantize Only option rounds the provided values to the nearest quantum using
a simple rounding towards zero algorithm.

° The Maximize Dynamic Range option scales all coeff icients such that the maximum
coeff icient is equal to the maximum representable number in the specif ied bit
width, thus maximizing the dynamic range of the f ilter (with the current
implementation, overflow is not possible, as the accumulator width is automatically
set to accommodate maximum bit growth within the f ilter). See Coefficient
Quantization for more information.

• Coefficient Width: The bit precision of the f ilter coefficients. This f ield can be used
with the f ilter response graph to explore the possibilities for more eff icient
implementation by limiting coefficient bit width to the minimum required to meet your
target specification for the f ilter.

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 101
PG149 March 20, 2013

Chapter 5: Customizing and Generating the Core

• Best Precision Fraction Length: When selected, the coeff icient fractional width is
automatically set to maximize the precision of the specif ied f ilter coeff icients. See Best
Precision Fractional Length for further information.

• Coefficient Fractional Bits: Specifies the number of coefficient bits that are used to
represent the fractional portion of the provided f ilter coefficients. The maximum value
it supports is the Coeff icient Width value minus the required integer bit width. The
integer bit width value is static and is automatically determined by calculating the
integer bit width required to represent the maximum value contained in the provided
coeff icient sets. When the coeff icient width is less than the required integer bit width,
this f ield reports zero. When the required integer bit width is zero, this parameter can
take a value greater than the Coefficient Width. See Coefficient Quantization for more
information.

• Coefficient Structure: Five coefficient structures are supported: Non-symmetric,
Symmetric, Negative Symmetric, Half-band and Hilbert. The structure can also be
inferred from the coeff icient f ile directly (default setting), or specified directly. The
inference algorithm only analyses the first 2048 coefficients. Only valid structure
options, based on analysis of the provided coeff icient f ile, are available for you to
specify directly. If Hilbert has been specif ied as the Filter Type then Hilbert is forced for
Coeff icient Structure.

Datapath Options

• Input Data Type: The filter input data can be specified as either signed or unsigned.
The signed option employs conventional two’s complement arithmetic.

• Input Data Width: The precision (in bits) of the f ilter input data samples.

• Input Data Fractional Bits: The number of Input Data Width bits used to represent the
fractional portion of the f ilter input data samples. This f ield is for information only. It is
used in conjunction with Coefficient Fractional Bits to calculate the filter Output
Fractional Bits value.

• Output Rounding Mode: Specif ies the type of rounding to be applied to the output of
the filter.

• Output Width: When using Full Precision, this f ield is disabled and indicates the
output precision (in bits) of the f ilter output data samples, including bit growth. When
using any other Rounding Mode, this f ield allows you to specify the desired output
sample width.

• Output Fractional Bits: This f ield reports the number Output Width bits used to
represent the fractional portion of the filter output samples.

Detailed Implementation Tab
The Detailed Implementation Options screen is used to configure various control and
implementation options.

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 102
PG149 March 20, 2013

Chapter 5: Customizing and Generating the Core

• Filter Architecture: Two f ilter architectures are supported: Systolic
Multiply-Accumulate and Transpose Multiply-Accumulate.

• Optimization Goal: Specif ies if the core is required to operate at maximum possible
speed (Speed option) or minimum area (Area option). The Area option is the
recommended default and normally achieves the best speed and area for the design;
however in certain configurations, the Speed setting might be required to improve
performance at the expense of overall resource usage. (This setting normally adds
pipeline registers in critical paths.). When Advanced interleaved channels have been
specified a further two options are available: Speed(Control only) and Speed(Data
only).

Memory Options

The memory type for MAC implementations can either be user-selected or chosen
automatically to suit the best implementation options. Choosing Distributed can result in
shift register implementation where appropriate to the f ilter structure. Inappropriate use of
forcing the RAM selection to be either Block or Distributed can lead to inefficient resource
usage.

RECOMMENDED: The default Automatic mode is recommended for most implementations.

• Data Buffer Type: Specifies the type of RAM to be used to store data within a MAC
element. You can select either Block or Distributed RAM options, or select Automatic to
allow the core to choose the memory type appropriately.

• Coefficient Buffer Type: Specifies the type of RAM to be used to store coefficients
within a MAC element. You can select either Block or Distributed RAM options, or select
Automatic to allow the core to choose the memory type appropriately.

• Input Buffer Type: Specif ies the type of RAM to be used to implement the data input
buffer, where present. You can select either Block or Distributed RAM options, or select
Automatic to allow the core to choose the memory type appropriately.

• Output Buffer Type: Specif ies the type of RAM to be used to implement the data
output buffer, where present. You can select either Block or Distributed RAM options, or
select Automatic to allow the core to choose the memory type appropriately.

