

GFP v2.1 User Guide www.xilinx.com 31
UG152 April 25, 2008

MAP Core Interfaces
R

Host Interface (M_HOST)
Table 3-5 describes the Map host interface signals (M_HOST). The MAP host interface to
the user application utilizes the DCR bus for direct connection to the PowerPC,
Microblaze, or other microprocessors. It consists of separate read and write data buses
with a shared address bus. Note that the host interface is optional, and may be removed to
conserve resources if in-situ access to control registers is not required.

M_LINE_SRC_DSC_N Output Frame Discontinue: Indicates the current
GFP frame contains an error.

M_LINE_IDLE_N Output Idle Indicator: Indicates the current GFP
frame is an idle frame, and can be dropped
by the user if necessary. This signal is
asserted for the entire idle frame.

Table 3-4: MAP Line Interface (Continued)

Name Direction Description

Table 3-5: MAP Host Interface

Name Direction Description

M_HOST_CLK Input Host Clock: All host interface signals are
synchronous to this clock. Note that this
signal is optional, as the host interface can
be configured to be synchronous to
M_CLK.

M_HOST_RD_EN Input Read Enable: Indicates a read access to the
register addressed on M_HOST_ADDR.

M_HOST_WR_EN Input Write Enable: Indicates a write access to
the register addressed on
M_HOST_ADDR.

M_HOST_ACK Output Acknowledge: Both read and write
requests to the host interface are
acknowledged through this signal.
Following a read request, this signal
indicates that the data on
M_HOST_RD_DATA is valid.

M_HOST_RD_DATA[31:0] Output Read Data: Data read from the address
M_HOST_ADDR, which is valid when a
read request (M_HOST_RD_EN) followed
by an acknowledge (M_HOST_ACK) is
asserted.

M_HOST_WR_DATA[31:0] Input Write Data: Data to be written into the host
interface at the address specified by
M_HOST_ADDR. The write is
acknowledged on M_HOST_ACK when
the write succeeded.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

32 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 3: Core Architecture
R

MAP Configuration Space
The MAP core supports a host interface for access to control and status registers in-situ.
The MAP core provides both general and channel-specific registers.

• Table 3-6 describes the MAP core general registers.

• Table 3-7 describes the MAP core channel-specific registers, which enable the user to
customize specific parameters on a per channel basis.

M_HOST_ADDR[9:0] Input Register Address: Bus used to specify the
address being accessed either for a read or
write.

M_HOST_INT Output Interrupt: Indicates that an interrupt
condition has been detected, and will
continue to be driven until the interrupt is
cleared (by writing to MAP GFP_INT).

Table 3-5: MAP Host Interface (Continued)

Name Direction Description

Table 3-6: MAP Core General Registers

Register Name Type Description
DCR

Offset

GFP_VERSION R/W [31] = Core reset 0x0

R [30:0] = Core version number

GFP_CTRL [31:18] = Reserved 0x1

R/W [17] = Disable scrambling of header

R/W [16] = Disable scrambling of payload

[15:4] = Reserved

R/W [3:0] = Upper 4 bits of CSF counter

GFP_ERR [31:8] = Reserved 0x2

R/W [7] = Payload scrambling error insertion

R/W [6] = Location of superblock CRC error

• (1) insert CRC error in all superblocks
• (0) insert CRC error in first superblock

R/W [5] = Superblock CRC error insertion

R/W [4] = FCS error insertion

R/W [3] = Core header scrambling error insertion

R/W [2] = cHEC error insertion

R/W [1] = tHEC error insertion

R/W [0] = eHEC error insertion

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 33
UG152 April 25, 2008

MAP Core Interfaces
R

The MAP core also contains channel-specific registers, which enable the core to customize
specific parameters on a per-channel basis (see Table 3-7). Note that the channel notation
refers to channel-specific configurations, where the number of channels is specified in the
GUI (x is 0 to number of channels -1). For detailed information about the MAP core
configuration space, see “MAP Core Register Configuration: Per-Channel Configuration,”
page 50.

GFP_INTMASK [31:2] = Reserved 0x3

R/W [1] = Enable interrupt for invalid K
characters received

R/W [0] = Enable interrupt for PLI length
mismatch

GFP_INT1 [31:2] = Reserved 0x4

R/W [1] = Invalid K character received

R/W [0] = PLI length mismatch

1. All interrupts are cleared by performing a write operation to this register.

Table 3-7: MAP Core Channel-Specific Registers

Register Name Type Description
DCR

Offset

CHANx_GFP_REGISTER_A [31:28] = Reserved 0x0

R/W [27] = Core Configuration

• Transparent mode(1)
• Frame-mapped mode (0)

R/W [26] = Enable FCS

R/W [25] = Use UPI from
REGISTER_A[23:16]

R/W [24] = Use length from
REGISTER_A[15:0]

R/W [23:16] = Data UPI

R/W [15:0] = Length

Table 3-6: MAP Core General Registers (Continued)

Register Name Type Description
DCR

Offset

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

34 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 3: Core Architecture
R

UNMAP Core Interfaces
Figure 3-3 displays the UNMAP core interface. All signals are defined in their respective
sections below the illustration.

CHANx_GFP_REGISTER_B [31:18] = Reserved 0x1

R/W [17] = Send loss of client signal
management frame when CSF
timer expires

R/W [16] = Send loss of character
synchronization management
frame when CSF timer expires

R/W [15:8] = Spare field

R/W [7:0] = Channel id (CID) for this
channel (alias)

Table 3-7: MAP Core Channel-Specific Registers (Continued)

Register Name Type Description
DCR

Offset

Figure 3-3: UNMAP Core Interfaces

GFP UNMAP Core

U_SYS_SOF_N

U_SYS_EOF_N

U_SYS_SRC_RDY_N

U_SYS_DST_RDY_N

U_SYS_DATA[D-1:0]

U_CLK

U_RST_N

U_SYS_REM[M-1:0]

U_SYS_STATUS_N[15:0]

U_SYS_MGMT_N

U_SYS_UPI[7:0]

U_SYS_CID[7:0]

U_SYS_ERRBUS_N[15:0]

U_SYS_SRC_DSC_N

U_SYS_10BERR_N[B-1:0]

U_SYS_CHARISK_N[B-1:0]

U_LINE_SRC_RDY_N

U_LINE_DST_RDY_N

U_LINE_SOF_N

U_LINE_EOF_N

U_LINE_DATA[D-1:0]

U_LINE_REM[M-1:0]

U_LINE_SRC_DSC_N

U_HOST_RD_EN

U_HOST_WR_EN

U_HOST_ACK

U_HOST_RD_DATA[31:0]

U_HOST_WR_DATA[31:0]

U_HOST_ADDR[9:0]

U_HOST_INT

U_HOST_CLK

Line InterfaceSystem Interface

Host
Interface

U_SYS_SPARE[7:0]

U_SYS_SUPER_N

U_SYS_SUPERERR_N

Transparent Signals

U_SYS_LENGTH[15:0]

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 35
UG152 April 25, 2008

UNMAP Core Interfaces
R

Table 3-8 defines the relationship between the data bus width and additional signals. The
UNMAP core supports both a 32-bit and a 64-bit interface. The bus widths of several
signals, detailed below, depend on the interface width selected.

Common Interface
Table 3-9 describes the common interface. The UNMAP reset signal (U_RST_N) causes a
hard reset of the entire core (core logic and host interface). This signal is an asynchronous
input which is synchronized internally in the core before being used. The initial hardware
reset should be generated by the user. Subsequent resets may be asserted by using the
U_RST_N pin (for complete core resets), or by driving the appropriate register in the
UNMAP host interface (for core logic reset only). For detailed information about reset
requirements and operation, see “Initializing the GFP Core,” page 64.

System Interface (U_SYS)
Table 3-10 describes the UNMAP system interface signals (U_SYS). The UNMAP system
interface connects to the client side of the system and implements the Xilinx LocalLink
system standard, providing a simple, flexible way to transmit frames. The system interface
consists of a unidirectional data bus with control signals that provide the user application
with real-time status about the current frame. The system interface signals are divided into
three categories: signals common to both frame-mapped and transparent mode, signals
specific to frame-mapped mode, and signals specific to transparent mode.

Table 3-8: UNMAP Core Bus Widths

Data Bus Width (D)
(*_DATA)

Remainder Width (M)
(*_REM)

Data Byte Width (B)
(*_10BERR_N,
*_CHARISK_N)

32 2 4

64 3 8

Table 3-9: UNMAP Common Interface

Name Direction Description

U_CLK Input UNMAP Clock: All system and line
interface operations are synchronous to this
clock.

U_RST_N Input UNMAP Reset: Asynchronous reset which
resets both the UNMAP core logic and
UNMAP host interface.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

36 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 3: Core Architecture
R

.

Table 3-10: UNMAP System Interface

Name Direction Description

Common to all modes

U_SYS_DST_RDY_N Input Read Enable (Destination Ready): Indicates a
word is accepted this cycle (not accepted until
U_SYS_SRC_RDY_N is also asserted).

U_SYS_SRC_RDY_N Output Read Valid (Source Ready): Indicates a
word presented by the system interface is
valid (not read until U_SYS_DST_RDY_N
is also asserted).

U_SYS_SOF_N Output Start of Frame: Indicates the beginning of
a frame.

U_SYS_EOF_N Output End of Frame: Indicates the end of a
frame.

U_SYS_DATA[D-1:0] Output Data Bus: Client network protocol data
that has been extracted from the GFP
frame. If Ethernet is being transferred
(frame-mapped mode), the first word sent
will be the destination address. In
transparent mode, the data will be 8b/10b
decoded data, which is either data or
control/error (depending on the values of
U_SYS_CHARISK_N and
U_SYS_10BERR_N).

U_SYS_REM[M-1:0] Output Data Remainder: The number of valid
bytes in U_SYS_DATA is U_SYS_REM + 1,
and is MSB justified. This signal is only
valid when U_SYS_EOF_N is asserted.

Example: 32-bit data bus:

REM = “00” => DATA[31:24] valid
REM = “01” => DATA[31:16] valid
REM = “10” => DATA[31:8] valid
REM = “11” => DATA[31:0] valid

U_SYS_SRC_DSC_N Output Frame Discontinue: Indicates the current
frame contains an error. This type of error
will be asserted on U_SYS_ERRBUS_N.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 37
UG152 April 25, 2008

UNMAP Core Interfaces
R

U_SYS_ERRBUS_N[15:0] Output Error Condition: Provides real-time errors
and status for the current frame. The
following errors are reported (bits 6, 2:0) if
they are enabled in the host interface
(UNMAP GFP_CTRL[3:0]). The remaining
bits (7, 5:3) are always reported.

[15:8] = reserved
[7] = Transparent frame did not end on a
superblock boundary
[6] = FCS error
[5] = cHEC corrected
[4] = tHEC corrected
[3] = eHEC corrected
[2] = cHEC error
[1] = tHEC error
[0] = eHEC error

U_SYS_SPARE[7:0] Output Spare Field: Indicates the value of the
spare field of a linear frame. This signal is
present when linear extension headers are
enabled.

U_SYS_CID[7:0] Output Channel Identifier: Indicates the channel
ID for linear frames. This signal is present
when linear extension headers are
enabled.

U_SYS_UPI[7:0] Output User Payload Identifier: Indicates the
payload type for the current data frame.
When U_SYS_MGMT_N is asserted, this
signal indicates the type of management
frame received. See Appendix C, “Packet
and Control Symbol Format” for UPI
definitions.

U_SYS_MGMT_N Output Management Frame Indicator: Indicates a
client management frame was received.
When asserted, U_SYS_UPI indicates the
type of client signal fail (CSF). See
“Management Frames,” page 68 for
detailed use of this signal.

Table 3-10: UNMAP System Interface (Continued)

Name Direction Description

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

38 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 3: Core Architecture
R

U_SYS_STATUS_N[15:0] Output Status Bus: Provides real-time status and
errors.

[15:5] = reserved
[4] = System FIFO almost full
[3] = reserved
Synchronization Status: Indicates the
current status of the frame delineation
state machine (one-cold encoding). See
“Operating the UNMAP Line Interface
with Streaming Data,” page 84.

[2] = SYNC
[1] = PRESYNC
[0] = HUNT

U_SYS_LENGTH[15:0] Output Payload Length: Indicates the length of
the current frame in bytes.

Transparent signals

U_SYS_CHARISK_N[B-1:0] Output K Character Indicator: Indicates that the
corresponding byte of U_SYS_DATA is a
8b/10b K character, not a data character.
This signal should be ignored for a given
byte lane if U_SYS_REM indicates that the
byte is not valid.

U_SYS_10BERR_N[B-1:0] Output Insert 10B_ERR: Indicates that the
corresponding byte of U_SYS_DATA is an
illegal 8b/10b word. This signal should be
ignored for a given byte lane if
U_SYS_REM indicates that the byte is not
valid.

U_SYS_SUPER_N Output Superblock Indication: Asserted at the
start of every new superblock for one clock
cycle.

U_SYS_SUPERERR_N Output Superblock CRC Error Indication:
Asserted at the end of a superblock which
contains a CRC-16 error for one clock
cycle.

Table 3-10: UNMAP System Interface (Continued)

Name Direction Description

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 39
UG152 April 25, 2008

UNMAP Core Interfaces
R

Line Interface (U_LINE)
Table 3-11 describes the UNMAP line interface signals (U_LINE). The UNMAP line
interface utilizes the Xilinx LocalLink standard, providing a simple, flexible way to receive
frames. It consists of a unidirectional data bus with control signals.

Table 3-11: UNMAP Line Interface

Name Direction Description

U_LINE_SRC_RDY_N Input Write Enable: Indicates a word presented
by the client is valid (not accepted until
U_SYS_DST_RDY_N is also asserted).

U_LINE_DST_RDY_N Output Write Accepted: Indicates a word
presented by the client will be accepted (if
U_SYS_SRC_RDY_N is also asserted).

U_LINE_SOF_N Input Start of Frame: Indicates the beginning of
a new GFP frame. This signal is only valid
if No Hunting is selected for frame
delineation. “Operating the UNMAP Line
Interface with Streaming Data,” page 84.

U_LINE_EOF_N Input End of Frame: Indicates the end of the
current GFP frame. This signal is only
valid if No Hunting is selected for frame
delineation. See “Operating the UNMAP
Line Interface with Streaming Data,” page
84.

U_LINE_DATA[D-1:0] Input Data bus: Receives GFP encapsulated
frames.

U_LINE_REM[M-1:0] Input Data Remainder: The number of valid
bytes in U_LINE_DATA is U_LINE_REM
+ 1, and is MSB justified. This signal is
only valid when U_LINE_EOF_N is
asserted. See U_SYS_REM for valid byte
mappings.

This signal is only valid if No Hunting is
selected for frame delineation. See
“Operating the UNMAP Line Interface
with Streaming Data,” page 84.

U_LINE_SRC_DSC_N Input Discontinue Frame: Indicates the current
GFP frame contains an error. This signal is
only valid if No Hunting is selected for
frame delineation. See “Operating the
UNMAP Line Interface with Streaming
Data,” page 84.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

40 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 3: Core Architecture
R

Host Interface (U_HOST)
Table 3-12 describes the host interface signals (U_HOST). The UNMAP host interface to the
user application utilizes the DCR bus for direct connection to the PowerPC, Microblaze, or
other microprocessor. It consists of separate read and write data buses with a shared
address bus. Note that the host interface is optional, and may be removed to conserve
resources or if in-situ access to control registers is not required.

Table 3-12: UNMAP Host Interface

Name Direction Description

U_HOST_CLK Input Host Clock: All host interface signals are
synchronous to this clock. Note that this
signal is optional, as the host interface can
be configured to be synchronous to
U_CLK.

U_HOST_RD_EN Input Read Enable: Indicates a read access to the
register addressed on U_HOST_ADDR.

U_HOST_WR_EN Input Write Enable: Indicates a write access to
the register addressed on
U_HOST_ADDR.

U_HOST_ACK Output Acknowledge: Both read and write
requests to the host interface are
acknowledged through this signal.
Following a read request, this signal
indicates that the data on
U_HOST_RD_DATA is valid. Following a
write request, this signal indicates that the
data on U_HOST_WR_DATA was
accepted.

U_HOST_RD_DATA[31:0] Output Read Data: Data read from the address
U_HOST_ADDR, which is valid when a
read request (U_HOST_RD_EN) followed
by an acknowledge (U_HOST_ACK) is
asserted.

U_HOST_WR_DATA[31:0] Input Write Data: Data to be written into the host
interface at the address specified by
U_HOST_ADDR. The write is
acknowledged on U_HOST_ACK when
the write succeeded.

U_HOST_ADDR[9:0] Input Register Address: Bus used to specify the
address being accessed either for a read or
write.

U_HOST_INT Output Interrupt: Indicates that an interrupt
condition has been detected. This signal
will be driven until the interrupt is cleared
(by writing to GFP_INT).

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 41
UG152 April 25, 2008

UNMAP Core Interfaces
R

UNMAP Configuration Space
The UNMAP core supports a host interface for access to control and status registers in-situ.
The UNMAP core support only general registers. Table 3-13 describes the UNMAP core
general registers.

Table 3-13: UNMAP Core General Registers

Register Name Type Description
DCR

Offset

GFP_VERSION R/W [31] = Core reset 0x0

R [30:0] = Core version number

GFP_CTRL [31:28] = Reserved 0x1

R/W [27:24] = Number of cHEC matches required during
the PRESYNC state to synchronize core (delta,
minimum=1)

[23] = Reserved

R/W [22] = Disable extension header error check
(eHEC) correction

R/W [21] = Disable type field error check (tHEC)
correction

R/W [20] = Disable core header error check (cHEC)
correction

R/W [19] = Disable descrambling of header

R/W [18] = Disable descrambling of payload

[17:5] = Reserved

R/W [4] = Disable reporting of superblock CRC
error

R/W [3] = Disable reporting of FCS error

R/W [2] = Disable reporting of cHEC error

R/W [1] = Disable reporting of tHEC error

R/W [0] = Disable reporting of eHEC error

GFP_FIXERR1 [31:27] = Reserved 0x2

R/W [26] = cHEC error corrected

R/W [25] = tHEC error corrected

R/W [24] = eHEC error corrected

R/W [23:16] = CID of corrected cHEC frame

R/W [15:8] = CID of corrected tHEC frame

R/W [7:0] = CID of corrected eHEC frame

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

42 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 3: Core Architecture
R

GFP_INTMASK [31:5] = Reserved 0x3

R/W [4] = Enable interrupt for superblock CRC
error

R/W [3] = Enable interrupt for FCS error

R/W [2] = Enable interrupt for cHEC error

R/W [1] = Enable interrupt for tHEC error

R/W [0] = Enable interrupt for eHEC error

GFP_INT2 [31:5] = Reserved 0x4

R/W [4] = Superblock CRC error

R/W [3] = FCS error

R/W [2] = cHEC error

R/W [1] = tHEC error

R/W [0] = eHEC error

1. This register holds the first value detected until cleared. All errors are cleared by performing a write operation
to this register.

2. All interrupts are cleared by performing a write operation to this register.

Table 3-13: UNMAP Core General Registers (Continued)

Register Name Type Description
DCR

Offset

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 43
UG152 April 25, 2008

R

Chapter 4

Generating the Core

The GFP core is a fully configurable implementation of the ITU-T GFP Specification. The
core is highly customizable to achieve a resource-efficient implementation depending on
the requirements of your system. The core is delivered through a GUI, which enables the
specific features of the ITU-T GFP Specification to be optionally built-in logic gates, based
on the system requirements.

CORE Generator Graphical User Interface
The GFP CORE Generator GUI consists of five screens:

• The first two screens let you generate specific hardware components (that is, use
dedicated logic resources) to implement the ITU-T GFP Specification.

• The remaining three screens let you set default values for the core operation. If the
host interface is present, you can also change these default values in-situ.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

44 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 4: Generating the Core
R

Main Screen
The main GFP screen defines the component name, operating mode, and system
configuration options for the core.

Component Name

Base name of the output files generated for the core. The name must begin with a letter and
be composed of the following characters: a to z, 0 to 9, and "_".

Operating Mode

The operating mode enables the user to configure the GFP core to support one of three
configurations: frame-mapped mode, transparent mode, or mixed mode. This selection
controls the types of data protocols that the GFP core will support.

Frame-Mapped Mode

Frame-mapped mode enables the GFP core to process frames for all frame-mapped
protocols, including Ethernet, PPP, and RPR. Frame-mapped mode requires complete
frames of data to be transmitted; see Chapter 6, “Designing with the Core” for details.

Figure 4-1: Main GFP Screen

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 45
UG152 April 25, 2008

Main Screen
R

Transparent Mode

Transparent mode enables the GFP core to process frames for all transparent protocols,
including Fibre Channel, Gigabit Ethernet, ESCON and DVB-ASI. Transparent mode does
not require complete frames of data to be transmitted, but rather operates on a continuous
stream of data. See Chapter 6, “Designing with the Core” for details.

Mixed Mode

Mixed mode enables the GFP core to process both frame-mapped and transparent mode
frames, and supports all protocols defined in the ITU-T GFP Specification. Supporting
mixed mode operation will require more resources than generating either a frame-mapped
or transparent mode only core, but provides additional flexibility regarding the data
protocols that can be processed.

System Configuration

The system configuration provides customization of the GFP core to be built, including
number of channels, data bus width, and host interfaces.

Enable Linear Extension Header

The GFP core supports two types of extension headers (defined by the ITU-T GFP
Specification as extension header identifier, EXI). Null extension header (null header)
enables only a single channel of data to be transmitted. Extension header for a linear frame
(linear frames) enables one to 256 channels of data to be transmitted by using a channel id
(CID).

Number of Unique Channels Supported

When linear frames are enabled, the extension header is present, and embeds the CID into
the GFP frame. Select the number of channels from the drop-down menu to enable
customization on a per-channel basis for the MAP core. Up to 10 channels can be
configured for different protocols, and channel-specific register settings (see “MAP Core
Register Configuration: Per-Channel Configuration,” page 50). Additional channels
beyond 10 (up to 256) are supported and use the same configuration as channel 0. When
linear frames are not enabled, the number of channels is set to one.

Data Bus Width

The data bus width supported by the GFP core includes a 32-bit data path for up to OC-48
(2.5 Gbps) operation, and a 64-bit data path for up to OC-192 (10 Gbps) operation.

MAP/UNMAP Generic Host Interface

The MAP and UNMAP cores each independently support an optional host interface.
When the host interface is present, the M_HOST_* or U_HOST_* signals are present, and
the register space can be accessed for core configuration and error handling. If the host
interface default values do not need to be changed in circuit, the host interface can be
removed to save logic resources.

Host Clock Identical to Core Clock

When selected, this option connects the host clock to the core clock. When this option is not
selected, then the host clock is present, and is asynchronous to the core clock.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

46 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 4: Generating the Core
R

Customizing Core Features
The Core Customization screen includes optional core features that perform specific
operations—when selected, these result in the generation of dedicated logic that will be
implemented in the FPGA.

MAP Core Features

The following options build hardware to perform the described operations:

• Header Scrambler: Scrambles the core header with the Barker-like sequence as
described in the ITU-T GFP Specification.

• Payload Scrambler: Scrambles the GFP payload as described in the ITU-T GFP
Specification.

• Payload FCS Generation: Generates the FCS over the payload area as described in the
ITU-T GFP Specification.

• Send Client Signal Fail Automatically: Enables the core to generate CSF management
frames automatically. The period in which the management frames are sent is
controlled by the CSF timer in the MAP GFP_CTRL[3:0] register. See “MAP Core,”
page 65 for details.

Figure 4-2: MAP/UNMAP Customization Features

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 47
UG152 April 25, 2008

MAP Core Register Configuration: General Registers
R

• cHEC, tHEC, eHEC Generation: Generates the header error check for the core header
(cHEC), type header (tHEC), and the extension header (eHEC - only available if linear
extension header is enabled). Uses the HEC generating polynomial as described in the
ITU-T GFP Specification.

UNMAP Core Features

The following options build hardware to perform the described operations when selected.

• Header Descrambler: Descrambles the core header with the Barker-like sequence as
described in the ITU-T GFP Specification.

• cHEC, tHEC, eHEC Detection: Performs the header error check for the core header
(cHEC), type header (tHEC), and the extension header (eHEC - only available if linear
extension header is enabled). Uses the HEC generating polynomial as described in the
ITU-T GFP Specification.

• cHEC, tHEC, eHEC Correction: Performs the header error check correction when
single-bit errors are detected for the core header (cHEC), type header (tHEC), and the
extension header (eHEC - only available if linear extension header is enabled). Uses
the HEC generating polynomial as described in the ITU-T GFP Specification.

• Payload Descrambler: Descrambles the GFP payload as described in the ITU-T GFP
Specification.

• Payload FCS Detection: Verifies the FCS over the payload area as described in the
ITU-T GFP Specification.

• Frame Delineation (Synchronization): Determines the method the UNMAP core uses
to synchronize with the far end GFP mapper.

− No Hunting uses SOF_N and EOF_N to indicate frame boundaries.

− Idle Only Hunting requires streaming data of idle frames to synchronize.

− Parallel Hunting requires streaming data of any arbitrary data or idle packets. See
“Operating the UNMAP Line Interface with Streaming Data,” page 84 for details
about frame delineation behavior.

MAP Core Register Configuration: General Registers
The GFP core provides a separate MAP host interface to configure the operation and error
reporting of the core. When the host interface is present, initial default values are set by the
GUI and can be changed in-situ. If the host interface default values do not need to be
changed following core generation, the host interface can be removed to save logic
resources.

The following sections detail the procedure for utilizing the CORE Generator GUI to
provide default values to the host interface. Each option in the CORE Generator GUI
relates to a specific register entry, as described below. For details about the register space
operation, see “MAP General Registers,” page 55.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

48 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 4: Generating the Core
R

Register MAP Addressing

The MAP address index allows the user to partition the DCR register space, such that the
MAP core can share the DCR bus with other DCR devices. The valid range of the address
index is dependent upon the number of channels selected. See Figure 4-4 for the address
index range relative to the entire address space (base address). The base address is
composed of an address index and the number of channels (as set in the GUI) and an offset.
The offset allows the user access to the specific registers. For a detailed description of the
register space, see “Accessing Control and Status Registers,” page 86. The MAP address
index is only applicable if the MAP host interface is present.

Figure 4-3: MAP General Registers Configuration

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 49
UG152 April 25, 2008

MAP Core Register Configuration: General Registers
R

MAP Registers

The following MAP registers can be configured by the user. Many of these registers require
that the hardware be present. For example, header scrambling must be present in
hardware to disable it in the configuration space. If the hardware is not present for a given
register, the register is inactive. All registers are initially customized by clicking Modify in
the GUI to set default values for the respective register option.

• GFP_CTRL: Control register that controls operations and behaviors of the MAP core
(Table 4-1).

• GFP_ERR: Error register option that enables specific errors to be inserted by the MAP
core (Table 4-2). The enabled errors are inserted each time the M_SYS_FORCE_ERR_N
signal is asserted, as described in “MAP Core,” page 65.

Figure 4-4: Map Core Base Address

Table 4-1: MAP GUI Customization: GFP_CTRL Register

CORE Generator GUI Option Register Space

Disable Header Scrambler MAP GFP_CTRL[17]

Disable Payload Scrambling MAP GFP_CTRL[16]

CSF Timer MAP GFP_CTRL[3:0]

Table 4-2: MAP GUI Customization: GFP_ERR Register

CORE Generator GUI Option Register Space

Payload Scrambling Error Insertion MAP GFP_ERR[7]

First CRC in Superblock/All CRCs in
Superblock

MAP GFP_ERR[6]

Enable Superblock CRC Error Insertion MAP GFP_ERR[5]

Payload FCS Error Insertion MAP GFP_ERR[4]

Core Header Scrambling Error Insertion MAP GFP_ERR[3]

cHEC Error Insertion MAP GFP_ERR[2]

9 8 7 6 5 4 3 2 1 0
Base Address OffsetChannel

1 Channel

9 8 7 6 5 4 3 2 1 0
Base Address OffsetChannel

2, 3 Channels

9 8 7 6 5 4 3 2 1 0
Base Address OffsetChannel

4, 5, 6, 7 Channels

9 8 7 6 5 4 3 2 1 0
Base Address OffsetChannel

8, 9, 10 Channels

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

50 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 4: Generating the Core
R

• GFP_INTMASK: Interrupt register mask option, which controls the conditions in
which the interrupt signal is asserted on the host interface (Table 4-3).

MAP Core Register Configuration: Per-Channel Configuration
The MAP host interface provides configuration options for each channel in the MAP core.
When linear extension header is selected, the user can select from one to ten unique
channels, and each channel can be customized for independent operation. Note that up to
256 channels are supported, and channels beyond 10 use the same configuration as
channel 0. When linear extension header is not enabled, the number of channels is
automatically set to 1. See “Enable Linear Extension Header,” page 45 for details.

When the host interface is present, initial default values of the per-channel registers are set
in the GUI and can be changed in-situ. If these default values do not need to be changed
following core generation, the host interface can be removed to save logic resources. The
following details the procedure for utilizing the CORE Generator GUI to specify default
values. Each option in the CORE Generator GUI relates to a specific register. For detailed

tHEC Error Insertion MAP GFP_ERR[1]

eHEC Error Insertion MAP GFP_ERR[0]

Table 4-3: MAP GUI Customization: GFP_INTMASK Register

CORE Generator GUI Option Register Space

Enable interrupt for invalid K characters
received

MAP GFP_INTMASK[1]

Enable interrupt for PLI length mismatch MAP GFP_INTMASK[0]

Table 4-2: MAP GUI Customization: GFP_ERR Register

CORE Generator GUI Option Register Space

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 51
UG152 April 25, 2008

MAP Core Register Configuration: Per-Channel Configuration
R

information about the operation of the register space, see “MAP General Registers,” page
55.

CHANx_GFP_REGISTER_A

• The MAP CHANx_GFP_REGISTER_A (where x represents channels 0 through 9)
Controls the operation (frame-mapped or transparent) of CHANx, insertion of FCS,
and setting the UPI and length values (Table 4-4).

Figure 4-5: Map Per Channel Configuration

Table 4-4: MAP GUI Customization: CHANx_GFP_REGISTER_A

CORE Generator GUI Option Register Space

Frame-Mapped / Transparent CHANx_GFP_REGISTER_A[27]

Insert FCS CHANx_GFP_REGISTER_A[26]

Use UPI from REGISTER_A CHANx_GFP_REGISTER_A[25]

Use Length from REGISTER_A CHANx_GFP_REGISTER_A[24]

UPI Value CHANx_GFP_REGISTER_A[23:16]

Length CHANx_GFP_REGISTER_A[15:0]

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

52 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 4: Generating the Core
R

CHANx_GFP_REGISTER_B

• The MAP CHANx_GFP_REGISTER_B configuration space register that controls the
automatic insertion of CSF management frames, as well as defining the spare and
alias fields for a given channel (Table 4-5).

UNMAP Core Register Configuration: General Registers
The GFP core provides a separate UNMAP host interface to configure the operation and
error reporting of the core. When the host interface is present, initial default values are set
by the GUI and can be changed in-situ. If the host interface default values do not need to be
changed following core generation, the host interface can be removed to save logic
resources. The following sections detail the procedure for utilizing the CORE Generator
GUI to provide default values to the host interface. Each option in the CORE Generator
GUI relates to a specific register entry, as described below. For details about the operation
of the register space, see “UNMAP General Registers,” page 59.

Table 4-5: MAP GUI Customization: CHANx_GFP_REGISTER_B

CORE Generator GUI Option Register Space

Send Loss of Client Signal when CSF Timer
expires

CHANx_GFP_REGISTER_B[17]

Send Loss of Character Synchronization when
CSF Timer expires

CHANx_GFP_REGISTER_B[16]

Spare Field CHANx_GFP_REGISTER_B[15:8]

Alias Field CHANx_GFP_REGISTER_B[7:0]

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 53
UG152 April 25, 2008

UNMAP Core Register Configuration: General Registers
R

UNMAP Address Index

The UNMAP address index allows the user to partition the DCR register space, such that
the UNMAP core can share the DCR bus with other DCR devices. Figure 4-7 shows the
valid range of the address index relative to the entire address space (base address). The
base address is composed of an address index and an offset. The offset allows the user
access to the specific registers.

For a detailed description of the register space, see “Accessing Control and Status
Registers,” page 86. The UNMAP address index is only applicable if the UNMAP host
interface is present.

UNMAP Registers

The following UNMAP core registers can be configured by the user. Many of these
registers require that the hardware be present. For example, header descrambling must be

Figure 4-6: UNMAP General Registers Configuration

Figure 4-7: UNMAP Core Base Address

9 8 7 6 5 4 2 1 0
Base Address Offset

3

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

54 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 4: Generating the Core
R

present in hardware in order to disable it in the configuration space. If the hardware is not
present for a given register, the register is inactive.

• GFP_CTRL: Control register that controls operations and behaviors of the UNMAP
core (Table 4-6).

• GFP_INTMASK: Interrupt register mask that controls the conditions in which the
interrupt signal is asserted on the host interface (Table 4-7).

Table 4-6: UNMAP GUI Customization: GFP_CTRL Register

CORE Generator GUI Option Register Space

Number of cHEC matches to synchronize core UNMAP GFP_CTRL[27:24]

Disable eHEC Correction UNMAP GFP_CTRL[22]

Disable tHEC Correction UNMAP GFP_CTRL[21]

Disable cHEC Correction UNMAP GFP_CTRL[20]

Disable Header Descrambling UNMAP GFP_CTRL[19]

Disable Payload Descrambling UNMAP GFP_CTRL[18]

Ignore Superblock CRC Error UNMAP GFP_CTRL[4]

Ignore FCS Error UNMAP GFP_CTRL[3]

Ignore cHEC Error UNMAP GFP_CTRL[2]

Ignore tHEC Error UNMAP GFP_CTRL[1]

Ignore eHEC Error UNMAP GFP_CTRL[0]

Table 4-7: UNMAP GUI Customization: GFP_INTMASK Register

CORE Generator GUI Option Register Space

Enable interrupt for superblock CRC error UNMAP GFP_INTMASK[4]

Enable interrupt for FCS error UNMAP GFP_INTMASK[3]

Enable interrupt for cHEC error UNMAP GFP_INTMASK[2]

Enable interrupt for tHEC error UNMAP GFP_INTMASK[1]

Enable interrupt for eHEC error UNMAP GFP_INTMASK[0]

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 55
UG152 April 25, 2008

R

Chapter 5

Customizing the Core

This chapter describes how to customize the GFP core for specific applications. After
specifying the initial values of the register space in the CORE Generator GUI to define the
default operation of the core, the user can change these values and the corresponding
operation of the core in circuit using the host interface.

Customizing the GFP Core
The Xilinx CORE Generator GUI sets the default operation of the GFP core, as described in
Chapter 4, “Generating the Core.” After generating the core, the user can change the
register settings to control the behavior of the core if the host interface is present. This
section details how the host interface can be used to access and use the control and status
registers to modify the behavior of the core in-situ.

MAP General Registers
The MAP general registers apply to all channels of the MAP core, and control the overall
operation of the core (Table 5-1).

Table 5-1: MAP Core General Registers

Register Name Description Details

GFP_VERSION [31] = Core reset When set to 1, resets the MAP core
logic, but does not reset the host
interface. When reconfiguring the
core, the user should write a 1 to this
register, perform all required register
accesses, and then write a 0 to this
register. For details about initializing
the core, see “Initializing the GFP
Core,” page 64.

[30:0] = Core version
number

Provides the current version of the
GFP MAP core.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

56 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 5: Customizing the Core
R

GFP_CTRL [17] = Disable scrambling of
header

When set to 1, bypasses the header
scrambling logic when header
scrambling is built in hardware.