• Preference for Other Storage: Specif ies the type of RAM to be used to implement
general storage in the datapath. You can select either Block or Distributed RAM options,
or select Automatic to allow the core to choose the memory type appropriately.
Because this covers several different types of storage, it is recommended that you
specify this type of memory directly only if you really need to steer the core away from
using a particular memory resource (for example, if you are short of block RAMs in your
overall design).

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 103
PG149 March 20, 2013

Chapter 5: Customizing and Generating the Core

DSP Slice Column Options

The Vivado IDE displays the number of independent DSP chains, and their length, required
to build the specif ied filter configuration.

• Multi-column Support: Implementations of large high speed f ilters might require
chaining of DSP slice elements across multiple DSP columns. Where applicable (the
feature is only enabled for multi-column devices), you can select the method of folding
of the filter structure across the multiple columns, which can be Automatic (based on
the selected device for the project) or Automatic (user specif ies the length of each
column). Multiple Column Filter Implementation describes the multi-column
implementation in more detail.

• Device Column Lengths: Displays the column length pattern in a comma delimited list
for the selected project device.

• Available Column Lengths: Displays the column length pattern available for a single
DSP chain. The GUI reduces the Device Columns Lengths given the number of
independent DSP chains required by the filter configuration. The generated column
pattern considers the Optimization Goal specified.

• Column Configuration: Specifies the individual column lengths, in a comma delimited
list, that implement a single DSP chain. When Automatic has been selected, the column
lengths are determined by the GUI starting with the f irst column in the available
column pattern. When Custom is selected, you can specify the desired column pattern.
The number and length of the columns cannot exceed the available column pattern and
the column lengths must sum to the DSP chain length. When the available columns
have various lengths, it might be desirable to skip a particular column; this can be done
by specifying a zero column length, for example 10,0,22. The specified column
configuration does not guarantee that the downstream tools place the columns in
the desired sequence.

• Inter-column Pipe Length: Pipeline stages are required to connect between the
columns (Non-symmetric f ilter implementations only), with the level of pipelining
required being dependent upon the required system clock rate, the chosen device, and
other system-level parameters. Choice of this parameter is always left for you to
specify.

Interface Tab

Data Channel Options

• TLAST: TLAST can either be Not Required, Vector Framing or Packet Framing.
Selecting Not Required means that the core does not have the port; selecting Vector
Framing means that TLAST is expected to denote the last sample of an interleaved
cycle of data channels; selecting Packet Framing means that the core does not
interpret TLAST, but passes the signal to the output DATA channel TLAST with the same
latency as the datapath.

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 104
PG149 March 20, 2013

Chapter 5: Customizing and Generating the Core

• Output TREADY: This f ield enables the m_axis_data_tready port. With this port
enabled, the core supports back-pressure. Without the port, back-pressure is not
supported, but resources are saved and performance is likely to be higher.

• Input FIFO: Selects a FIFO interface for the S_AXIS_DATA channel. When the FIFO has
been selected data can be transferred in a continuous burst up to the size of the FIFO
(default 16) or, if greater, the number of interleaved data channels. The FIFO requires
additional FPGA logic resources.

• TUSER Input: The input TUSER port can independently and optionally convey a User
Field and/or a Chan ID Field, giving four options.

• TUSER Output: The output TUSER port can optionally carry a User Field and/or a Chan
ID Field. The presence of a User f ield in this port is coupled to the presence of a User
Field in the TUSER input selection, because the User Field, if present, is not interpreted
by the core, but conveyed from input DATA channel to Output Channel with the same
latency as the datapath to ease system design.

• User Field Width: range 1 to 256 bits.

See TUSER Options of the Input and Output DATA Channels for further details.

Configuration Channel Options

The CONFIG channel is used to select the active filter coeff icient set. The channel is also
used to apply newly reload filter coeff icients. See CONFIG Channel for full details.

• Synchronization Mode:

° On Vector: Configuration packets, when available, are consumed and their contents
applied when the first sample of an interleaved data channel sequence is processed
by the core. When the core is configured to process a single data channel
configuration packets are consumed every processing cycle of the core.

° On Packet: Further qualif ies the consumption of configuration packets. Packets are
only consumed after the core has received a transaction on the S_AXIS_DATA
channel where s_axis_data_tlast has been asserted.

• Configuration Method

° Single: A single coefficient set is used to process all interleaved data channels.

° By Channel: A unique coefficient set is specified for each interleaved data channel.

Reload Channel Options

• Reload Slots: Range 1 to 256. Specif ies the number of coeff icient sets that can be
loaded in advance. Reloaded coefficients are only applied to the core after a
configuration packet has been consumed. See RELOAD Channel and CONFIG Channel
for more details.

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 105
PG149 March 20, 2013

Chapter 5: Customizing and Generating the Core

Control Signals

• aclken: Determines if the core has the aclken pin.

• aresetn: Determines if the core has the aresetn pin.