[16] = Disable scrambling of
payload

When set to 1, bypasses the payload
scrambling logic when payload
scrambling is built in hardware.

[3:0] = Upper 4 bits of CSF
counter

Determines the period in which the
core will automatically send
management frames (if enabled in
hardware). When set to 0x0, this
feature is disabled. See “Management
Frames,” page 68 for details.

GFP_ERR [7] = Payload scrambling
error insertion

When set to 1, inserts an error during
payload scrambling when payload
scrambling is built in hardware.

[6] = Location of superblock
CRC error

When in transparent mode, enables
insertion of CRC errors in the
superblock. When set to 1, errors are
inserted on all superblocks within the
given frame. When set to 0, an error is
inserted only on the first superblock
in the frame. Bit 5 of this register
enables the insertion of the error in
the specified location.

[5] = Superblock CRC error
insertion

When in transparent mode, allows an
error to be inserted in the superblock
CRC (the location of inserted errors
in the frame set by bit 6).

[4] = FCS error insertion When set to 1, inserts an error into the
computed FCS when FCS is built in
hardware.

[3] = Core header
scrambling error insertion

When set to 1, inserts an error into the
core header scrambling when core
header scrambling is built in
hardware.

[2] = cHEC error insertion When set to 1, inserts an error into the
cHEC when cHEC generation is built
in hardware.

[1] = tHEC error insertion When set to 1, inserts an error into the
tHEC when tHEC generation is built
in hardware.

[0] = eHEC error insertion When set to 1, inserts an error into the
eHEC when eHEC generation is built
in hardware.

Table 5-1: MAP Core General Registers (Continued)

Register Name Description Details

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 57
UG152 April 25, 2008

Customizing the GFP Core
R

GFP_INTMASK [1] = Enable interrupt for
invalid K characters
received

When in transparent mode, and set to
1, enables an interrupt to be asserted
when an invalid K character is
written into the system interface.

[0] = Enable interrupt for
PLI length mismatch

When in frame-mapped mode, and
set to 1, enables an interrupt to be
asserted when the pre-defined length
of the current frame does not match
the actual length of the frame written
into the system interface.

GFP_INT1 [1] = Invalid K character
received

When in transparent mode, is
asserted when an invalid K character
is written into the system interface,
and the mask bit is set.

[0] = PLI length mismatch When in frame-mapped mode, is
asserted when the predefined length
of the current frame does not match
the actual length of the frame written
into the system interface, and the
mask bit is set. For details on setting
the length field, see “Operating the
MAP System Interface with Frame-
Mapped Frames,” page 65.

1. Reports that an interrupt occurred. The interrupt is held with the first value detected until it is cleared by
performing any write operation to the register.

Table 5-1: MAP Core General Registers (Continued)

Register Name Description Details

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

58 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 5: Customizing the Core
R

MAP Channel Specific Registers
The MAP channel-specific registers provide customization of each channel as described
below in “MAP Channel Specific Registers.” (Table 5-2)

Table 5-2: MAP Core Channel-Specific Registers

Register Name Description Details

CHANx_GFP_
REGISTER_A

[27] = Core encapsulation

• (1) Transparent mode
• (0) Frame-mapped

mode

When the MAP core supports
transparent mode, and this register is
set to 1, this register configures the
core to perform transparent mode
encapsulation. When the MAP core
supports frame-mapped mode, and
this register is set to 0, this register
configures the core to perform frame-
mapped mode encapsulation.

[26] = Enable FCS When set to 1, enables FCS insertion
for the given channel when FCS is
built in hardware.

[25] = Use UPI from
REGISTER_A[23:16]

Frame-Mapped Mode: When set to 1,
the UPI value from
REGISTER_A[23:16] is used. When set
to 0, the UPI value from M_SYS_UPI
is used.

Transparent Mode: Not used. The UPI
for all data frames is used from
REGISTER_A[23:16].

See “Operating the MAP System
Interface with Transparent Frames”
for details.

[24] = Use length from
REGISTER_A[15:0]

Frame-Mapped Mode: When this
register is set to 1, the length value
from REGISTER_A[15:0] is used.
When set to 0, the length value from
M_SYS_LENGTH is used.

Transparent Mode: Not used. The
length for all data frames is used from
REGISTER_A[15:0].

[23:16] = Data UPI Sets the data UPI to be transmitted.
See Appendix C, “Packet and Control
Symbol Format” for a complete list of
UPI values; see REGISTER_A[25] for
details about this register.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 59
UG152 April 25, 2008

Customizing the GFP Core
R

UNMAP General Registers
The UNMAP general registers control the overall operation of the core (Table 5-3).

CHANx_GFP_
REGISTER_A
(cont.)

[15:0] = Length Frame-Mapped Mode: Sets the length
of the frame to be transmitted (in
bytes). See REGISTER_A[24] for
details on when this register is used.

Transparent Mode: Sets the length of
the frame to be transmitted (in
superblocks). This register is always
used in transparent mode.

CHANx_GFP_
REGISTER_B

[17] = Insert loss of client
signal

When set to 1, enables the MAP core
to insert loss of client signal fail when
the CSF timer expires, when send CSF
automatically is built in hardware.

[16] = Insert loss of
character synchronization

When set to 1, enables the MAP core
to insert loss of character
synchronization when the CSF timer
expires, when send CSF is
automatically is built in hardware.

[15:8] = Spare field When linear frame support is built in
hardware, this register contains the
spare field to be inserted into the
linear extension header.

[7:0] = Channel id (CID)
for this channel (alias)

When linear frame support is built in
hardware, this register contains the
CID field to be inserted into the linear
extension header.

Table 5-2: MAP Core Channel-Specific Registers (Continued)

Register Name Description Details

Table 5-3: UNMAP Core General Registers

Register Name Description Details

GFP_VERSION [31] = Core reset When set to 1, resets the UNMAP
core logic, but does not reset the host
interface. When reconfiguring the
core, the user should write a 1 to this
register, perform all required register
accesses, and then write a 0 to this
register. For details on initializing the
core, see “Initializing the GFP Core,”
page 64.

[30:0] = Core version
number

Provides the current version of the
GFP UNMAP core.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

60 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 5: Customizing the Core
R

GFP_CTRL [27:24] = Number of cHEC
matches during PRESYNC
to synchronize core

Indicates the number of cHEC
matches (minimum value is 1)
required before the core will
synchronize. This register is only
used if the synchronization mode is
set to “Idle Only Hunting” or
“Parallel Hunting”. The
synchronization status is indicated
on U_SYS_STATUS_N[2:0].

[22] = Disable extension
header error check (eHEC)
correction

When set to 1, turns off eHEC
correction when eHEC correction is
built in hardware.

[21] = Disable type field
error check (tHEC)
correction

When set to 1, turns off tHEC
correction when tHEC correction is
built in hardware.

[20] = Disable core header
error check (cHEC)
correction

When set to 1, turns off cHEC
correction when cHEC correction is
built in hardware.

[19] = Disable descrambling
of header

When set to 1, turns off header
descrambling when header
descrambling is built in hardware.

[18] = Disable descrambling
of payload

When set to 1, turns off payload
descrambling when payload
descrambling is built in hardware.

[4] = Disable reporting of
superblock CRC error

When set to 1, turns off reporting of
superblock CRC errors (on
U_SYS_SUPERERR_N).

[3] = Disable reporting of
FCS error

When set to 1, turns off reporting of
FCS error (on U_SYS_ERRBUS[6]).

[2] = Disable reporting of
cHEC error

When set to 1, turns off reporting of
cHEC error (on U_SYS_ERRBUS[2]).

[1] = Disable reporting of
tHEC error

When set to 1, turns off reporting of
tHEC error (on U_SYS_ERRBUS[1]).

[0] = Disable reporting of
eHEC error

When set to 1, turns off reporting of
eHEC error (on U_SYS_ERRBUS[0]).

Table 5-3: UNMAP Core General Registers (Continued)

Register Name Description Details

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 61
UG152 April 25, 2008

Customizing the GFP Core
R

GFP_FIXERR1 [26] = cHEC error corrected When cHEC correction is built in
hardware, this register indicates that
the UNMAP core corrected a cHEC
error. The channel number (if linear
frames are enabled) is indicated on
bits 23:16.

[25] = tHEC error corrected When tHEC correction is built in
hardware, this register indicates that
the UNMAP core corrected a tHEC
error. The channel number (if linear
frames are enabled) is indicated on
bits 15:8.

[24] = eHEC error corrected When eHEC correction is built in
hardware, this register indicates that
the UNMAP core corrected a eHEC
error. The channel number (if linear
frames are enabled) is indicated on
bits 7:0.

[23:16] = CID of corrected
cHEC frame

When linear frames are enabled, this
indicates the channel number of the
corrected cHEC frame.

[15:8] = CID of corrected
tHEC frame

When linear frames are enabled, this
indicates the channel number of the
corrected tHEC frame.

[7:0] = CID of corrected
eHEC frame

When linear frames are enabled, this
indicates the channel number of the
corrected eHEC frame.

GFP_INTMASK [4] = Enable interrupt for
Superblock CRC error

When set to 1, this register enables an
interrupt to be asserted when a
superblock CRC error is detected.

[3] = Enable interrupt for
FCS error

When set to 1, this register enables an
interrupt to be asserted when an FCS
error is detected.

[2] = Enable interrupt for
cHEC error

When set to 1, this register enables an
interrupt to be asserted when a cHEC
error is detected.

[1] = Enable interrupt for
tHEC error

When set to 1, this register enables an
interrupt to be asserted when a tHEC
error is detected.

[0] = Enable interrupt for
eHEC error

When set to 1, this register enables an
interrupt to be asserted when an
eHEC error is detected.

Table 5-3: UNMAP Core General Registers (Continued)

Register Name Description Details

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

62 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 5: Customizing the Core
R

GFP_INT2 [4] = Superblock CRC When in transparent mode, this
register indicates that a superblock
CRC error was detected.

[3] = FCS When FCS is built in hardware, this
register indicates that an FCS error
was detected.

[2] = cHEC When cHEC is built in hardware, this
register indicates that a cHEC error
was detected.

[1] = tHEC When tHEC is built in hardware, this
register indicates that a tHEC error
was detected.

[0] = eHEC When eHEC is built in hardware, this
register indicates that an eHEC error
was detected.

1. Reports that an error was corrected in one of the following fields. The error is held with the first value detected
until it is cleared by performing any write operation to this register.

2. Reports that an interrupt occurred. The interrupt is held with the first value detected until it is cleared by
performing any write operation to the register.

Table 5-3: UNMAP Core General Registers (Continued)

Register Name Description Details

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 63
UG152 April 25, 2008

R

Chapter 6

Designing with the Core

This chapter discusses how to use the Xilinx GFP core in a user application, including
frame-mapped, transparent, and mixed mode operation and accessing control and status
registers for the MAP and UNMAP cores.

General Design Guidelines
This section describes the steps required to turn a GFP core into a fully-functioning design
integrated with user application logic. It is important to recognize that not all designs will
require all steps listed in this chapter. The following sections discuss the design steps
required for each feature’s implementation. It is recommended that the design guidelines
in this guide be carefully followed.

Know the Degree of Difficulty
A fully compliant GFP core is challenging to implement in any technology. In addition, the
degree of difficulty is significantly influenced by the following:

• Maximum system clock frequency

• Targeted device architecture

• Specific user application

All implementations require careful attention to system performance requirements.
Pipelining, placement constraints, and logic duplication are all methods the user can use to
improve system performance.

Understand Signal Pipelining
Due to the nature of packet and frame based protocols, it is important to understand that
the GFP MAP and UNMAP cores have been pipelined to maximize performance. Data that
is delivered to the MAP core takes several clock cycles before the completed frame appears
on the line interface due to the pipelining required to insert the header fields, encode
transparent superblocks, and create FCS and HEC fields.

Similarly, frames delivered to the UNMAP core take several clock cycles before the data
content appears on the system interface due to the following: the pipelining required to
convert the streaming input bus to an aligned output with header fields parsed out;
transparent superblocks decoded; and FCS and HEC fields checked. The exact latency of
the MAP and UNMAP cores varies based on the configuration of the core, and can be
accurately determined through simulation.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

64 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 6: Designing with the Core
R

Keep it Registered
The best method to simplify timing and increase system performance in an FPGA design is
to keep everything registered, meaning that all inputs and outputs from the user
application should come from, or connect to, a flip-flop. While registering signals may not
be possible for all paths, it simplifies timing analysis and helps the user achieve timing
closure.

Use Supported Design Flows
The GFP core has been tested with a variety of design flows. While other design tools can
be used to simulate and synthesize the user design with the core, they have not been tested
and functionality can not be guaranteed. See “Simulating and Implementing Your
Design,” page 97 for information about supported design tools.

Make Only Allowed Modifications
All modifications to the GFP core must be done via the Xilinx CORE Generator. Do not
make other modifications as they may have adverse effects on system timing and GFP
protocol compliance.

Initializing the GFP Core
The GFP cores (both MAP and UNMAP) must be reset after the FPGA is configured or
before operation begins. A reset pin is provided for the MAP core (M_RST_N) and the
UNMAP core (U_RST_N). This external reset is synchronized internal to the cores and will
reset all core logic and the register space to the default state.

A reset through the host interface (using the register space, which will be referred to as a
software reset) is also provided, which will cause all core logic other than the host interface
and register space to reset. This reset is turned on by writing a 1 to location
GFP_VERSION[31] in either core, and it is turned off by writing a 0 to the same location.

For most settings, it is a requirement that a software reset be issued and held to the core if
a register map setting is to be modified; failure to do so could result in incorrect operation.
Exceptions include writing the interrupt GFP_INT or changing interrupt mask
GFP_INTMASK, changing the timer timeout value in GFP_CTRL[3:0], changing the error
insertion settings in GFP_ERR, or clearing the UNMAP register GFP_FIXERR. After the
registers have been updated, the software reset may be released and operation can resume.
A read to any register can be performed while the core is operating. Note that if the reset
pin is asserted (M_RST_N or U_RST_N), the register space, in addition to the core logic, will
be reset to its default values defined in the CORE Generator GUI.

When the MAP core is in reset (either reset pin or software reset), the line interface will
output a continuous stream of GFP idle frames. M_LINE_SRC_RDY_N will be asserted
indicating valid data, and M_LINE_IDLE_N will be asserted indicating that the data on the
line interface is an idle frame. If the user application requires continuous data to be
transmitted (even during reset), then the user can pass the idle frames onto the
SONET/SDH network. If this is not a requirement of the system, then the user can discard
these frames based on the idle indication M_LINE_IDLE_N. When the UNMAP core is in
reset, the system interface will indicate that no data is available by deasserting
U_SYS_SRC_RDY_N until the core is not in reset, and valid data has been received. The
MAP system interface and UNMAP line interface will also report to the user that they are
not ready to receive data until reset is released.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 65
UG152 April 25, 2008

MAP Core
R

MAP Core

Basic Operation
The MAP core receives client network protocol data (such as Ethernet) from the system
interface, encapsulates this data into GFP frames (either frame-mapped or transparent,
depending on the MAP core configuration), and transmits the resulting GFP frames to a
SONET/SDH network. The MAP core requires frames to be presented to the system
interface using the LocalLink protocol.

Operating the MAP System Interface with Frame-Mapped Frames
When configured for frame-mapped mode operation, the MAP core receives client
network protocol data (such as Ethernet frames) from the system interface, encapsulates
the client frame into a GFP frame, and inserts the GFP headers and FCS (if enabled). This
client data, as required by the ITU-T GFP Specification, must be an entire client frame, such
as Ethernet or PPP.

The user must also supply all necessary information to compose the GFP headers, unless
the core is configured to retrieve the information from the host interface register space. The
MAP system interface uses LocalLink signaling, as described below.

Frame Demarcation

When the user asserts M_SYS_SOF_N the frame write has begun, and when it asserts
M_SYS_EOF_N the frame write has ended. It is possible that both signals could assert at the
same time, if the GFP frame contains one or fewer words of data, or if it is a management
frame.

All valid frame cycles (including the cycles beginning with M_SYS_SOF_N and ending
with M_SYS_EOF_N) must be qualified by the assertion of both M_SYS_DST_RDY_N from
the core, and M_SYS_SRC_RDY_N from the user. If either of those signals are deasserted,
both the MAP core and the system side user logic must consider that cycle to be a stall, and
the user must hold the value on all control and data signals until both M_SYS_DST_RDY_N
and M_SYS_SRC_RDY_N are asserted.

All valid frame cycles must have data on M_SYS_DATA, unless the transmitted frame is a
management frame. The data is the “Client Payload Information Field” (CPIF) defined in
the ITU-T GFP Specification, and it must not include the core or payload headers, or the
FCS. The MAP core will insert those fields as appropriate. See “Sideband Fields,” page 65
for further CPIF requirements.

When the end of the frame is reached, the user must assert the M_SYS_EOF_N signal with
the last data word. The M_SYS_REM bus is used to indicate how many bytes of the last data
word are valid; the number of valid bytes in the word is M_SYS_REM + 1, and is MSB
justified. The M_SYS_REM bus is only valid when M_SYS_EOF_N is asserted and will be
invalid otherwise. For example, if the interface is 64 bits (8 bytes) wide and M_SYS_EOF_N
is asserted with a M_SYS_REM of 6, then 7 bytes are valid and M_SYS_DATA[63:8]
contains the final word.

Sideband Fields

In addition to the data bus M_SYS_DATA, there are sideband signals that are required to be
valid when the start of frame indication M_SYS_SOF_N is asserted. The MAP core
captures most of the sideband signals at the beginning of a new frame, so it is not necessary

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

66 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 6: Designing with the Core
R

for the user logic to hold the value throughout the frame. The following is a list of these
fields:

• M_SYS_LENGTH

• M_SYS_UPI

• M_SYS_MGMT_N

With all frames, the byte length of the data field (CPIF) must be indicated on either the
M_SYS_LENGTH bus or the CHANx_GFP_REGISTER_A[15:0] register. The user selects
the register map instead of the interface signal as the source of the length by setting
CHANx_GFP_REGISTER_A[24]to 1. This must be done for each channel (CHAN0,
CHAN1, and so forth) if linear frames are supported. If only null headers are supported,
then CHAN0 is the only one necessary to configure.

The MAP core calculates the PLI for the GFP frame by adding four bytes to the length
value input for the existence of each of the type field, extension header, and the FCS. The
type field is always required, and is 4 bytes in length. The extension header and the FCS are
optional, and if present are 4 bytes each. The user must ensure that the core will never
transmit a frame which would exceed the maximum PLI allowed by the ITU-T GFP
Specification. The equation for calculating the maximum size of the CPIF follows:

Table 6-1 lists the maximum length (as defined by the ITU-T GFP Specification) for each
possible configuration. If a length larger than the maximum value is used, the operation of
the core cannot be guaranteed, and should be reset for proper operation.

All frames must have the user payload identifier (UPI) indicated on either the M_SYS_UPI
bus or the CHANx_GFP_REGISTER_A[23:16] register. The user may select the register
map instead of the interface signal as the source of the length by setting
CHANx_GFP_REGISTER_A[25]to 1. This must be done for each channel (CHAN0,
CHAN1, and so forth) if linear frames are supported. If only null headers are supported,
then only CHAN0 needs to be configured.

See “Management Frames,” page 68 for detailed information about the use of management
frames (M_SYS_MGMT_N).

If the transmitted GFP frame has an extension field, the channel identifier (CID) must be
indicated on M_SYS_CID. Unlike the other sideband signals, M_SYS_CID must be valid for
the entire data frame, from the assertion of M_SYS_SOF_N to M_SYS_EOF_N if linear
frames are enabled.

Table 6-1: Maximum Length Values

Core Configuration
Maximum Length CPIF

(in bytes)
(M_SYS_LENGTH or REGISTER_A[15:0])

No extension header, no FCS 0xFFFB

Either an extension header or an FCS is
present, not both

0xFFF7

Both an extension header and an FCS are
present

0xFFF3

max length CPIF (in bytes) 0xFFFF type field– extension header– FCS–=

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 67
UG152 April 25, 2008

MAP Core
R

If linear frames are to be used, the spare field must be programmed in
CHANx_GFP_REGISTER_B[15:8]. If the transmitted GFP frame is to have null headers,
then the spare field is not used, and M_SYS_CID will not be used on the interface (CHAN0
is the only register that will be used).

If a channel id not previously aliased to a CHANx configuration is presented on
M_SYS_CID, the MAP core defaults to the CHAN0 configuration, enabling the user to
support up to 256 channels. See “Operating the MAP Core with Multiple-Channel
Support,” page 76 for details.

Errors and Discontinues

When the user determines there is an error condition with the frame data, the frame may
be discontinued with an immediate assertion of M_SYS_SRC_DSC_N and M_SYS_EOF_N.
M_SYS_SOF_N and M_SYS_EOF_N must still demarcate the frame data, but the MAP core
will now regard the entire frame as corrupt. As with all frame cycles, M_SYS_SRC_RDY_N
and M_SYS_DST_RDY_N both must be asserted when M_SYS_SRC_DSC_N is asserted;
otherwise the MAP core will consider the cycle a stall.

The result of the discontinue is that the frame will be padded with 1’s until the proper
length is reached, the FCS will be inverted (if it exists), and M_LINE_SRC_DSC_N will be
asserted at the end of the discontinued frame when it is read out of the line interface. The
user should beware that prematurely terminating the current frame may result in a stall on
the system interface (the deassertion of M_SYS_DST_RDY_N), as the core may need to pad
the current frame until the required length is met. The MAP core will indicate to the user if
M_SYS_LENGTH does not match the number of data bytes sent by asserting
M_SYS_STATUS_N[0].

The MAP core responds to errored data frames in the following ways:

• Missing SOF - If a new frame is started (immediately after reset, or following an EOF)
without an SOF, the data will be ignored and discarded until an SOF initiates a new
frame.

• Early, late or missing EOF - The MAP core will always generate proper-length GFP
frames, as specified by the length (either on M_SYS_LENGTH or
CHANx_GFP_REGISTER_A[15:0]). If an EOF is received too early, then the core will
pad the frame with 1’s until the correct length is reached, invert the FCS (if it exists),
and assert M_SYS_SRC_DSC_N. If an EOF is received too late, or is missing, the core
will ignore all data words after the correct length is reached, invert the FCS (if it
exists), and assert M_SYS_SRC_DSC_N. The user should beware that prematurely
terminating the current frame may result in a stall on the system interface (the
deassertion of M_SYS_DST_RDY_N), as the core will need to pad the current frame
until the required length is met.

• Early or late EOF with DSC - If M_SYS_SRC_DSC_N is asserted with an early or late
EOF, then the core will respond in the same manner as with a early or late EOF.
Additionally, M_LINE_SRC_DSC_N will be asserted on the line interface with the end
of frame.

• CID change in middle of a frame - if M_SYS_CID is changed in the middle of the
frame, the MAP core will pad the current frame with 1s until the proper length is
reached, and insert an EOF and DSC, causing the FCS to be inverted on the line
interface, as well as asserting M_LINE_SRC_DSC_N with the end of the frame. The
user should beware that prematurely terminating the current frame may result in a
stall on the system interface (the deassertion of M_SYS_DST_RDY_N), as the core will
need to pad the current frame until the required length is met.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

68 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 6: Designing with the Core
R

For additional information regarding the error handling of the core, see Appendix D,
“Status and Error Reporting.”

Error Insertion

For testing purposes, the user may induce errors into the GFP frame by programming the
register GFP_ERR[7:0] and by asserting M_SYS_FORCE_ERR_N for the duration of a
frame. Each bit of the register will induce a different kind of corruption (FCS, tHEC, and so
forth), and the signal will permit that corruption to be applied on a frame-by-frame basis.

Management Frames

The MAP core supports generation of management frames by asserting M_SYS_MGMT_N.
Note that the MAP core does not support management frames with data, so the values on
M_SYS_DATA, M_SYS_REM, and M_SYS_LENGTH are not used (and FCS will not be
inserted, even if FCS is enabled in the host interface). The user is expected to present a
management frame with M_SYS_SOF_N, M_SYS_EOF_N, M_SYS_SRC_RDY_N, and
M_SYS_MGMT_N asserted simultaneously, and hold those values if M_SYS_DST_RDY_N is
not asserted. When M_SYS_MGMT_N is asserted, M_SYS_UPI determines the type of
management frame to send (see Appendix C, “GFP Frame Format”). If linear frames are
enabled, the management frame will contain the spare field as set in the host interface, and
channel id as set by M_SYS_CID.

Alternatively, the user can cause management frames to be sent automatically by the core
by setting a timer in the register map. To do this, program GFP_CTRL[3:0] to a non-zero
value (zero will turn this feature off). Each increment of this value represents 167.8ms at
100MHz. For faster clock frequencies, the increment value may be determined by: 167.8ms
* (100MHZ/actual_clock_freq.)

If the timer is used, a management frame will be sent immediately following the expiration
of the timer (after any current frames in transit), and the timer automatically restarts. Use
of the timer does not preclude using the interface to send management frames. Although a
detailed discussion of end-to-end flow control is outside of the scope of this document, the
user may use this feature to implement the client signal fail indication as specified by the
ITU-T GFP Specification.

Sample Operation

Figure 6-1 illustrates a sample operation of the MAP core system interface transmitting
frame-mapped frames. Three frames are transferred: a normal data frame, an errored data
frame, and a management frame. Note that for data frames, the length and UPI are only
required to be asserted during the start of frame, but the channel id must be asserted for
the entire frame.

The first frame is a data frame to channel 0x03, and the frame is initiated by asserting
M_SYS_SOF_N, M_SYS_DATA, and M_SYS_SRC_RDY_N. The length of the frame, channel
id, and UPI are also driven to active values. After two successful writes, the user requests
a stall by deasserting M_SYS_SRC_RDY_N. The user then completes the frame by asserting
M_SYS_EOF_N and M_SYS_REM with the last valid data word.

The second frame is a data frame to channel 0xFA. Note that in this case the core is
requesting a stall by deasserting M_SYS_DST_RDY_N, and the user must hold the values
on the system interface until it is asserted. The errored data frame is terminated by
asserting M_SYS_EOF_N and M_SYS_SRC_DSC_N with the last data word.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 69
UG152 April 25, 2008

MAP Core
R

The third frame is a management frame to channel 0x09, and the frame is initiated by
asserting M_SYS_SOF_N, M_SYS_EOF_N, and M_SYS_MGMT_N. The UPI value,
M_SYS_UPI, determines the type of management frame to be sent.

Operating the MAP System Interface with Transparent Frames
When configured for transparent mode operation, the MAP core will receive a raw stream
of 8b/10b decoded data characters (such as Fibre Channel) from the system interface to be
encapsulated into fixed-length GFP frames. Additionally, the user must ensure that the
register space is configured for the correct frame settings (length, UPI, and so forth). The
MAP core will encapsulate the raw data stream into a GFP frame, inserting the GFP
headers and FCS (if it is enabled).

Frame Demarcation

The MAP core generates fixed-length GFP frames when configured in transparent mode.
The frame starts when the user initiates a write to the core (asserts M_SYS_SRC_RDY_N
and the core asserts M_SYS_DST_RDY_N). The MAP core will then complete the current
frame, by inserting either the stream of data characters from the user, or pad words
(65B_PAD as defined by the ITU-T GFP Specification) every cycle until the end of the frame
is reached. Note that unlike frame-mapped mode, a stall on the system interface will result
in pad words being inserted if the MAP core is in the middle of transmitting a frame. When
the end of the frame is reached, the MAP core will automatically begin transmission of
another GFP frame if data exists, else it will insert idle frames.

Transparent mode signaling on the MAP system interface does not use M_SYS_SOF_N or
M_SYS_EOF_N for data frames because it is assumed that the user does not know anything
about the frame boundaries of the underlying protocol. All valid line interface write cycles
must be qualified by the assertion of both M_SYS_DST_RDY_N from the core, and
M_SYS_SRC_RDY_N from the user. If either of those signals are deasserted, both the MAP

Figure 6-1: MAP Core Frame-Mapped Transfer

 Data frame error
 Core stalled write
 Terminate frame

 Normal data
frame

 User-stalled
write

Management
Frame

M_SYS_REM[2:0]

M_SYS_DATA[63:0] D0

M_SYS_CID

M_SYS_LENGTH

M_SYS_MGMT_N

M_SYS_UPI

M_SYS_SRC_DSC_N

M_SYS_CLK

M_SYS_SRC_RDY_N

M_SYS_SOF_N

M_SYS_DST_RDY_N

M_SYS_EOF_N

D1 D2 D3 D0 D1 D2

1 0

1A 11

3

ether

FA 9

l.o.sppp

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

70 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 6: Designing with the Core
R

core and the system side user logic must consider that cycle to be a stall, and the user must
hold the value on all control and data signals until both M_SYS_DST_RDY_N and
M_SYS_SRC_RDY_N are asserted. The MAP core will continue sending data pad characters
during a stall; a stall on the system interface will not cause a stall on the line interface.

The length of the frames (on a per-channel basis) is configured through the host interface,
register CHANx_GFP_REGISTER_A[15:0]. This length is the number of superblocks per
GFP frame, not the number of bytes per frame as in frame-mapped mode. The maximum
length for a transparent frame when linear frames and FCS are both disabled is 0x3D2, and
will vary depending on the core configuration. See “Sideband Fields,” page 71 for
additional requirements and calculations of the maximum number of superblocks per
frame. See the ITU-T GFP Specification for the recommended number of superblocks per
frame.

To provide the user some warning that the current frame is ending, the MAP core will
assert M_SYS_FM_RDY_N at least 4 cycles (in 32-bit) or 2 cycles (in 64-bit) prior to the end
of the current frame. The user may therefore choose to stop sending data in the next few
cycles causing minimal pad characters to be inserted into the frame, change the channel on
the next cycle to begin a new frame on a new channel, or continue sending data on the
same channel, which will be packaged into a new frame. Note that M_SYS_FM_RDY_N is
only meaningful when the number of superblocks per frame is greater than one. This
implementation provides a simple interface enabling the user to minimize the number of
pad words inserted per transparent mode frame.

The user may induce an early end to the data in the current transparent mode frame by
prematurely changing M_SYS_CID (changing the value without waiting for
M_SYS_FM_RDY_N). If this occurs, the current GFP frame transmission will automatically
have pad words inserted to fill out to the required frame length. The user should beware of
prematurely changing the channel if the current frame length is long (several superblocks);
it can take many clock cycles for the current frame to be padded out to its end, and until the
core is finished, M_SYS_DST_RDY_N may be forced to deassert.

Data inside transparent frames are mapped to superblocks, which reorder the 8b/10b
control and data characters into a 64b/65b coding scheme. There may be one or several
superblocks in a transparent GFP frame. The data is the Client Payload Information Field
(CPIF) defined in the ITU-T GFP Specification, and it must not include the core or payload
headers, or the FCS. The MAP core will insert those fields as appropriate. The 64b/65b
encoding that is used with transparent mode is performed by the MAP core; the user
should present the unencoded 8b data characters on the data bus. If raw 10b characters are
received by the user logic, it is the user’s responsibility to perform 8b/10b decoding to get
the original 8b characters prior to writing into the system interface.

The user must know the position of the 8b/10b control characters in the data word, and
indicate their position(s) on M_SYS_CHARISK_N, which is 4 or 8 bits wide. Each bit
corresponds to a byte on M_SYS_DATA, and if the bit is low, the corresponding byte is a
control character. For instance, if M_SYS_CHARISK_N is 01111101, then
M_SYS_DATA[63:56] and M_SYS_DATA[15:8] are control codes. The control code
mappings are shown in Table 6-2, and the meaning of the 8b/10b control codes are specific
to the client protocol.

Table 6-2: M_SYS_DATA Byte to 8b/10b Control Code Mapping

8b/10b Control Character M_SYS_DATA

K28.0 0x1C

K28.1 0x3C

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 71
UG152 April 25, 2008

MAP Core
R

All non-valid K characters (valid K characters shown in Table 6-2) inserted on the system
interface will result in 10B_ERR words inserted in the GFP frame. If pad words need to be
inserted into the transparent frame, the user must use the M_SYS_REM bus, as described
below. If the user attempts to insert pad words by using the 65B_PAD K character, the
65B_PAD K character will result in a 10B_ERR inserted into the GFP frame as this not a
valid K character.

Unlike in frame-mapped mode, the M_SYS_REM signal is valid on all non-stalled frame
cycles. This enables the user to send in partial words throughout the transfer; the
remaining bytes of the word will be filled with 65B_PAD characters (a special filler
character defined by the ITU-T GFP Specification). The number of valid bytes is M_SYS_REM
+ 1. For example, if the interface is 8 bytes wide and M_SYS_REM of 6, then 7 bytes are valid
and M_SYS_DATA[63:8] contains the data characters, and one pad character will be
inserted into the GFP frame.

Sideband Fields

The only system interface sideband field required when in transparent mode is the channel
id M_SYS_CID (only valid if linear frames are enabled). The M_SYS_CID signal must be
valid for the entire frame, as prematurely changing the channel id will cause the current
frame to be padded until the correct length is met. The user should beware of prematurely
changing the channel if the current frame length is long (several superblocks); it may take
a long time for the current frame to be padded out to its end, and until the core is finished,
M_SYS_DST_RDY_N may be forced to deassert. If a channel id is presented on M_SYS_CID
that was not previously aliased to a CHANx configuration, then the MAP core defaults to
the CHAN0 configuration. See “Operating the MAP Core with Multiple-Channel
Support,” page 76 for details. When linear frames are enabled, the spare field must also be
programmed in CHANx_GFP_REGISTER_B[15:8]. If the transmitted GFP frame uses
null headers, M_SYS_CID will not be used on the interface (CHAN0 is the only register
that will be used), and the spare field is not used.

For all data frames, the length of the data field (CPIF) must be indicated on the
CHANx_GFP_REGISTER_A[15:0] register. In transparent mode, the length of the data
field is specified in number of superblocks per GFP frame. This must be configured for

K28.2 0x5C

K28.3 0x7C

K28.4 0x9C

K28.5 0xBC

K28.6 0xDC

K28.7 0xFC

K23.7 0xF7

K27.7 0xFB

K29.7 0xFD

K30.7 0xFE

Table 6-2: M_SYS_DATA Byte to 8b/10b Control Code Mapping

8b/10b Control Character M_SYS_DATA

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

72 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 6: Designing with the Core
R

each channel (CHAN0, CHAN1, etc.). If only null headers are supported, then CHAN0 is
the only channel necessary to configure.

The length value (the product of CHANx_GFP_REGISTER_A[15:0] and 67) becomes the
payload length indicator (PLI) field of the GFP frame by adding 4 bytes to the value for the
existence of each of the type field, the extension field, and the FCS. The type field is always
required, and is 4 bytes in length. The extension header and the FCS are optional, and if
present are 4 bytes each. The number o f bytes per superblock is 67 (64 bytes of data, 1 byte
64b/65b flags, 2 bytes for CRC). The user must ensure that the core will never transmit a
frame which would exceed the maximum PLI allowed by the ITU-T GFP Specification. The
equation for calculating the maximum number of superblocks follows:

Table 6-3 lists the maximum number of superblocks for each possible configuration. If a
length larger than the maximum value is used, the operation of the core can not be
guaranteed, and should be reset before proper operation will continue.

All frames must have the user payload identifier (UPI) indicated on the
CHANx_GFP_REGISTER_A[23:16] register. This must be done for each channel
(CHAN0, CHAN1, etc.). If only null headers are supported, then CHAN0 is the only
channel necessary to configure. The system interface UPI signal, M_SYS_UPI, is only used
for management frames, as described below.