IMPORTANT: aresetn is active-Low and when asserted, it should be asserted for a minimum of two
clock cycles.

• Reset data vector: Specif ies if aresetn resets the data vector and the control signals
or just the control signals. Data vector reset requires additional FPGA logic resources.
When no data vector reset has been selected an additional data_valid f ield is present in
the m_axis_data_tuser bus which can be used as further qualif ication of the output
data of the core. See Resets and Input and Output DATA Channels TUSER Options for
more details.

Summary Tab
The Summary screen provides a summary of core options selected.

Summary: The f inal page provides summary information about the core parameters
selected, which includes information on the actual number of calculated coeff icients,
including padding; the inferred or specified coeff icient structure; the additional gain
incurred as data passes through the f ilter due to maximizing the coefficient dynamic range
during quantization; the specif ied output width along with the full precision width for
comparison; the calculated cycle-latency value; and the latency delta from the previous
major revision of the core.

System Generator for DSP Graphical User
Interface
This section describes each tab of the System Generator GUI and details the parameters that
differ from the Vivado Integrated Design Environment (IDE). See GUI for detailed
information about all other parameters.

Tab 1: Filter Specification
The Filter Specif ication tab is used to define the basic f ilter configuration as on the Filter
Options Tab of the GUI.

• Coefficients: This f ield is used to specify the coefficient vector as a single MATLAB®
software row vector. The number of taps is inferred from the length of the MATLAB
software row vector. It is possible to enter these coefficients using the MATLAB
software FDATool block. Multiple coefficient sets must be concatenated into a single
vector as described in Multiple Coeff icient Sets.

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 106
PG149 March 20, 2013

Chapter 5: Customizing and Generating the Core

Tab 2: Channel Specification
• Hardware Oversampling Specification format: Selects which method is used to

specify the hardware oversampling rate and determines the level of control and rate
abstraction utilized by the core. This value directly affects the level of parallelism of the
core implementation and resources used.

When Maximum Possible is selected, the core uses the maximum oversampling given the
sample period of the signal connected to s_data_tdata port. The s_data_tvalid
handshake signal is abstracted and automatically driven by System Generator and the
core propagates the data streams sample period.

When Hardware Oversampling Rate is selected, you can specify the oversampling rate
relative to the input sample period of the core. As with Maximum Possible the handshake
and sample period are managed automatically by System Generator.

When Sample Period is selected there is no automatic handshaking, s_data_tvalid is
exposed, or rate abstraction, all core ports are considered as having a normalized
sample period 1. The core clock is connected to the system clock. The core must be
controlled using the full AXI4-Stream protocol (see AXI4-Stream Considerations).

• Sample Period: Specifies the input sample period supported by the core.

• Hardware Oversampling Rate: Specif ies the hardware oversampling rate to be applied
to the core.

See Filter Options Tab for information about the other parameters on this tab.

Tab 3: Implementation
The Implementation tab is used to define implementation options; see the Implementation
Tab of the Vivado IDE for details of all the core parameters on this tab.

• FPGA Area Estimation: See the System Generator documentation for detailed
information about this section.

See the Implementation Tab for information about the other parameters on this tab.

Tab 5: Interface
See Detailed Implementation Tab for the corresponding IDE screen.

The TUSER User Field width parameter is abstracted by System Generator and is defined by
the signal connected to the core.

Data vector reset is always selected to ensure the simulation model and implementation
remain bit and cycle accurate.

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 107
PG149 March 20, 2013

Chapter 6

Constraining the Core
There are no constraints associated with this core.

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 108
PG149 March 20, 2013

Chapter 7

Detailed Example Design
This chapter contains information about the provided test bench in the Vivado™ Design
Suite environment.

Demonstration Test Bench
When the core is generated using the Vivado IP catalog, a demonstration test bench is
optionally created. This is a simple VHDL test bench that exercises the core.

The demonstration test bench source code is one VHDL file: demo_tb/
tb_<component_name>.vhd in the Vivado Design Suite output directory. The source
code is comprehensively commented.

Using the Demonstration Test Bench
The demonstration test bench instantiates the generated FIR Compiler core. Either the
behavioral model or the netlist can be simulated within the demonstration test bench.

After generating the demonstration test bench it must be set as the top-level simulation
object. This is done using the Sources pane. Expand the Simulation sources folder and under
the core instance the test bench object is visible as tb_<component_name>. Select the
f ile, right-click and select Set as Top. Simulation can now be launched and the test bench
is used to drive the core instance.