Errors and Discontinues

When the user determines there is an error condition with the frame data, the frame may
be discontinued with an immediate assertion of M_SYS_SRC_DSC_N. The MAP core will
now regard the entire frame as corrupt, and will pad out the rest of the frame and invert the
FCS, if it exists. The length of the frame will not be shorter as a result of the discontinue. As
with all frame cycles, M_SYS_SRC_RDY_N and M_SYS_DST_RDY_N both must be asserted
when M_SYS_SRC_DSC_N is asserted; otherwise the MAP core will consider the cycle a
stall. In addition to padding, the result of the discontinue is that M_LINE_SRC_DSC_N will
be asserted at the end of the discontinued frame when it is read out of the line interface.

The user should note that performing a discontinue at some point other than the intended
end of the frame (defined by length CHANx_GFP_REGISTER_A[15:0]) may force a stall
on the system interface (the core deasserts M_SYS_DST_RDY_N), as the MAP core will pad

Table 6-3: Transparent Mode Maximum Length Frames

Core Configuration Maximum Length CPIF
(in superblocks) (REGISTER_A[15:0])

No extension header, no FCS 0x03D2

Either an extension header or FCS is
present, not both

0x03D2

Both an extension header and FCS are
present

0x03D1

max length CPIF (in superblocks) 0xFFFF type field– extension header– FCS–
67

---=

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 73
UG152 April 25, 2008

MAP Core
R

out the current frame before starting a new frame. M_SYS_FM_RDY_N will still be asserted
at least 4 cycles (in 32-bit) or 2 cycles (in 64-bit) before the end of the current frame.

There are error conditions associated with transparent frames that do not necessitate
discarding the entire frame. Sometimes the 8b/10b decode logic is not able to recognize a
10b character. If this happens, the ITU-T GFP Specification defines a special character called
10B_ERR to be sent in its place. If the user encounters this situation and wants to send a
10B_ERR character, the user can indicate this on M_SYS_10BERR_N. Each bit corresponds
to a byte on M_SYS_DATA, and when active, the current data word is replaced with the
10B_ERR code word. For instance, if M_SYS_10BERR_N is 11011110, then the byte
positions occupied by M_SYS_DATA[47:40] and M_SYS_DATA[7:0] are to be sent as
10B_ERR codes. Note that unlike M_SYS_CHARISK_N, the value on the corresponding
byte positions of M_SYS_DATA is not interpreted and is always replaced with 10B_ERR
characters. If the user inputs an invalid K character (see Table 6-2 for the list of valid K
characters), the MAP core automatically replaces the word with the 10B_ERR word and
reports this on M_SYS_STATUS_N[1] and MAP register GFP_INT[1] if enabled.
M_SYS_10BERR_N will override M_SYS_CHARISK_N if both signals are asserted
simultaneously.

For additional information regarding the error handling of the core, see Appendix D,
“Status and Error Reporting.”

Error Insertion

For testing purposes, the user may induce errors into the GFP frame by programming the
register GFP_ERR[7:0] and by asserting M_SYS_FORCE_ERR_N for the duration of a
frame. Each bit of the register will induce a different kind of corruption (FCS, tHEC, and so
forth), and the signal will permit that corruption to be applied on a frame-by-frame basis.

Management Frames

The MAP core supports the generation of management frames. Note that the MAP core
does not support management frames with data, so the values on M_SYS_DATA and
M_SYS_REM are ignored when M_SYS_MGMT_N is asserted. The user is expected to present
a frame with M_SYS_SRC_RDY_N and M_SYS_MGMT_N asserted simultaneously, and hold
those values if M_SYS_DST_RDY_N is not asserted. When M_SYS_MGMT_N is asserted,
M_SYS_UPI determines the type of management frame to send. See Appendix C, “Packet
and Control Symbol Format.” Asserting M_SYS_MGMT_N in the middle of a data frame
causes the current frame to be terminated with pad words, after which the management
frame is transmitted.

Alternatively, the user can cause management frames to be sent automatically by the core
by setting a timer in the register map. To do this, program GFP_CTRL[3:0] to a non-zero
value (zero will turn this feature off). Each increment of this value represents 167.8ms at
100MHz. For faster clock frequencies, the increment value may be determined by: 167.8ms
* (100MHZ/actual_clock_freq.)

If the timer is used, a management frame will be sent immediately following the expiration
of the timer (after any current frames in transit), and the timer will automatically restart.
Use of the timer does not preclude using the interface to send management frames.
Although a detailed discussion of end-to-end flow control is outside of the scope of this
document, the user may use this feature to implement the client signal fail indication as
specified by the ITU-T GFP Specification.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

74 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 6: Designing with the Core
R

Sample Operation

Figure 6-2 illustrates a sample operation of the MAP core system interface transmitting
transparent mode frames. Three frames are transferred: two normal data frames and a
management frame. Note that the channel id must be asserted for the entire frame.

The first frame is a data frame to channel 0x03, and the frame is initiated by asserting
M_SYS_DATA, M_SYS_REM, and M_SYS_SRC_RDY_N. Note that M_SYS_REM,
M_SYS_CHARISK_N, and M_SYS_10BERR_N are valid on every write cycle, and indicate
the type of data word that will be transmitted. After four successful writes, the core is
requesting a stall by deasserting M_SYS_DST_RDY_N, and the user must hold the values
on the system interface until it is asserted. M_SYS_FM_RDY_N is asserted at least 4 cycles
(in 32-bit) or 2 cycles (in 64-bit) before the end of the current frame, providing a look-ahead
to the user indicating when the start of the next frame transmission will begin.

The second frame is a data frame to channel 0x09. Three words are written for this frame,
and then the user swaps channels to send a management frame. Note that this will cause a
frame to be generated with three valid words, and enough pad words to complete the
frame as set by the length field (CHANx_GFP_REGISTER_A[15:0])

The third frame is a management frame to channel 0x05, and the frame is initiated by
asserting M_SYS_MGMT_N. The UPI value, M_SYS_UPI, determines the type of
management frame to be sent.

Operating the MAP System Interface in Mixed Mode
If the MAP core is configured to handle both frame-mapped and transparent frames, then
it is typical that the user will have a multi-channel configuration (linear frames enabled),
and that each channel is configured as being in either frame-mapped or transparent mode.

Figure 6-2: MAP Core Transparent Transfer

Normal data frame
Change channel
2 cycles after
FM_RDY_N (64-bit)

Normal data frame
User and core stalled
writes

M_SYS_REM[2:0]

M_SYS_DATA[63:0] D0

M_SYS_10BERR_N

M_SYS_CHARISK_N

M_SYS_MGMT_N

M_SYS_CID

M_SYS_SRC_DSC_N

M_SYS_CLK

M_SYS_SRC_RDY_N

M_SYS_FM_RDY_N

M_SYS_DST_RDY_N

D1 D2 D3 D4 D5 D0

7

FF

FF FF FF AF

M_SYS_UPI l.c.s

D1 D2

6 7 7 7

FF FA FF FF

FF

9 5

Management
Frame

3

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 75
UG152 April 25, 2008

MAP Core
R

When a frame is to be transmitted, the mode of the frame is specified by register
CHANx_GFP_REGISTER_A[27], and the channel is indicated by M_SYS_CID.

This scheme is not required; it is possible to have mixed mode traffic on a given channel
(both frame-mapped and transparent), and it is possible to not use channels at all (null
headers) and have mixed mode traffic. If either is the case, the user logic simply
reprograms the channel(s) to be frame-mapped or transparent while applying a software
reset to the core.

The system interface in mixed mode operates identically to the individual frame-mapped
and transparent modes, except that during a frame-mapped operation the transparent
mode-specific signals will not be used (M_SYS_CHARISK_N, M_SYS_10BERR_N, etc.), and
in transparent mode the frame-mapped signals will not be used (M_SYS_SOF_N,
M_SYS_EOF_N, M_SYS_LENGTH). The user may still rely on M_SYS_FM_RDY_N to indicate
when to start a frame-mapped frame when making the transition from transparent to
frame-mapped mode.

Management frames may be sent using the transparent mode method to the current
channel only if the channel is configured to be a transparent channel. Since M_SYS_SOF_N
and M_SYS_EOF_N are ignored in transparent mode, it is recommended to send
management frames using the frame-mapped method (M_SYS_SOF_N, M_SYS_EOF_N,
M_SYS_SRC_RDY_N, and M_SYS_MGMT_N) for both frame-mapped and transparent mode.

Operating the MAP Line Interface
The line interface of the MAP core transmits GFP encapsulated frames to the line side user.
The MAP core line interface utilizes the LocalLink protocol and provides data with
indicators as to where the start and end of frames are occurring. The line interface
operation is the same regardless of the core configuration (frame-mapped or transparent
mode).

When the core logic asserts M_LINE_SOF_N the frame has begun, and when it asserts
M_LINE_EOF_N the frame has ended.

All valid frame cycles (including the cycles beginning with M_LINE_SOF_N and ending
with M_LINE_EOF_N) must be qualified by the assertion of both M_LINE_SRC_RDY_N
from the core, and M_LINE_DST_RDY_N from the user. If either of those signals are
deasserted, both the MAP core and the line side user logic must consider that cycle to be a
stall, and the core will hold the value on all line control and data signals until both
M_LINE_DST_RDY_N and M_LINE_SRC_RDY_N are asserted.

All non-stalled frame cycles will have valid data on M_LINE_DATA. The data transmitted
on the line interface is the entire GFP frame, including the core header, payload headers,
client payload information field (CPIF), and the FCS.

When the end of a frame is reached, the core will assert the M_LINE_EOF_N signal with the
last frame word. The M_LINE_REM bus is used to indicate how many bytes of the last
frame word are valid; the number of valid bytes is M_LINE_REM + 1. The M_LINE_REM bus
is only valid when M_LINE_EOF_N is asserted and must ignored otherwise. For example,
if the interface is 8 bytes wide and M_LINE_EOF_N is asserted with a M_LINE_REM of 6,
then 7 bytes are valid and M_LINE_DATA[63:8] contains the final word.

If an error was reported by the system-side user while creating the GFP frame (via
M_SYS_SRC_DSC_N), the M_LINE_SRC_DSC_N signal will assert with M_LINE_EOF_N on
the errored frame.

If there are no GFP frames pending or the core is in reset, the line interface will transmit
GFP idle frames. The idles are transmitted the same way other frame types are; the user

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

76 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 6: Designing with the Core
R

will see a simultaneous assertion of M_LINE_SOF_N, M_LINE_EOF_N, and
M_LINE_SRC_RDY_N. The signal M_LINE_IDLE_N will assert to identify them as idle
frames in case the user wants to discard them.

Sample Operation

Figure 6-3 illustrates a sample operation of the MAP core line interface. When the line
interface has no data to send, GFP idle frames are automatically generated. In this
example, the first two words sent are idle frames, as indicated by the assertion of
M_LINE_SOF_N, M_LINE_EOF_N, and M_LINE_IDLE_N. The idle word contents will vary
depending on the setting for core header scrambling (either unscrambled - 0x00000000, or
scrambled 0xB6AB31E0). Following the two idle frames, a GFP data frame is transmitted.
The first word, indicated by the assertion of M_LINE_SOF_N, contains the core header. The
second word contains the type field, followed by three data payload words. The frame is
terminated with the assertion of M_LINE_EOF_N and M_LINE_REM. Note that this
example is for a 32-bit data bus. In the 64-bit case, both the core header and the type field
would be transmitted with the first data word.

Operating the MAP Core with Multiple-Channel Support
The MAP core supports extension headers for linear frames (enabling multi-channel
support). Using the CORE Generator GUI, the MAP core can be configured to support
either linear frames (enabling one to ten channels) or null extension headers (enabling one
channel). For details about generating the MAP core with the CORE Generator, see
Chapter 4, “Generating the Core.”

Each channel has a unique register space (CHANx_GFP_REGISTER_A/B).
CHANx_GFP_REGISTER_B[7:0] is the alias field, and maps the logical channel number
(CHAN0 - CHAN9) to a user-specified channel number (channel identification, CID). This
enables the user to configure up to ten unique channels, but supports CID values from 0-
255. Each logical channel corresponds to only a single user-specified CID value. The
M_SYS_CID value the user writes into the MAP interface must be a user-specified value
from 0-255, as this CID is mapped in the host interface to the logical channel number for
the register access. If a CID is received by the core that is not pre-defined in the alias

Figure 6-3: MAP Core Transparent Transfer

M_LINE_DST_RDY_N

M_LINE_SRC_RDY_N

M_LINE_SOF_N

M_LINE_EOF_N

M_LINE_DATA[31:0]

M_LINE_REM[1:0]

M_CLK

M_LINE_SRC_DSC_N

M_LINE_IDLE_N

 Frame with linear extension header
 No FCS and 9-byte payload

Idle
frames

Idle
frame

IDLEIDLE C.H. TYPE D0 D1 D2 IDLE

0x3 0x30x0

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 77
UG152 April 25, 2008

UNMAP Core
R

register, the logical channel 0 (CHAN0) register space is accessed. An example of a MAP
core with two channels follows:

CHAN0_GFP_REGISTER_B[7:0] = 0x4D
CHAN1_GFP_REGISTER_B[7:0] = 0x2F

A M_SYS_CID value of 0x4D accesses the logical channel 0 (CHAN0), and a M_SYS_CID
value of 0x2F accesses the logical channel 1 (CHAN1). If a M_SYS_CID value of any other
value is written into the system interface, the M_SYS_CID presented by the user is inserted
into the linear frame header, and the frame is generated using the channel 0 (CHAN0)
configuration.

UNMAP Core

Basic Operation
The UNMAP core receives GFP encapsulated frames from a SONET/SDH network on the
line interface, de-maps the GFP frames into client network protocol data, and passes the
data onto the client via the system interface. The UNMAP core permits frames to be
presented to the line interface in either a streaming format or using the LocalLink protocol.
In the case of streaming data, the boundaries of GFP frames have not yet been demarcated,
and the GFP core will locate the frame boundaries according to the frame delineation
algorithm detailed in the ITU-T GFP Specification.

Operating the UNMAP System Interface with Frame-Mapped Frames
When configured for frame-mapped mode operation, the UNMAP core relays to the
system interface the client network protocol data that has been extracted from the GFP
frame. This client data, as required by the ITU-T GFP Specification, will be an entire client
frame, such as Ethernet or PPP. The UNMAP core will strip out all GFP headers and FCS (if
it exists), and present the entire client data frame to the user. The fields and information
from the GFP headers are presented alongside the payload data. If an error exists in the
GFP frame, whether in the FCS or another field, it will be indicated. The UNMAP system
interface uses LocalLink signaling as described below.

LocalLink Frame Demarcation

When the UNMAP core asserts U_SYS_SOF_N the frame read has begun, and when it
asserts U_SYS_EOF_N the frame read has ended. It is possible that both signals could
assert at the same time, if the GFP frame contained only one word or less of data.

All valid frame cycles (including the cycles beginning with U_SYS_SOF_N and ending
with U_SYS_EOF_N) must be qualified by the assertion of both U_SYS_SRC_RDY_N from
the core, and U_SYS_DST_RDY_N from the user. If either of those signals are deasserted,
both the UNMAP core and the system side user logic must consider that cycle to be a stall,
and the UNMAP core will hold the value on all control and data signals until both
U_SYS_DST_RDY_N and U_SYS_SRC_RDY_N are asserted.

All valid non-stalled frame cycles will have data on U_SYS_DATA. The data is the “Client
Payload Information Field” (CPIF) defined in the ITU-T GFP Specification, and it will not
include the core or payload headers, or the FCS. If a GFP data frame is received with no
CPIF, that frame will be dropped and it will not be presented on the system interface.

When the end of a frame is reached, the core asserts the U_SYS_EOF_N signal with the last
data word. The U_SYS_REM bus is used to indicate how many bytes of the last data word

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

78 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 6: Designing with the Core
R

are valid; the number of valid bytes is U_SYS_REM + 1. The U_SYS_REM bus is only valid
when U_SYS_EOF_N is asserted and will be invalid otherwise. For example, if the interface
is 64 bits (8 bytes) wide and U_SYS_EOF_N is asserted with a U_SYS_REM of 6, then 7 bytes
are valid and U_SYS_DATA[63:8] contains the final word.

Sideband Fields

There are fields associated with each GFP frame, and those fields will be valid starting with
the assertion of U_SYS_SOF_N, and remain constant throughout the frame read for a given
frame. The list of fields includes:

• U_SYS_LENGTH

• U_SYS_UPI

• U_SYS_CID

• U_SYS_SPARE

• U_SYS_MGMT_N

With all frames, the byte length of the data field (CPIF) is indicated on U_SYS_LENGTH.
The UNMAP core calculates the byte length of the CPIF by subtracting four bytes for the
existence of each of the type field, extension header, and the FCS from the payload length
identifier (PLI).

All frames indicate the user payload identifier (UPI) field on U_SYS_UPI.

If the received GFP frame has an extension field, the channel identifier (CID) and spare
field will be indicated on U_SYS_CID and U_SYS_SPARE, respectively. Otherwise, these
signals should be considered invalid (and may not be present, depending on the core
configuration).

For detailed information about management frames, see (U_SYS_MGMT_N) “Management
Frames.”

Errors and Discontinues

When there is an error condition with the frame (such as an FCS error), the signal
U_SYS_SRC_DSC_N will assert on the last cycle of the frame with U_SYS_EOF_N.
U_SYS_SOF_N and U_SYS_EOF_N will still demarcate the frame, but the client must now
regard the entire frame as corrupt. The cause of the error condition will be signaled on
U_SYS_ERRBUS_N. As with all frame cycles, U_SYS_SRC_RDY_N and
U_SYS_DST_RDY_N both must be asserted when U_SYS_SRC_DSC_N asserts; otherwise
the UNMAP core will hold the values on all signals until both U_SYS_DST_RDY_N and
U_SYS_SRC_RDY_N are asserted.

For additional information regarding the error handling of the core, see Appendix E,
“Sample GFP Frames.”

Management Frames

When management frames are received, the frame is indicated as a management frame by
asserting U_SYS_MGMT_N. The management frame will demark the frame boundary with
the use of U_SYS_SOF_N, U_SYS_EOF_N, U_SYS_SRC_RDY_N, and U_SYS_MGMT_N. The
type of management frame is indicated on U_SYS_UPI. See , “Packet and Control Symbol
Format,” for details.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 79
UG152 April 25, 2008

UNMAP Core
R

Sample Operation

Figure 6-4 illustrates a sample operation of the UNMAP core system interface transmitting
frame-mapped frames. Three frames are transferred: a normal data frame, errored data
frame, and a management frame. Note that for the data frames, the length, channel id and
UPI are asserted for the entire frame.

The first frame is a data frame to channel 0x03, and is initiated by asserting U_SYS_SOF_N,
U_SYS_DATA, and U_SYS_SRC_RDY_N. After two successful reads, the user requests a
stall by deasserting U_SYS_DST_RDY_N. The frame is then completed by asserting
U_SYS_EOF_N and U_SYS_REM with the last valid data word.

The second frame is a data frame to channel 0x01. This data frame is an errored data frame,
and is terminated by asserting U_SYS_EOF_N and U_SYS_SRC_DSC_N with the last data
word. The signal U_SYS_ERRBUS_N will indicate the type of error that occurred for this
frame (in this case an eHEC error was detected).

The third frame is a management frame to channel 0x09, and is initiated by asserting
U_SYS_SOF_N, U_SYS_EOF_N, and U_SYS_MGMT_N. The UPI value, U_SYS_UPI,
indicates the type of management frame received.

Operating the UNMAP System Interface with Transparent Frames
When configured for transparent mode operation, the UNMAP core will relay to the
system interface the client network protocol data which has been extracted from the GFP
frame. This client data, as required by the ITU-T GFP Specification, will be a raw stream of
8b/10b decoded data characters (such as Fibre Channel), which are packaged into fixed-
length GFP frames. The UNMAP core will strip out all GFP headers and FCS (if it exists),
and present the streaming client data frame to the user. The 64b/65b encoding that is used

Figure 6-4: UNMAP Core Frame-Mapped Transfer

 Errored data frame
 FCS or other error in

associated data

 Normal data frame
 User stalled read

Management
Frame

U_SYS_REM[1:0]

U_SYS_DATA[31:0] D0

U_SYS_LENGTH

U_SYS_MGMT_N

U_SYS_CID

U_SYS_CLK

U_SYS_SRC_DSC_N

U_SYS_SRC_RDY_N

U_SYS_DST_RDY_N

D1 D2 D3 D1 D2

E

U_SYS_UPI l.o.s

D3

1

D

3 1 9

U_SYS_SOF_N

U_SYS_EOF_N

D0

ether ppp

U_SYS_ERRBUS_N

0

0

F E F

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

80 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 6: Designing with the Core
R

with transparent mode is decoded back to the original data characters before passing the
information to the user. Furthermore, it will remove all pad words (65B_PAD) from the
data stream, as well as align the received data into complete data words. The fields and
information from the GFP headers are presented alongside the payload data. If an error
exists in the GFP frame, whether in the FCS or another field, it will be indicated. The
UNMAP system interface uses LocalLink signaling, as described below.

LocalLink Frame Demarcation

When the UNMAP core asserts U_SYS_SOF_N the frame read has begun, and when it
asserts U_SYS_EOF_N the frame read has ended. It is possible that both signals could
assert at the same time, if the GFP frame contained only one word or less of data.

All valid frame cycles (including the cycles beginning with U_SYS_SOF_N and ending
with U_SYS_EOF_N) must be qualified by the assertion of both U_SYS_SRC_RDY_N from
the core, and U_SYS_DST_RDY_N from the user. If either of those signals are deasserted,
both the UNMAP core and the system side user logic must consider that cycle to be a stall,
and the UNMAP core will hold the value on all control and data signals until both
U_SYS_DST_RDY_N and U_SYS_SRC_RDY_N are asserted.

All valid non-stalled frame cycles will have data on U_SYS_DATA. The data is the Client
Payload Information Field (CPIF) defined in the ITU-T GFP Specification, and it will not
include the core or payload headers, or the FCS. If a GFP data frame is received with no
CPIF, that frame will be dropped and it will not be presented on the system interface.

Data inside transparent frames are mapped to superblocks, which reorder the 8b/10b
control and data characters into a 64b/65b coding scheme. There may be one or several
superblocks in a transparent GFP frame. The UNMAP core will decode these superblocks,
and data will be presented in the original 8b format. The position of the control characters
in the data word are indicated on U_SYS_CHARISK_N, which is 4 or 8 bits wide. Each bit
corresponds to a byte on U_SYS_DATA, and if the bit is active, the corresponding byte is a
control character. For instance, if U_SYS_CHARISK_N is “11101101”, then
U_SYS_DATA[39:32] and U_SYS_DATA[15:8] are control codes. The control code
mappings are shown in Table 6-4, and the meaning of the control codes are specific to the
client protocol.

Table 6-4: U_SYS_DATA Byte to 8b/10b Control Code Mapping

8b/10b Control Character U_SYS_DATA

K28.0 0x1C

K28.1 0x3C

K28.2 0x5C

K28.3 0x7C

K28.4 0x9C

K28.5 0xBC

K28.6 0xDC

K28.7 0xFC

K23.7 0xF7

K27.7 0xFB

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 81
UG152 April 25, 2008

UNMAP Core
R

Furthermore, the ITU-T GFP Specification defines a special character called 65B_PAD,
which is a filler character. The UNMAP core will remove these characters, and re-compact
the data. All valid cycles, except possibly the final data cycle, will have complete words.

When the end of a frame is reached, the core asserts the U_SYS_EOF_N signal with the last
data word. The U_SYS_REM bus is used to indicate how many bytes of the last data word
are valid; the number of valid bytes is U_SYS_REM + 1. The U_SYS_REM bus is only valid
when U_SYS_EOF_N is asserted and will be invalid otherwise. For example, if the interface
is 8 bytes wide and U_SYS_EOF_N is asserted with a U_SYS_REM of 6, then 7 bytes are
valid and U_SYS_DATA[63:8] contains the final word.

Sideband Fields

There are fields associated with each GFP frame, and those fields will be valid starting with
the assertion of U_SYS_SOF_N, and will remain constant throughout the frame read for a
given frame. The following is a list of these fields:

• U_SYS_LENGTH

• U_SYS_CID

• U_SYS_UPI

• U_SYS_SPARE

• U_SYS_MGMT_N

With all frames, the byte length of the data field (CPIF) is indicated on U_SYS_LENGTH.
The UNMAP core calculates the byte length of the CPIF by subtracting four bytes for the
existence of each type field, extension header, and the FCS from the payload length
identifier (PLI). Note that the U_SYS_LENGTH for transparent frames will indicate the
maximum possible CPIF value for the given frame. If pad words are inserted into the
frame, the UNMAP core will drop these words, and U_SYS_LENGTH will be greater than
the actual frame length presented to the user.

If the received GFP frame has an extension field, the channel identifier (CID) and spare
field will be indicated on U_SYS_CID and U_SYS_SPARE, respectively. Otherwise, these
signals should be considered invalid (and may not be present, depending on the core
configuration).

All frames will have the user payload identifier (UPI) field indicated on U_SYS_UPI.

Errors and Discontinues

When there is an error condition with the GFP frame (such as an FCS error), the signal
U_SYS_SRC_DSC_N will assert on the last cycle of the frame with U_SYS_EOF_N.
U_SYS_SOF_N and U_SYS_EOF_N will still demarcate the frame, but the client must now
regard the entire frame as corrupt. The cause of the error condition will be signaled on

K29.7 0xFD

K30.7 0xFE

10B_ERR 0x01

Spare 0x03

Spare 0x04

Table 6-4: U_SYS_DATA Byte to 8b/10b Control Code Mapping

8b/10b Control Character U_SYS_DATA

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

82 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 6: Designing with the Core
R

U_SYS_ERRBUS_N. If error reporting is disabled for a particular error condition (specified
in UNMAP GFP_CTRL), neither U_SYS_SRC_DSC_N nor U_SYS_ERRBUS_N will be
asserted for that condition. See Table 5-3 for details. As with all frame cycles,
U_SYS_SRC_RDY_N and U_SYS_DST_RDY_N both must be asserted when
U_SYS_SRC_DSC_N asserts; otherwise the UNMAP core will hold the values on all signals
until both U_SYS_DST_RDY_N and U_SYS_SRC_RDY_N are asserted.

The superblock boundaries will be indicated with the U_SYS_SUPER_N signal. Whenever
this signal is asserted, the start of a superblock is indicated. Each superblock has its own
CRC-16 check, and if a superblock has a CRC-16 error, the user side logic has the option of
discarding only that superblock, but not discarding the remaining superblocks. A
superblock CRC-16 error is indicated by the assertion of U_SYS_SUPERERR_N on the final
word of the superblock. Because there may be 65B_PAD removal and compacting, there is
a possibility that U_SYS_SUPER_N and U_SYS_SUPERERR_N assert the same cycle. There
are two possible interpretations of this event:

• A superblock is received that is composed almost entirely of 65B_PAD characters, and
the superblock was compacted to one word. That compacted superblock had a CRC-
16 error.

• A superblock was compacted such that its ending byte is not on an aligned word
boundary, and the first byte of the following superblock is therefore in the same word.
The first superblock had a CRC-16 error.

The user side logic may do the selective removal of the bad superblock by discarding all
data cycles starting with the previous assertion of U_SYS_SUPER_N to the cycle where
U_SYS_SUPERERR_N is asserted. If they are simultaneously asserted, the previous
assertion of U_SYS_SUPER_N should still be used, unless the error asserts on the first word
of the GFP frame. Note that a CRC-16 error on a superblock will not cause an assertion of
U_SYS_SRC_DSC_N. If the user wishes to discard the entire frame due to an individual
superblock error, then U_SYS_SUPERERR_N should be captured, and that captured value
can be applied during U_SYS_EOF_N like a discontinue.

There are additional error conditions associated with transparent frames that do not
necessitate discarding the entire frame. When a GFP transparent frame is mapped,
sometimes the mapping logic is not able to interpret the 8b/10b character. If this happens,
the ITU-T GFP Specification defines a special character called 10B_ERR. If the UNMAP core
receives a 10B_ERR, it does not remove the character, but it does indicate to the user logic
that the byte is invalid. This condition is signaled on U_SYS_10BERR_N. Each bit
corresponds to a byte on U_SYS_DATA, and if the bit is low, the corresponding byte is a
10B_ERR character. For instance, if U_SYS_10BERR_N is “11011110”, then
U_SYS_DATA[47:40] and U_SYS_DATA[7:0] are 10B_ERR codes. How this is handled
by the user-side logic is specific to the client protocol being implemented.

For additional information regarding the error handling of the core, see Appendix D,
“Status and Error Reporting.”

Management Frames

When management frames are received, the frame is indicated as a management frame by
asserting U_SYS_MGMT_N. The management frame will demark the frame boundary with
the use of U_SYS_SOF_N, U_SYS_EOF_N, U_SYS_SRC_RDY_N, and U_SYS_MGMT_N. The
type of management frame is indicated on U_SYS_UPI (see Appendix C, “Packet and
Control Symbol Format”).

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 83
UG152 April 25, 2008

UNMAP Core
R

Sample Operation

Figure 6-5 illustrates a sample operation of the UNMAP core system interface transmitting
transparent mode frames. Two frames are transferred: an errored data frame, and a normal
data frame. For all data frames, the channel id and UPI are asserted for the entire frame.
Additionally, the U_SYS_REM, U_SYS_CHARISK_N, and U_SYS_10BERR_N signals are
valid on every read cycle, and indicate the type of data word received.

The first frame is a data frame to channel 0x03, and is initiated by asserting U_SYS_SOF_N,
U_SYS_DATA, U_SYS_REM and U_SYS_SRC_RDY_N. The U_SYS_SUPER_N signal
indicates the start of a superblock. After two successful reads, the user requests a stall by
deasserting U_SYS_DST_RDY_N. The first superblock is completed with an error
(U_SYS_SUPERERR_N), indicating that a CRC error occurred during the superblock. The
start of the second superblock is indicated with the assertion of U_SYS_SUPER_N, and the
end of the frame is the completed by asserting U_SYS_EOF_N and U_SYS_SRC_DSC_N.

The second frame is a data frame to channel 0x09.

Operating the UNMAP System Interface in Mixed Mode
If the UNMAP core is configured to handle both frame-mapped and transparent frames,
then it is typical that the user will have a multi-channel configuration (linear headers in
use), and that each channel is configured as either frame-mapped or transparent mode.

Figure 6-5: UNMAP Core Transparent Transfer

Frame composed of
two superblocks
CRC error in first
superblock

Normal
Frame

U_SYS_REM[2:0]

U_SYS_DATA[63:0] D0

U_SYS_10BERR_N

U_SYS_CHARISK_N

U_SYS_MGMT_N

U_SYS_CID

U_SYS_CLK

U_SYS_SRC_DSC_N

U_SYS_SRC_RDY_N

U_SYS_DST_RDY_N

D1 D2 D3 D5 D6

7

FF FF

FF FF

U_SYS_UPI

D7 D0

6 7 7 9

FA FF

EF

3 3

U_SYS_SOF_N

U_SYS_EOF_N

U_SYS_SUPER_N

U_SYS_SUPERERR_N

D4 D1 D2

FF

fibre fibre ge

9

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

84 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 6: Designing with the Core
R

When a frame is received, the mode of the frame is therefore implied by its channel id on
U_SYS_CID.

This scheme is not required; it is possible to have mixed mode traffic on a given channel
(both frame-mapped and transparent), and it is possible to not use channels at all (null
headers) and have mixed mode traffic. If either is the case, then the user logic must
determine the mode of a frame based on the U_SYS_UPI field.

The system interface in mixed mode operates identically to the individual frame-mapped
and transparent modes, except that during a frame-mapped operation the transparent
mode-specific signals should be ignored (U_SYS_CHARISK_N, U_SYS_10BERR_N, and so
forth).

Operating the UNMAP Line Interface with Streaming Data
The line interface of the UNMAP core receives GFP encapsulated frames from the line side
user. If the UNMAP core is configured for streaming mode, the line interface will receive
data continuously with no indicators as to where the start or end of frames are occurring.
Furthermore the start of a frame does not necessarily begin in any particular byte lane
(unlike LocalLink, which requires it to start in the most-significant lane), but it is expected
to follow immediately after the end of the previous GFP frame, with no intervening invalid
bytes. Many of the signals used for LocalLink are therefore not used in streaming mode,
such as U_LINE_SOF_N, U_LINE_EOF_N, U_LINE_REM (since the starting and ending
position of a frame is unknown), and U_LINE_SRC_DSC_N. Data enters the line interface
on U_LINE_DATA, but stalls can be induced by either the core or the user with the
deassertion of U_LINE_DST_RDY_N or U_LINE_SRC_RDY_N, respectively. However, note
that user-induced line stalls may result in stalls on the output system interface.

The streaming mode data is parsed by the UNMAP core using the frame delineation
algorithm defined in the ITU-T GFP Specification. This method initially performs a CRC-
CCITT on all alignment permutations of the line data to find the core header (“hunt”), and
then uses the length field of the found frame indicated in the header to find all subsequent
frame boundaries, linked-list style. The implementation of this feature uses significant
logic resources, so there exists an option to initially hunt for idles only (not data), since
idles always look the same (no CRC-CCITT is necessary).

The type of frame delineation process is selected through the Xilinx CORE Generator GUI.
The two options which enable the UNMAP core to perform synchronization are Parallel
Hunting and Idle Only Hunting. In both of these configurations, the UNMAP core will
attempt to perform synchronization as described above. The status of the UNMAP core
synchronization is presented to the user on U_SYS_STATUS[2:0]. For information about
generating the UNMAP core, see Chapter 4, “Generating the Core.” For details about the
U_SYS_STATUS bus, see Chapter 3, “Core Architecture.”

Sample Operation

Figure 6-6 illustrates the operation of the streaming interface. In this case, there is no
relationship between the start of a frame and the byte lanes. As shown, data words are
packed together, and data words within a frame may be spread across multiple input
cycles. The UNMAP core will determine the start of frame based on the ITU-T GFP

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 85
UG152 April 25, 2008

UNMAP Core
R

Specification synchronization operation, and will align the data on the system interface
automatically.

Operating the UNMAP Line Interface with LocalLink Data
If the UNMAP core is configured for the LocalLink protocol on the line interface, the line
expects to receive data with indicators as to where the start and end of frames are
occurring, and the data must be aligned to the most significant byte lane of the input word.

When the user logic asserts U_LINE_SOF_N the frame has begun, and when it asserts
U_LINE_EOF_N the frame has ended.

All valid frame cycles (including the cycles beginning with U_LINE_SOF_N and ending
with U_LINE_EOF_N) must be qualified by the assertion of both U_LINE_SRC_RDY_N
from the user, and U_LINE_DST_RDY_N from the core. If either of those signals are
deasserted, both the UNMAP core and the line side user logic must consider that cycle to
be a stall, and the user must hold the value on all line control and data signals until both
U_LINE_DST_RDY_N and U_LINE_SRC_RDY_N are asserted.

All valid non-stalled frame cycles must have valid data on U_LINE_DATA. The data on the
line interface is the entire GFP frame, including the core header, payload headers, client
payload information field (CPIF), and the FCS (if present).

When the end of a frame is reached, the user must assert the U_LINE_EOF_N signal with
the last frame word. The U_LINE_REM bus is used to indicate how many bytes of the last
frame word are valid; the number of valid bytes is U_LINE_REM + 1. The U_LINE_REM bus
is only valid when U_LINE_EOF_N is asserted and will be ignored otherwise. For example,
if the interface is 8 bytes wide and U_LINE_EOF_N is asserted with a U_LINE_REM of 6,
then 7 bytes are valid and U_LINE_DATA[63:8] contains the final word.

It is possible for the user to indicate the GFP frame has an error. If U_LINE_SRC_DSC_N is
asserted with U_LINE_EOF_N, then the data associated with the errored GFP frame will
have U_SYS_SRC_DSC_N asserted with it on the system interface.