The Demonstration Test Bench in Detail
The demonstration test bench performs the following tasks:

• Instantiates the core

• Generates a clock signal

• Drives the input signals of the core to demonstrate core features

• Checks that the output signals of the core obey AXI4 protocol rules (data values are not
checked to keep the test bench simple)

• Provides signals showing the separate fields of AXI4 TDATA and TUSER signals

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 109
PG149 March 20, 2013

Chapter 7: Detailed Example Design

The demonstration test bench drives the input signals of the core to demonstrate the
features and modes of operation of the core. An impulse is used as input data in all
operations; the corresponding output of the core is therefore the impulse response of the
f ilter, that is, the f ilter coeff icients.

The operations performed by the demonstration test bench are appropriate for the
configuration of the generated core, and are a subset of the following operations:

• Drive an impulse

• Drive an impulse, demonstrating AXI4 handshaking signals by modifying the input data
rate using slave data channel TVALID, and modifying the output data rate using master
data channel TREADY (if present)

• Drive an impulse, during which deassert clock enable (if present), then assert reset (if
present) and drive a new impulse

• For multiple paths: drive a set of impulses of different magnitudes on each path

• For multiple channels: drive a set of impulses of different magnitudes on each channel

• For advanced interleaved data channel sequences: select a different channel pattern;
drive an impulse on each channel

• For multiple f ilter coefficient sets: select a different coeff icient set (a different set for
each channel, if supported); drive an impulse (on each channel, if there are multiple
channels)

• For reloadable coeff icients: load a new coefficient set; drive an impulse (on each
channel, if there are multiple channels)

Customizing the Demonstration Test Bench
It is possible to modify the demonstration test bench to drive the core inputs with different
data or to perform different operations.

All operations performed by the demonstration test bench to drive the core inputs are done
in the stimuli process. This process also contains procedures to simplify driving input data.
The drive_data procedure drives one or more input data samples with the specified data,
controlling AXI4 signals to adhere to the AXI4 protocol and keep to the configured input
sample rate of the core. The drive_impulse procedure drives an impulse input, with enough
zero-valued samples to allow time for the impulse response to emerge on the output data
channel of the core. To drive input data other than an impulse, either use the drive_data
procedure repeatedly with specif ic input data values, or copy and modify the drive_impulse
procedure.

The stimuli process is comprehensively commented, to explain clearly what is being done.
New data, configuration and reload operations can be added by copying and modifying
sections of this process.

The clock frequency of the core can be modified by changing the CLOCK_PERIOD constant.

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 110
PG149 March 20, 2013

Chapter 7: Detailed Example Design

Simulation
To simulate the core, generate the core simulation model and demonstration test bench.
Ensure that the demonstration test bench is the top level entity in the simulation options.
Then select ‘Run Simulation’ in the Vivado IDE.

For full instructions on simulating your core, see UG900, Vivado Design Suite User Guide:
Logic Simulation [Ref 10].

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 111
PG149 March 20, 2013

Appendix A

Migrating
This appendix describes migrating from older versions of the IP to the current IP release.

For information on migrating to the Vivado™ Design Suite, see UG911, Vivado Design Suite
Migration Methodology Guide [Ref 12].

Parameter Changes
There are no parameter, port, or latency changes between v7.0 and v6.3.

Updating from FIR Compiler v6.0, v6.1 and v6.2
Multi-Column Support: Disabled is now deprecated. Automatic upgrade replaces this with a
value of Automatic.

There are no other parameter, port or latency changes between v7.0 and v6.2, v6.1 and v6.0
of the FIR Compiler, only additional parameters. The additional parameters are: Channel
Sequence, Select Pattern and Pattern List. See GUI for details.

Updating from FIR Compiler v5.0

Parameter Changes

The Vivado core update functionality can be used to import an existing XCO file from v5.0
and upgrade to FIR Compiler v7.0, but it should be noted that the update mechanism alone
does not create a core compatible with v5.0. See Instructions for Minimum Change
Migration. FIR Compiler v7.0 has additional AXI4-Stream parameters. The following table
shows the changes in parameters from v5.0 to v7.0.

Table A-1: Parameter Changes from v5.0 to v7.0

Version v5.0 Version 7.0 Notes

component_name component_name Unchanged

CoefficientSource CoefficientSource Unchanged

CoefficientVector CoefficientVector Unchanged

Coefficient_File Coefficient_File Unchanged

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 112
PG149 March 20, 2013

Appendix A: Migrating

Coefficient_Sets Coefficient_Sets Unchanged

Filter_Type Filter_Type Unchanged

Rate_Change_Type Rate_Change_Type Unchanged

Interpolation_Rate Interpolation_Rate Unchanged

Decimation_Rate Decimation_Rate Unchanged

Zero_Pack_Factor Zero_Pack_Factor Deprecated

Channel_Sequence New to version 7.0. See the Advanced
section of Interleaved Data Channel Filters.

Number_Channels Number_Channels Unchanged

Select_Pattern New to version 7.0. See the Advanced
section of Advanced

Pattern_List New to version 7.0. See the Advanced
section of Advanced.