When using LocalLink mode on the line interface, the frame delineation algorithm defined
in the ITU-T GFP Specification is not used, since the user logic or upstream devices must
have performed it to have known where the start and end of frames are at. The type of
frame delineation process is selected through the CORE Generator GUI. The option which
enables the UNMAP core to not perform synchronization is No Hunting. Because the
frame delineation algorithm is not implemented in this mode, the UNMAP core will
require significantly fewer resources. In this case, the UNMAP core is always synchronized
(since it is always ready to accept data), and therefore U_SYS_STATUS[2:0] should be
ignored. For details about generating the UNMAP core, see Chapter 4, “Generating the
Core.”

Sample Operation

Figure 6-7 illustrates the operation of the line interface using LocalLink signaling. In this
case, there is a fixed relationship between the start of a frame and the byte lanes. As shown,

Figure 6-6: UNMAP Streaming Interface

U_LINE_DATA[31:0]

U_LINE_CLK

1st Word 2nd

1st Word 2nd

3rd3rd

1st Word

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

86 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 6: Designing with the Core
R

data words are not packed together, and instead each new frame will start on a new data
word. The UNMAP core will not perform the ITU-T GFP Specification synchronization
operation. Instead, the U_LINE_SOF_N and U_LINE_EOF_N signals are used to indicate
frame boundaries, and U_LINE_REM indicates the number of valid bytes in the last data
word. All invalid data words at the end of the frame are discarded.

Accessing Control and Status Registers
The host interface is an optional interface to access control and status registers. The MAP
and UNMAP core each have unique host interfaces. If the user requires only default
control and does not require access to these registers, this interface can be removed to
reduce the resource usage of the core. The host interface conforms to the 32-Bit Device
Control Register (DCR) Bus Slave described in the IBM specification SA-14-2525-00.

Register Space
A complete listing of the GFP register map is provided in Chapter 3, “Core Architecture.”
The MAP core registers are subdivided into two parts; general and channel-specific
registers. The MAP core may have up to 10 unique channels, each corresponding to a
particular channel id (CID) and each permitting the GFP frame to be sent with different
fields and options. The UNMAP core supports only general registers.

Address Space
The MAP and UNMAP cores must have their own unique address index (if the two cores
share a common DCR bus), which enables each core to be addressed individually on a
shared DCR bus. The address index is configured in the CORE Generator GUI. In the case
of the MAP core, the number of bits in the address index is determined by the number of
channels implemented. If a one channel configuration is chosen, the address index is the
upper 6 bits of M_HOST_ADDR; if 2 or 3 channels are chosen, the upper 5 bits are used; if 4
through 7 channels are chosen, the upper 4 bits are used; and if 8 or more are chosen, the
upper 3 bits are used. Note that the CORE Generator GUI will report the base address to

Figure 6-7: UNMAP Line Locallink Interface

U_LINE_REM[1:0]

U_LINE_DATA[31:0]

U_LINE_CLK

U_LINE_SOF_N

U_LINE_EOF_N

1st Word 2nd 1st Word1st Word 2nd

1 2

3rd 3rd

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 87
UG152 April 25, 2008

Accessing Control and Status Registers
R

the user based on the address index and number of channels selected. Figure 6-8 shows the
four possible options.

As shown, the MAP register space is divided into an address index, channel, and offset.
The address index is set through the CORE Generator GUI. The channel address indicates
either the general register space (0x0), or the channel number (CHAN0 is accessed by 0x1,
CHAN1 is accessed by 0x2, and so forth). The offset accesses the individual registers
within the channel, as described in Chapter 3, “Core Architecture.” The user should only
access valid registers as defined by the register map.

For example, if a one channel configuration is chosen, and the address index is 0x3C (6 bits;
111100), then the general registers are accessed by the address range 0x3C0 to 0x3C7, and
the channel-specific registers for CHAN0 are accessed by address range 0x3C8 to 0x3CF. If
ten channels are chosen, and the address index is 0x5 (3 bits; 101), then the general registers
are accessed by the address range 0x280 (101 0000 000) to 0x287 (101 0000 111), and the
channel-specific registers are accessed by address range 0x288 (101 0001 000) to 0x2D7 (101
1010 111). The following table partially lists the addresses of the individual registers, using
this address index of 0x5 and a ten channel configuration.

Table 6-5: MAP Register Space Example for 10 Channels and a Base Address of 5

Figure 6-8: MAP Register Space

M_HOST_ADDR Address Register Accessed

0x000-0x27F Free to User

0x280 GFP_VERSION

0x281 GFP_CTRL

0x282 GFP_ERR

0x283 GFP_INTMASK

0x284 GFP_INT

0x285-0x287 Reserved

0x288 CHAN0_GFP_REGISTER_A

0x289 CHAN0_GFP_REGISTER_B

0x28A-0x28F Reserved

0x290 CHAN1_GFP_REGISTER_A

9 8 7 6 5 4 3 2 1 0
Base Address OffsetChannel

1 Channel

9 8 7 6 5 4 3 2 1 0
Base Address OffsetChannel

2, 3 Channels

9 8 7 6 5 4 3 2 1 0
Base Address OffsetChannel

4, 5, 6, 7 Channels

9 8 7 6 5 4 3 2 1 0
Base Address OffsetChannel

8, 9, 10 Channels

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

88 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 6: Designing with the Core
R

The UNMAP address map has only general registers. The user should select a unique
address in index if the MAP and UNMAP core share the same DCR bus; the upper bits of
the UNMAP address index should not match the MAP address index. (The CORE
Generator GUI will automatically ensure that a unique address index is selected for each
core.) Figure 6-9 displays the UNMAP address map.

Operating the Host Interface
To write to the MAP control registers, the DCR master asserts M_HOST_WR_EN with the
address on M_HOST_ADDR and the data on the M_HOST_WR_DATA bus. The DCR slave, in
this case the GFP host interface, will then have 16 clock cycles to acknowledge the
transaction by asserting M_HOST_ACK before the master times out.

To read from the MAP status registers, the DCR master asserts M_HOST_RD_EN high with
the address on M_HOST_ADDR. The DCR slave, in this case the GFP host interface, will then
have 16 clock cycles to acknowledge the transaction with M_HOST_ACK before the master
times out. The addressed data will appear on M_HOST_RD_DATA coincident with the
M_HOST_ACK assertion.

All register accesses to a valid address index will be acknowledged by the assertion of
M_HOST_ACK. Any register access to an invalid address index will not be acknowledged (a
time-out counter may be necessary to guard against commands that do not return a
response).

The host interface has an (optional) independent clock, M_HOST_CLK. If the host clock and
core clock are asynchronous to each other, the core automatically synchronizes the clock
domains.

The GFP UNMAP host interface operates in an identical fashion to the GFP MAP host
interface. Note that the DCR interface requires big-endian bit notation, whereas the GFP
host interface uses little-endian bit notation. See Appendix C, “Packet and Control Symbol
Format” for a mapping of DCR interface signals to the GFP host interface signals.

0x291 CHAN1_GFP_REGISTER_B

0x292-0x297 Reserved

.......

0x2D0 CHAN9_GFP_REGISTER_A

0x2D1 CHAN9_GFP_REGISTER_B

0x2D2-0x2D7 Reserved

0x2D8-0x2FF Reserved

0x300-0x3FF Free to User

Figure 6-9: UNMAP Register Space

M_HOST_ADDR Address Register Accessed

9 8 7 6 5 4 2 1 0
Base Address Offset

3

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 89
UG152 April 25, 2008

Accessing Control and Status Registers
R

Sample Operation

Figure 6-10 shows and example of reading and writing data via the host interface. The core
in the example is configured for three channels and an address index of 0x18. In the first
transaction the DCR master drives the ADDR bus with the address of the GFP_VERSION
register, which has an offset of 0x0 from the base address. The DCR master places the data
(0x8000_0000) on the WR_DATA bus and asserts WR_EN. The data from the WR_DATA bus
then gets placed on the RD_DATA bus asynchronously through the GFP core in order to
allow for daisy chaining of DCR slave devices. This transaction places the core into a
software reset to enable re-programming of the registers. According to the DCR
specification, the DCR slave must respond with an ACK within one to sixteen cycles of the
assertion of the WR_EN signal.

The DCR master then drives the WR_DATA, ADDR, and WR_EN to values that do not
correspond to a valid transaction (this causes the host interface to deassert the ACK signal).
Three clock-cycles after the WR_EN was deasserted, the DCR master drives the WR_DATA
bus with data (0x0000_A342), the ADDR bus with the address (0x309), and asserts the
WR_EN signal. This address corresponds to register B channel 0 (CHAN0_GFP_REGISTER_B).
This write operation sets the spare field to 0xA3, the channel id (alias) to 0x42, and disables
sending loss of client signal and loss of character synchronization on the CSF timer event.

The third transaction is a read of the GFP_VERSION register. The DCR master drives the
ADDR bus and assert the RD_EN to initiate a read transaction. The data on the read data
bus (RD_DATA) is valid when the GFP core acknowledges the read by asserting ACK. After
the GFP core is no longer selected through the ADDR bus and the RD_EN signal, the
RD_DATA bus removes the register value being read and places the value on the WR_DATA
onto the RD_DATA bus. The value read from the MAP GFP_VERSION register shows the
configuration of the core when it was created (the MAP version value will depend on the
configuration of the GFP core).

In an actual system, this transaction would be followed by disabling the software reset by
writing 0x0000_0000 to the GFP_VERSION register.

Figure 6-10: Host Interface Waveform

RD_EN

CLK

RD_DATA[31:0]

ADDR[9:0]

WR_DATA[31:0]

WR_EN

ACK

0x8000.0000 0x0000.A342

0x8000.0000 0x0000.A342

0x300 0x309 0x300

0x00D3.8110

S/W Reset Enabled
in Version Register

Writing to Ch 1 Register B:
SPARE = A3
CID (ALIAS) = 42
LOSS OF SYNC = 0
LOSS OF CLIENT = 0

Reading Version Register1-16 CLK CYCLES

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

90 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 6: Designing with the Core
R

Interrupts
In addition to the DCR signals, the MAP core can also drive the interrupt signal
M_HOST_INT, which may be used by the user to implement interrupt handling routines.
The interrupt will occur if one of the error bits in the register GFP_INT is set and the
corresponding mask bit in GFP_INTMASK is 1. The interrupt can be cleared by performing
a write operation to GFP_INT. For example, if the MAP core must insert a 10B_ERR word
in the superblock, then the bit GFP_INT[1] will be set to 1. If GFP_INTMASK[1] is 1, then
M_HOST_INT will be asserted. If the user then writes 0x00000001 to address {base_addr,
000...0, 100}, the interrupt will be cleared and M_HOST_INT will be deasserted.

Interrupts for the UNMAP core operate identically to the MAP core.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 91
UG152 April 25, 2008

R

Chapter 7

Constraining the Core

The GFP core requires the specification of timing constraints to meet the performance
requirements. These constraints are provided in a user constraints file (.ucf).

For proper implementation results, a .ucf file containing these original, unmodified
constraints must be used when a design is run through the Xilinx tools. For additional
details on the definition and use of a .ucf file or specific constraints, see the Xilinx Libraries
Guide and/or Development System Reference Guide.

Required Constraints

Timing Constraints
Timing constraints are crucial for proper operation. The following constraints are provided
with the GFP core, and the user can modify these constraints to meet their system
requirements. However, the user is responsible for ensuring that any modification to these
constraints does not result in paths which are unconstrained.

Timenames for Clocks

The following constraints are for the MAP and UNMAP core clocks, and are always
required.

NET “M_CLK” TNM_NET = “M_CLK”;

NET “U_CLK” TNM_NET = “U_CLK”;

The following constraints are for the MAP and UNMAP host clocks, and are only required
if the host interface and host clock are present.

NET “M_HOST_CLK” TNM_NET = “M_HOST_CLK”;

NET “U_HOST_CLK” TNM_NET = “U_HOST_CLK”;

Timespecs for Clocks

The following constraints are for the MAP and UNMAP core clocks, and are always
required. Note the generated GFP core may have different timing constraints than the
examples provided below.

TIMESPEC “TS_M_CLK” = PERIOD “M_CLK” 10.0 ns HIGH 50 %;

TIMESPEC “TS_U_CLK” = PERIOD “U_CLK” 10.0 ns HIGH 50 %;

The following constraints are for the MAP and UNMAP host clocks, and are only required
if the host interface is present.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

92 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 7: Constraining the Core
R

TIMESPEC “TS_M_HOST_CLK” = PERIOD “M_HOST_CLK” 10.0 ns HIGH 50 %;

TIMESPEC “TS_U_HOST_CLK” = PERIOD “U_HOST_CLK” 10.0 ns HIGH 50 %;

These constraints specify the clock frequency and duty cycle of the clock signal.

Area Constraints
Area constraints provide a number of benefits to the user, including clock region
management, increased performance, and/or increased resource utilization. Area
constraints are only required in certain configurations, and will be appropriately generated
by the CORE Generator system as required. The following are examples of the area
constraints provided with the GFP core. Note that these constraints can be modified by the
user to meet their requirements. For example, the number of clock regions can be adjusted
depending on the target device, and the location of the clock regions can be adjusted to
provide optimal placement for a given implementation.

MAP Core Area Constraints

INST “gfp_map/*” AREA_GROUP = AG_gfp_map;

AREA_GROUP “AG_gfp_map” RANGE = CLOCKREGION_X0Y1,
CLOCKREGION_X0Y2, CLOCKREGION_X1Y1, CLOCKREGION_X1Y2;

UNMAP Core Area Constraints

INST “gfp_unmap/*” AREA_GROUP = AG_gfp_unmap;

AREA_GROUP “AG_gfp_unmap” RANGE = CLOCKREGION_X0Y4,
CLOCKREGION_X0Y3, CLOCKREGION_X1Y1, CLOCKREGION_X1Y3;

Optional User Constraints
It is recommended to add additional constraints to cover other logic implemented by the
user. While the .ucf file provided with the core is designed to completely constrain the
Xilinx GFP core itself, it may not adequately constrain user-implemented logic interfaced
to the core. This is the responsibility of the user.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 93
UG152 April 25, 2008

R

Chapter 8

Special Design Considerations

This chapter defines the GFP core design considerations.

I/O Pin Placement
Because the GFP core interfaces are typically not routed to external I/O pins, but instead
interface to other logic blocks within the FPGA, there are no pinout restrictions or I/O
timing constraints associated with the core.

Clocking
The only clocking requirement for both the MAP and UNMAP cores is that all clock pins
(*_CLK) be sourced by dedicated clock buffers (there are no clock buffers instantiated in
the cores). The user has the option to connect all core clocks together, or have all
independent clocks. If the host interface is present, and the host clock is asynchronous
from the core clock, then two global clocks are required per core. If the host interface can be
shared with the core clock, or if the host interface is not present, then only one clock is
required per core. Additionally, the MAP and UNMAP core clocks can be shared,
depending on the user application.

The core does not instantiate any clock buffers internal to the core. Instead, the example
design provided with the core instantiates a single global clock buffer, and connects all
clocks together. This is only one possible configuration, and can be easily changed by the
user. No DCMs or other clock management strategies are implemented in the provided
example design, but this should not be ignored by the user. A carefully designed clocking
strategy is crucial to the success of any high-speed design, and should receive careful
attention. Please contact your Xilinx Field Application Engineer for assistance in this area.
See the GFP Getting Started Guide for details about the example design.

Common Use Cases
The GFP core can be used in many applications, enabling efficient transport of LAN/SAN
protocols over SONET/SDH networks. Two common applications utilizing Xilinx IP cores
and reference designs are described below.

Frame-Mapped Mode (Ethernet)

Figure 8-1 displays a typical application of transmitting Ethernet over SONET/SDH. This
example utilizes the Xilinx 1000BASE-X PCS/PMA plus the Xilinx 1-Gigabit Ethernet
MAC for the client interface. The user logic interfaces between the MAC and the GFP core,
accumulating frames of data on a per-channel basis. The GFP core is configured in frame-

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

94 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 8: Special Design Considerations
R

mapped mode, with linear extension headers enabled, allowing the GFP core to time-mul-
tiplex many channels into a single GFP stream. The GFP core interfaces to the Xilinx SPI-4.2
core, providing an interface to an external framer.

Transparent Mode (Fibre Channel)

Figure 8-2 illustrates a typical application of transmitting Fibre Channel over
SONET/SDH. This example utilizes Xilinx Application Note XAPP759 Configurable PCS
(CPCS) for the client interface. The CPCS can be configured to support a variety of proto-
cols, including Fibre Channel, ESCON, FICON, and N Gigabit Ethernet MAC cores. In this
case, the CPCS design is configured for Fibre Channel. The user logic interfaces between
the CPCS and the GFP core, performing Fibre Channel flow control (spoofing), as well as
rate adaptation and minimal buffering on a per-channel basis.

Figure 8-1: Transmitting Ethernet over SONET/SDH

Xilinx FPGA

SONET
Framer

System Interface Line Interface

ETHERNET

(xN Links)

RAM

MGT

1G or 10G

Ethernet

MAC

Core

Buffer

Manager

Specific

Design

GFP

Core

Frame Mode

SPI-4.2,

SPI-4.2 Lite

or

SPI-3

Core

(xN MGT) (xN MAC Core)

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 95
UG152 April 25, 2008

Common Use Cases
R

The GFP core is configured in transparent mode, with linear extension headers enabled,
allowing the GFP core to time-multiplex many channels into a single GFP stream. The GFP
core interfaces to the Xilinx SPI-4.2 core, providing an interface to an external framer.

Figure 8-2: Transmitting Fibre Channel over SONET/SDH

Xilinx FPGA

System Interface Line Interface

(xN FCRD)(xN CPCS)

Config-

urable

PCS

XAPP759(xN Links)

RAM

FIBRE

CHANNEL Fibre

Channel

Specific

Design

Buffer

Manager

Specific

Design

GFP

Core

Transparent

Mode

SPI-4.2,

SPI-4.2 Lite

or

SPI-3

Core

SONET

Framer

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

96 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 8: Special Design Considerations
R - DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 97
UG152 April 25, 2008

R

Chapter 9

Simulating and Implementing
Your Design

The GFP core is provided as a Xilinx technology-specific netlist and simulation model. This
chapter provides instructions for simulating and implementing the GFP core in your
design.