RateSpecification RateSpecification Unchanged

SamplePeriod SamplePeriod Unchanged

Sample_Frequency Sample_Frequency Unchanged

Clock_Frequency Clock_Frequency Unchanged

Filter_Architecture Filter_Architecture Unchanged

Coefficient_Reload Coefficient_Reload Unchanged

Coefficient_Sign Coefficient_Sign Unchanged

Quantization Quantization Unchanged

Coefficient_Width Coefficient_Width Unchanged

BestPrecision BestPrecision Unchanged

Coefficient_Fractional_Bits Coefficient_Fractional_Bits Unchanged

Coefficient_Structure Coefficient_Structure Unchanged

Data_Sign Data_Sign Unchanged

Data_Width Data_Width Unchanged

Data_Fractional_Bits Data_Fractional_Bits Unchanged

Number_Paths Number_Paths Unchanged

Output_Rounding_Mode Output_Rounding_Mode Unchanged

Output_Width Output_Width Unchanged

Allow_Rounding_Approximation Deprecated

Registered_Output Deprecated

Optimization_Goal Optimization_Goal Unchanged

Has_SCLR Has_ARESETn Name change. aresetn is active-Low.

Has_CE Has_ACLKEN Name change.

Table A-1: Parameter Changes from v5.0 to v7.0 (Cont’d)

Version v5.0 Version 7.0 Notes

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 113
PG149 March 20, 2013

Appendix A: Migrating

Port Changes
Table A-2 details the changes to port naming, additional or deprecated ports and polarity
changes from v5.0 to v7.0.

Has_ND Deprecated. These options pertain to
signals which have been replaced in the
move to AXI4-Stream interfaces.Has_Data_Valid

SCLR_Deterministic

UseChan_in_adv

Chan_in_adv

Data_Buffer_Type Data_Buffer_Type Unchanged

Coefficient_Buffer_Type Coefficient_Buffer_Type Unchanged

Input_Buffer_Type Input_Buffer_Type Unchanged

Output_Buffer_Type Output_Buffer_Type Unchanged

Preference_For_Other_Storage Preference_For_Other_Storage Unchanged

Multi_Column_Support Multi_Column_Support Unchanged

Inter_Column_Pipe_Length Inter_Column_Pipe_Length Unchanged

ColumnConfig ColumnConfig Unchanged

DATA_Has_TLAST Pertains to AXI4-Stream interfaces.

M_DATA_Has_TREADY Pertains to AXI4-Stream interfaces.

S_DATA_Has_FIFO Pertains to AXI4-Stream interfaces.

S_DATA_Has_TUSER Pertains to AXI4-Stream interfaces.

M_DATA_Has_TUSER Pertains to AXI4-Stream interfaces.

DATA_TUSER_Width Pertains to AXI4-Stream interfaces.

S_CONFIG_Sync_Mode Pertains to AXI4-Stream interfaces.

S_CONFIG_Method Pertains to AXI4-Stream interfaces.

Num_Reload_Slots Pertains to the coeff icient reload feature.

Reset_Data_Vector

Table A-2: Port Changes from Version 5.0 to Version 7.0

Version 5.0 Version 7.0 Notes

CLK aclk Rename only

CE aclken Rename only

SCLR aresetn Rename and change of sense (now active-Low)

ND s_axis_data_tvalid Equivalent to s_axis_data_tvalid

Table A-1: Parameter Changes from v5.0 to v7.0 (Cont’d)

Version v5.0 Version 7.0 Notes

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 114
PG149 March 20, 2013

Appendix A: Migrating

FILTER_SEL Replaced by CONFIG channel. See s_axis_config_t*.

COEF_LD Replaced by RELOAD channel. See s_axis_reload_t*.

COEF_WE

COEF_DIN

COEF_FILTER_SEL

RFD s_axis_data_tready

RDY m_axis_data_tvalid

DATA_VALID Deprecated, see s_axis_data_t*

CHAN_IN Deprecated. Function performed by s_axis_data_tuser (chan
ID f ield) or s_axis_data_tlast (vector-based).

CHAN_OUT Deprecated. Function performed by m_axis_data_tuser (chan
ID f ield) or m_axis_data_tlast (vector-based).

DIN Deprecated. Now exists as a f ield within s_axis_data_tdata.

DOUT Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_I Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_Q Deprecated. Now exists as a f ield within m_axis_data_tdata.

DIN_1 Deprecated. Now exists as a f ield within s_axis_data_tdata.

DIN_2 Deprecated. Now exists as a f ield within s_axis_data_tdata.

DIN_3 Deprecated. Now exists as a f ield within s_axis_data_tdata.

DIN_4 Deprecated. Now exists as a f ield within s_axis_data_tdata.

DIN_5 Deprecated. Now exists as a f ield within s_axis_data_tdata.

DIN_6 Deprecated. Now exists as a f ield within s_axis_data_tdata.

DIN_7 Deprecated. Now exists as a f ield within s_axis_data_tdata.

DIN_8 Deprecated. Now exists as a f ield within s_axis_data_tdata.

DIN_9 Deprecated. Now exists as a f ield within s_axis_data_tdata.

DIN_10 Deprecated. Now exists as a f ield within s_axis_data_tdata.

DIN_11 Deprecated. Now exists as a f ield within s_axis_data_tdata.

DIN_12 Deprecated. Now exists as a f ield within s_axis_data_tdata.

DIN_13 Deprecated. Now exists as a f ield within s_axis_data_tdata.

DIN_14 Deprecated. Now exists as a f ield within s_axis_data_tdata.

DIN_15 Deprecated. Now exists as a f ield within s_axis_data_tdata.

DIN_16 Deprecated. Now exists as a f ield within s_axis_data_tdata.

DOUT_1 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_I_1 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_Q_1 Deprecated. Now exists as a f ield within m_axis_data_tdata.

Table A-2: Port Changes from Version 5.0 to Version 7.0 (Cont’d)

Version 5.0 Version 7.0 Notes

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 115
PG149 March 20, 2013

Appendix A: Migrating

DOUT_2 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_I_2 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_Q_2 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_3 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_I_3 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_Q_3 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_4 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_I_4 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_Q_4 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_5 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_I_5 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_Q_5 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_6 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_I_6 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_Q_6 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_7 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_I_7 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_Q_7 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_8 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_I_8 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_Q_8 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_9 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_I_9 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_Q_9 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_10 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_I_10 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_Q_10 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_11 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_I_11 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_Q_11 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_12 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_I_12 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_Q_12 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_13 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_I_13 Deprecated. Now exists as a f ield within m_axis_data_tdata.

Table A-2: Port Changes from Version 5.0 to Version 7.0 (Cont’d)

Version 5.0 Version 7.0 Notes

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 116
PG149 March 20, 2013

Appendix A: Migrating

DOUT_Q_13 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_14 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_I_14 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_Q_14 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_15 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_I_15 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_Q_15 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_16 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_I_16 Deprecated. Now exists as a f ield within m_axis_data_tdata.

DOUT_Q_16 Deprecated. Now exists as a f ield within m_axis_data_tdata.

s_axis_data_tvalid TVALID for input DATA channel

s_axis_data_tready TREADY for input DATA channel

s_axis_data_tdata TDATA for input DATA channel. Replaces all DIN ports. See
TDATA Structure for internal structure.

s_axis_data_tuser TUSER for input DATA channel. Optionally replaces CHAN_IN.

s_axis_data_tlast TLAST for input DATA channel. Optionally compared to
internal channel counter (replacement for CHAN_IN) with
discrepancies indicated on event_s_axis_*

s_axis_reload_tvalid TVALID for input RELOAD channel

s_axis_reload_tready TREADY for input RELOAD channel

s_axis_reload_tdata

s_axis_reload_tlast

s_axis_config_tvalid TVALID for input CONFIG channel

s_axis_config_tready TREADY for input CONFIG channel

s_axis_config_tdata

s_axis_config_tlast

m_axis_data_tvalid TVALID for output DATA channel

m_axis_data_tready TREADY for output DATA channel

m_axis_data_tdata TDATA for output DATA channel. Replaces all DOUT ports. See
TDATA Structure for internal structure.

m_axis_data_tuser TUSER for output DATA channel. Optionally replaces
CHAN_OUT.

m_axis_data_tlast TLAST for output DATA channel. Optionally replaces function
performed by CHAN_OUT.

Table A-2: Port Changes from Version 5.0 to Version 7.0 (Cont’d)

Version 5.0 Version 7.0 Notes

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 117
PG149 March 20, 2013

Appendix A: Migrating

Functionality Changes
Latency Changes

The latency of FIR Compiler v7.0 is different compared to v5.0 The update process cannot
account for this and guarantee equivalent performance.

When in Blocking Mode (m_data_tready in use), the latency of the core is variable, so
only the minimum possible latency can be determined. When in Non-Blocking Mode (no
m_data_tready), the latency of the core might only be slightly greater than that for the
equivalent configuration of v5.0. See the latency information in the Vivado IDE Summary
page.

Instructions for Minimum Change Migration

To configure the FIR Compiler v7.0 to most closely mimic the behavior of v5.0 the
translation is as follows:

Parameters

Output TREADY (Data Channel Options): Set to FALSE. Disables back-pressure facility and
guarantees fixed latency.

Input FIFO (Data Channel Options): Set to FALSE. Disables the input FIFO on the
S_AXIS_DATA channel and minimizes FPGA logic resources.

Synchronization Mode (CONFIG Channel Options): Set to On Vector. This ensures the f ilter
select values is updated on every processing cycle.

Configuration Method (CONFIG Channel Options): Set to By Channel when applicable.
This ensures a unique f ilter select value can be set for every interleaved data channel.

Reload Slots (RELOAD Channel Options): Set to the number of coeff icient sets specified.

Data Vector Reset (Control Signals): Set to FALSE. Minimizes FPGA logic resources and
matches FIR Compiler v5.0 reset behavior.

Ports

Input / Output Data Channels

ND is mapped to s_axis_data_tvalid

RFD is mapped to s_axis_data_tready

RDY is mapped to m_axis_data_tvalid

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 118
PG149 March 20, 2013

Appendix A: Migrating

Configuration Channel

FILTER_SEL is mapped to the f ilter select f ield of the s_axis_config_tdata bus

Drive s_axis_config_tvalid with the same signal driving s_axis_data_tvalid.

Note: For decimation f ilters s_axis_config_tvalid must be driven at the output rate.
Configuration packets are consumed at the lower output rate and if supplied at the input rate the
Configuration Channel FIFO becomes full and s_axis_config_tready is deasserted and input
packets ignored.

Tie s_axis_config_tlast to 0 and ignore event_s_axis_config_*

Reload Channel

The format of the reload channel has changed such that COEF_FILTER_SEL is now
pre-pended to the reload packet on the s_axis_reload_tdata bus.

COEF_DIN is mapped to s_axis_reload_tdata bus

COEF_WE is mapped to s_axis_reload_tvalid

COEF_LD is mapped to s_axis_reload_tlast but is now asserted at the end of a reload
packet

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 119
PG149 March 20, 2013

Appendix B

Debugging
This appendix includes details about resources available on the Xilinx Support website and
debugging tools. In addition, this appendix provides a step-by-step debugging process and
a flow diagram to guide you through debugging the FIR Compiler core.

The following topics are included in this appendix:

• Finding Help on Xilinx.com

• Debug Tools

• Simulation Debug

• Interface Debug

Finding Help on Xilinx.com
To help in the design and debug process when using the FIR Compiler, the Xilinx Support
web page (www.xilinx.com/support) contains key resources such as product documentation,
release notes, answer records, information about known issues, and links for opening a
Technical Support WebCase.

Documentation
This product guide is the main document associated with the FIR Compiler. This guide,
along with documentation related to all products that aid in the design process, can be
found on the Xilinx Support web page (www.xilinx.com/support) or by using the Xilinx
Documentation Navigator.

Download the Xilinx Documentation Navigator from the Design Tools tab on the Downloads
page (www.xilinx.com/download). For more information about this tool and the features
available, open the online help after installation.

Known Issues
Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.

http://www.xilinx.com
www.xilinx.com/support
www.xilinx.com/support
www.xilinx.com/support
www.xilinx.com/download

FIR Compiler v7.0 www.xilinx.com 120
PG149 March 20, 2013

Appendix B: Debugging

Answer Records are created and maintained daily ensuring that you have access to the most
accurate information available.

Answer Records for this core are listed below, and can also be located by using the Search
Support box on the main Xilinx support web page. To maximize your search results, use
proper keywords such as

• Product name

• Tool message(s)

• Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Master Answer Record for the FIR Compiler

AR 54502

Contacting Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support of product if implemented in devices that are not defined in the
documentation, if customized beyond that allowed in the product documentation, or if
changes are made to any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support:

1. Navigate to www.xilinx.com/support.

2. Open a WebCase by selecting the WebCase link located under Support Quick Links.

When opening a WebCase, include:

• Target FPGA including package and speed grade.

• All applicable Xilinx Design Tools and simulator software versions.

• Additional f iles based on the specif ic issue might also be required. See the relevant
sections in this debug guide for guidelines about which f ile(s) to include with the
WebCase.

Debug Tools
There are tools available to address FIR Compiler design issues. It is important to know
which tools are useful for debugging various situations.

http://www.xilinx.com
http://www.xilinx.com/support/answers/54502.htm
www.xilinx.com/support
http://www.xilinx.com/support
www.xilinx.com/support
http://www.xilinx.com/support/clearexpress/websupport.htm

FIR Compiler v7.0 www.xilinx.com 121
PG149 March 20, 2013

Appendix B: Debugging

Test Bench
The FIR Compiler can generate with a test bench that can be simulated, Information about
the test bench can be found in Chapter 7, Detailed Example Design.

Vivado Lab Tools
Vivado inserts logic analyzer and virtual I/O cores directly into your design. Vivado Lab
Tools allows you to set trigger conditions to capture application and integrated block port
signals in hardware. Captured signals can then be analyzed. This feature represents the
functionality in the Vivado IDE that is used for logic debugging and validation of a design
running in Xilinx FPGAs in hardware.

The Vivado logic analyzer is used to interact with the logic debug LogiCORE IP cores,
including:

• ILA 2.0 (and later versions)

• VIO 2.0 (and later versions)

Reference Boards
Various Xilinx development boards support FIR Compiler. These boards can be used to
prototype designs and establish that the core can communicate with the system.

• 7 series FPGA evaluation boards

° KC705

° KC724

C-Model Reference
See Chapter 4, C Model Reference in this guide for tips and instructions for using the
provided C-Model f iles to debug your design.

License Checkers
If the IP requires a license key, the key must be verif ied. The Vivado design tools have
several license check points for gating licensed IP through the flow. If the license check
succeeds, the IP can continue generation. Otherwise, generation halts with error. License
checkpoints are enforced by the following tools:

• Vivado design tools: Vivado Synthesis, Vivado Implementation, write_bitstream (Tcl
command)

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 122
PG149 March 20, 2013

Appendix B: Debugging

IMPORTANT: IP license level is ignored at checkpoints. The test confirms a valid license exists. It does
not check IP license level.

Simulation Debug
The simulation debug flow for Questa® SIM is shown in Figure B-1. A similar approach can
be used with other simulators.

X-Ref Target - Figure B-1

Figure B-1: Questa SIM Debug Flow

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 123
PG149 March 20, 2013

Appendix B: Debugging

Interface Debug

AXI4-Stream Interfaces
If data is not being transmitted or received, check the following conditions:

• If transmit <interface_name>_tready is stuck Low following the
<interface_name>_tvalid input being asserted, the core cannot send data.

• If the receive <interface_name>_tvalid is stuck Low, the core is not receiving
data.

• Check that the ACLK inputs are connected and toggling.
• Check that the AXI4-Stream waveforms are being followed (see Figure 3-1).
• Check core configuration.

http://www.xilinx.com

FIR Compiler v7.0 www.xilinx.com 124
PG149 March 20, 2013

Appendix C

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

www.xilinx.com/company/terms.htm.

References
These documents provide supplemental material useful with this product guide:

1. C. H. Dick, Implementing Area Optimized Narrow-Band FIR Filters Using Xilinx FPGAs,
SPIE International Symposium on Voice, Video and Data
Communications—Configurable Computing: Technology an Applications Stream,
Boston, Massachusetts USA, pp. 227-238, Nov 1-6, 1998

2. P.P. Vaidyanathan, Multi-Rate Systems and Filter Banks, Prentice Hall, Englewood Cliffs,
New Jersey, 1993.

3. M. E. Frerking, Digital Signal Processing in Communication Systems, Van Nostrand
Reinhold, New York, 1994.

4. AMBA® AXI4-Stream Protocol Specif ication (ARM IHI 0051A)

5. Xilinx AXI Reference Guide (UG761)

6. Xilinx Inc., XtremeDSP Design Manual, Xilinx Inc., San Jose California, 2004.

7. Mou, Zhi-Jian, Symmetry Exploitation in Digital Interpolators/Decimators, IEEE
Transactions on Signal Processing, Vol. 44 No. 10, Oct. 1996

8. The Multiple Precision Integers and Rationals (MPIR) Library: www.mpir.org/

9. The GNU Multiple Precision Arithmetic (GMP) Library: gmplib.org/

http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/support
http://www.xilinx.com
http://mpir.org/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug761_axi_reference_guide.pdf
http://gmplib.org/

FIR Compiler v7.0 www.xilinx.com 125
PG149 March 20, 2013

Appendix C: Additional Resources

10. Vivado™ Design Suite user documentation

11. System Generator for DSP User Guide (UG640)

12. Vivado Design Suite Migration Methodology Guide (UG911)

13. Vivado Design Suite User Guide: Designing with IP (UG896)

14. Peled and B. Liu, A New Hardware Realization of Digital Filters, IEEE Trans. on Acoust.,
Speech, Signal Processing, vol. ASSP-22, pp. 456-462, Dec. 1974.

15. S. A. White, Applications of Distributed Arithmetic to Digital Signal Processing, IEEE ASSP
Magazine, Vol. 6(3), pp. 4-19, July 1989.

16. Fred Harris, Chris Dick, and Michael Rice, Digital Receivers and Transmitters Using
Polyphase Filter Banks for Wireless Communications, IEEE Trans. on Microwave Theory
and Techniques, Vol. 51, No.4. 4 April 2003

Revision History
The following table shows the revision history for this document.

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties
which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in
a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring
fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/
warranty.htm#critapps.
© Copyright 2013 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, ARM, ARM1176JZ-S,
CoreSight, Cortex, and PrimeCell are trademarks of ARM in the EU and other countries. All other trademarks are the property of
their respective owners.

Date Version Revision

03/20/2013 1.0 Initial release as a Product Guide; replaces DS795 and UG853. There are no
other document changes for this release.

http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
http://www.xilinx.com/support/documentation/dt_sysgendsp.htm