Functional Simulation
Functional simulation of the GFP core is performed with the provided simulation models
(UniSim models). The simulation models provide cycle-accurate simulations for use in the
verification of the user’s application. The GFP core has been verified with Mentor Graphics
ModelSim® PE/SE/EE and NC-Sim simulators. While other simulation tools can be used
to simulate the core, they have not been tested and functionality cannot be guaranteed.
Before attempting functional simulation, ensure that the simulator environment is
properly configured.

1. Compile the Xilinx UniSim libraries (if not already compiled). For details, see Xilinx
Answer Record 15338.

2. Compile the simulation model, user application, and user test environment. An
example functional simulation script is provided with the example design, which
compiles the example design and demonstration test bench. The user may use this
script as an example for creating their test environment. For details about the
functional simulation script, see the GFP Getting Started Guide.

Timing Simulation
Timing simulation of the GFP core is performed on the post-par simulation model after the
core and user design are implemented through the Xilinx tools. This simulation will
provide not only a cycle-accurate simulation, but also model how the design will operate
in hardware. The GFP core has been verified with Mentor Graphics ModelSim PE/SE/EE
and NC-Sim simulators. While other simulation tools can be used to simulate the core, they
have not been tested and functionality cannot be guaranteed. Before attempting timing
simulation, ensure that the simulator environment is properly configured.

1. Compile the Xilinx SIMPRIM libraries (if not already compiled). For details, see Xilinx
Answer Record 15338.

2. Run the design through the Xilinx tool flow. An implement script is provided with the
example design. The user may use this script as an example for creating their
environment. For details about the implementation script, see the GFP Getting Started
Guide.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com
http://www.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=15338
http://www.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=15338

98 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 9: Simulating and Implementing Your Design
R

3. Compile the post-par simulation model. An example timing simulation script is
provided with the example design, and may be used as an example for creating the
user test environment. For details about the timing simulation script, see the GFP
Getting Started Guide.

Synthesis

Synthesis of Example Design
Synthesis of the example design is supported by XST and Synplify. While other synthesis
tools may be used to synthesize the example design, they have not been tested and
functionality can not guaranteed. For detailed use of the example design, see the GFP
Getting Started Guide.

XST

Before synthesizing with XST, be sure that the Xilinx environment is properly configured
for use. A sample synthesis script is provided in the implement directory and can be used
as an example for synthesizing the user design.

1. Create an XST project file or open the ISE GUI.

2. Add the necessary user source files to the project file or ISE GUI. If creating a project
file, also add the unisim_comp.v[hd] file located in the <Xilinx Install Path>/
{vhdl|verilog}/src/ise/directory. This file is included automatically when
using the ISE GUI.

3. Synthesize the user application.

• If using the Project Navigator ISE environment, double-click Synthesize-XST in
the Processes for Source window. Set the HDL language to VHDL or Verilog, the
results directory and the part being used.

• If the command line mode is being used, at the prompt, start an XST shell session
by typing xst at the prompt and hitting enter. Synthesize the design by calling the
XST run command to process the files in the project file.

• For additional options that can be set to further customize synthesis of the user
design, see the XST section of the Xilinx development tools manual, located at
http://www.xilinx.com/documentation.

Synplify

Before synthesizing with Synplify, make sure that the Synplify environment is properly
configured for use. A sample synthesis script is provided in the implement directory,
which can be used as an example for the synthesizing the user design.

1. Create a Synplify project file.

2. Add the necessary user source files to the project file.

3. Select target device and speed grade.

4. Synthesize the user application.

Xilinx Tool Flow
This section provides an overview of the Xilinx tool flow and discusses how to implement
the GFP core and the user design with the Xilinx implementation tools. Detailed

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com/documentation
http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 99
UG152 April 25, 2008

Xilinx Tool Flow
R

information about Xilinx tools can be found in the Xilinx Development System Reference
Guide.

Before executing the Xilinx tool flow, a user design netlist must be generated where the
GFP core is instantiated and all required constraints must be set in the user constraints file
(.ucf). See Chapter 7, “Constraining the Core” for information about constraining the user
design.

Example Design Script
An implementation script is provided with the example design to execute all the
commands described below. This script can be used as an example of how to run the Xilinx
tools with the GFP core. For details about the example design, see the GFP Getting Started
Guide.

NGDBuild
Run ngdbuild to translate and merge the various source files of a design into a single NGD
design database.

An example of the ngdbuild command is provided below:

ngdbuild -p <part> <component_name>_top

The output of ngdbuild will be <component_name>_top.ngd.

Mapping the Design
To map the logic gates of the user’s design (previously written to an NGD file by ngdbuild)
into the CLBs and IOBs of the physical device, the map command must be executed. The
map command writes out this physical design to an NCD file. An example of the map
command is provided below:

map -o mapped.ncd <component_name>_top.ngd

The map command outputs a mapped.ncd and mapped.pcf.

Place and Route
To place and route the user’s design logic components (mapped physical logic cells)
contained within a NCD file based on the layout and timing requirements specified within
the physical constraints file (PCF), the par command must be executed. An example of the
par command is provided below:

par mapped.ncd routed.ncd

The par command outputs routed.ncd file that contains the placed and routed design.

Static Timing Analysis
To evaluate timing closure on a design and create a timing report file (TWR) derived from
static timing analysis of the physical design file (NCD), the trce command must be
executed. The analysis is typically based on constraints included in the optional physical
constraints file (PCF). An example of the trce command is provided below:

trce -e 10 routed.ncd mapped.pcf -o routed.twr

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

100 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Chapter 9: Simulating and Implementing Your Design
R

The trce command outputs a routed.twr file, which contains timing analysis of the placed
and routed design based on the user constraints.

Timing Simulation
After the user design is functionally correct and meets all timing constraints, it is
recommended to perform back-annotated timing simulation to verify that the entire user
design will function correctly before the user tests their design in hardware. The netgen
command is used to generate a post-par simulation model, which includes all timing
information. An example of the netgen command is provided below:

netgen -sim -ofmt <vhdl | verilog> routed.ncd

The netgen command outputs routed.v[hd] and routed.sdf files, which allow the user to
run timing simulation.

Generating a Bitstream
To create the configuration (BIT) file based on the contents of a physical implementation
file (NCD), the bitgen command must be executed. The BIT file defines the behavior of the
programmed FPGA. An example of the bitgen command is provided below:

bitgen -w routed.ncd

Note the user should take care in setting the required bitgen options, including selection of
the startup clock. See the Development System Reference Guide for details.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 101
UG152 April 25, 2008

R

Appendix A

Core Directory Structure

Appendix A defines the core directory structure and associated file contents. Figure A-1
illustrates the directory structure, and Table A-1 provides a description of each file in the
core directories.

Figure A-1: GFP Directory Structure

Table A-1: Directory Files

Name Description

CORE Generator Project Files (<project_dir>)

<component_name>_gfp_map.ngc MAP core top-level netlist

<component_name>_gfp_map.v[hd] MAP core VHDL or Verilog
simulation model

<component_name>_gfp_map.v{ho | eo} MAP core VHDL or Verilog
instantiation template

<component_name>_gfp_unmap.ngc UNMAP core top-level netlist

<component_name>_gfp_map.ngc

<component_name>_gfp_unmap.ngc

<component_name>_gfp_unmap.v[hd]

<component_name>_gfp_map.v[hd]

<component_name>_gfp_unmap.v{ho | eo}

<component_name>_gfp_map.v{ho | eo}

<component_name>.xco

<component_name>.xcp

<component_name>_flist.txt

gfp_ds303.pdf

gfp_ug152.pdf

gfp_gsg151.pdf

implement.sh

implement.bat

{xst.prj | synplify.prj}

[xst.scr]

simulate_mti.do

wave_mti.do

simulate_ncsim.{sh | bat}

wave.sv

gfp_tb.v[hd]

gfp_clk_gen.v[hd]

gfp_driver.v[hd]

gfp_procedures.v[hd]

gfp_testcase_pkg.v[hd]

[glbl.v]

<component_name>_top.ucf

<component_name>_top.v[hd]

gfp_loopback.v[hd] implement

doc

results

example_design

functional

timing

simulation

results directory created by implement script;

implement script results placed in directory

simulate_mti.do

wave.do

simulate_ncsim.{sh | bat}

wave.sv

gfp_release_notes.txt

<component_name>

<project_dir>

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

102 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Appendix A: Core Directory Structure
R

<component_name>_gfp_unmap.v[hd] UNMAP core VHDL or Verilog
simulation model

<component_name>_gfp_unmap.v{ho | eo} UNMAP core VHDL or Verilog
instantiation template

<component_name>.xco CORE Generator project-specific
option file

<component_name>_flist.txt List of files delivered with core

Release Notes (<project_dir>/<component_name>)

gfp_release_notes.txt GFP Release Notes

Documentation (<project_dir>/<component_name>/doc)

gfp_ds303.pdf GFP Data Sheet

gfp_gsg151.pdf GFP Getting Started Guide

gfp_ug152.pdf GFP User Guide

Implementation Script Files (<project_dir>/<component_name>/implement)

implement.{sh | bat} LINUX or DOS implementation
script

synplify.prj Synplify synthesis script

xst.scr XST synthesis script

xst.prj XST synthesis project file

 Results Directory and Files
(<project_dir>/<component_name>/implement/results)

results directory created by implement script; results of implement script placed in
results directory

Example Design Files (project_dir>/<component_name>/example_design)

<component_name>_top.v[hd] GFP VHDL or Verilog example
design top-level

gfp_loopback.vhd GFP line interface loopback

<component_name>_top.ucf GFP core user constraints file for the
example design

Demonstration Test Bench Files (<project_dir>/<component_name>/simulation)

gfp_clk_gen.v[hd] GFP clock generator

gfp_driver.v[hd] GFP driver module that generates
data

gfp_procedures.v[hd] GFP procedure calls used by the
driver

Table A-1: Directory Files (Continued)

Name Description

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 103
UG152 April 25, 2008

R

gfp_tb.v[hd] GFP demonstration test bench top-
level module

gfp_testcase_pkg.v[hd] GFP package file containing
definitions of constants used by the
simulation

Functional Simulation
(<project_dir>/<component_name>/simulation/functional)

simulate_mti.do ModelSim simulation script for
compiling, loading, and running the
demonstration test bench

wave.do ModelSim script for loading signals
into the waveform viewer

simulate_ncsim.{sh | bat} NC-Sim simulation script for
compiling, loading, and running the
demonstration test bench

wave.sh NC-Sim script for loading signals
into the waveform viewer

Timing Simulation
(<project_dir>/<component_name>/simulation/functional)

simulate_mti.do ModelSim simulation script for
compiling, loading, and running the
back-annotated timing netlist and
demonstration test bench files

wave.do ModelSim script for loading signals
into the waveform viewer

simulate_ncsim.{sh | bat} NC-Sim simulation script for
compiling, loading, and running the
back-annotated timing netlist and
demonstration test bench files

wave.sh NC-Sim script for loading signals
into the waveform viewer

Table A-1: Directory Files (Continued)

Name Description

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

104 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Appendix A: Core Directory Structure
R - DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 105
UG152 April 25, 2008

R

Appendix B

Core Verification

The GFP core has been verified in a proprietary Xilinx test environment utilizing a Xilinx
developed bus functional model (BFM). Using this detailed BFM, the GFP core has been
tested with a variety of traffic that represents regular GFP traffic as well as erroneous traffic
that stresses key protocol rules and error reporting/recovery capability.

While an exhaustive list of the test scenarios is beyond the scope of this document, the
following list is an example of the test conditions generated against the GFP core.

Common Conditions
• Generation of all available core configurations, including:

− 32-bit and 64-bit interfaces

− Enabling of frame-mapped frames, transparent frames, or mixed mode frames

− Host interface present or missing, including different host address indexes

− Channel-specific programming (1 to 10 channels)

− Linear extension header support enabled or disabled

− Features such as scrambling and CRC generation present or missing

• Transmission and reception of back to back data flow including discontinue and
deassertion of ready conditions induced by the user application interface

• Transmission and reception of varying sized packets, from minimum to maximum
PLI values

• Transmission and reception of frame-mapped frames, transparent frames, and both
frame types when the core is configured for mixed mode operation

• Read/write and verification of every address location within the register space

• Core operation with features such as scrambling and CRC generation enabled or
disabled

MAP Core Specific Verification
• Automatic idle frame generation

• Proper handling of invalid K characters in a transparent data stream

• Transmission of management frames via the system interface as well as the host
interface

• Transmission of null extension header frames

• Transmission of linear frames, testing all 256 valid CIDs

• Transmission of frames with single-bit errors injected by the host interface

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

106 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Appendix B: Core Verification
R

UNMAP Core Specific Verification
• Reception of both streaming data and LocalLink signaling on the line interface

• Reception and removal of idle frames

• Reception and removal of 65B_PAD characters from transparent frames

• Reception of management frames.

• Reception of null extension header and linear extension header frames

• Reception of frames containing single-bit and multi-bit errors

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 107
UG152 April 25, 2008

R

Appendix C

Packet and Control Symbol Format

Figure C-1 illustrates the GFP frame format.

Table C-1 describes the frame fields.

Figure C-1: GFP Frame Format

Table C-1: GFP Frame Field Descriptions

Field Name Description

PLI Payload Length Indicator Indicates the number of
bytes in the payload area

cHEC Core Header Error Check CRC-16 that protects the
PLI

PTI Payload Type Identifier Indicates the type of GFP
client frame

PFI Payload FCS Identifier Indicates if the optional
FCS field is present

PLI

Client
Payload

Information
Field

2

n

4

Gray boxes represent optional fields

PTI
UPI
PFI EXI

cHEC 2

Type

tHEC

2

2

Extension Header

eHEC

2

2

Payload FCS

7 6 5 4 3 2 1 0

Type Field Format

SPARE

Extension Header
CID

Core Header
(4 bytes)

Payload Area
(4-65,535 bytes)

3 1 4

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

108 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Appendix C: Packet and Control Symbol Format
R

Table C-2 defines the UPI for client data frames’ client data frames have a PTI value of
“000”.

EXI Extension Header Identifier Indicates the type of
extension header

UPI User Payload Identifier Indicates the type of
payload

tHEC Type Header Error Check CRC-16 that protects the
PTI, PFI, EXI and UPI

Extension Header Extension Header Supports aggregation of
several independent links
onto a single transport path

eHEC Extension Header Error
Check

CRC-16 that protects the
extension header

Payload Payload GFP payload

Payload FCS Payload Frame Check
Sequence

CRC-32 that protects the
payload

Table C-2: UPI for Client Data Frames (PTI = 000)

User Payload Identifier (UPI)
Type Bits [7:0]

GFP Frame Payload Area

0000_0000
1111_1111

Reserved and not available

0000_0001 Frame-Mapped Ethernet

0000_0010 Frame-Mapped PPP

0000_0011 Transparent Fibre Channel

0000_0100 Transparent FICON

0000_0101 Transparent ESCON

0000_0110 Transparent Gigabit Ethernet

0000_0111 Reserved for future standardization

0000_1000 Frame-Mapped Multiple Access Protocol
over SDH (MAPOS)

0000_1001 Transparent DVB ASI

0000_1010 Frame-Mapped IEEE 802.17 Resilient
Packet Ring (RPR)

0000_1011 Frame-Mapped Fibre Channel FC-BBW

0000_1100 Asynchronous Transparent Fibre Channel

Table C-1: GFP Frame Field Descriptions

Field Name Description

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 109
UG152 April 25, 2008

R

Table C-3 defines the UPI for client management frames; client management frames have a
UPI value of “100”.

Table C-4 shows the correlation between the IBM DCR bus interface and the GFP core
interface. Note that the DCR specification utilizes big-endian notation, where the GFP host
interface uses little-endian notation. Bit-swapping should be performed, if required,
external to the GFP core.

0000_1101 through 1110_1111 Reserved for future standardization

1111_0000 through 1111_1110 Reserved for proprietary use

Table C-3: UPI for Client Management Frames (PTI = 100)

User Payload Identifier (UPI)
Type Bits [7:0]

GFP Frame Payload Area

0000_0000

1111_1111

Reserved

0000_0001 Client signal fail (loss of client signal)

0000_0010 Client signal fail (loss of character
synchronization)

0000_0011 through 1111_1110 Reserved for future standardization

Table C-4: GFP Host Interface to DCR Bus Mapping

GFP Host Interface DCR Bus

HOST_RD_EN CPU_dcrRead

HOST_WR_EN CPU_dcrWrite

HOST_ACK DCR_cpuAck

HOST_RD_DATA DCR_cpuDBusIn

HOST_WR_DATA CPU_dcrDBusOut

HOST_ADDR CPU_dcrABus

HOST_INT N/A

Table C-2: UPI for Client Data Frames (PTI = 000)

User Payload Identifier (UPI)
Type Bits [7:0]

GFP Frame Payload Area

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

110 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Appendix C: Packet and Control Symbol Format
R - DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 111
UG152 April 25, 2008

R

Appendix D

Status and Error Reporting

This section details the status and error reporting behaviors supported by the GFP MAP
and UNMAP cores.

MAP Core
The MAP core provides status and error reporting using both real-time signals and the
host interface. These signals and behaviors are detailed below.

M_SYS_STATUS_N

The signal M_SYS_STATUS_N provides real-time status and error information regarding
the current state of the MAP core. This includes the insertion of management frames by the
MAP core, as well as reporting of errored data written into the MAP core. See Table D-1 for
details.

Table D-1: M_SYS_STATUS_N Description

Name Description

M_SYS_STATUS_N[5] Loss of client signal management frame
transmission: This signal provides the
user with an indication that the MAP core
has sent a management frame indicating a
loss of client signal due to the expiration of
the CSF timer.

M_SYS_STATUS_N[4] Loss of character synchronization
management frame transmission: This
signal provides the user with an indication
that the MAP core has sent a management
frame indicating a loss of character
synchronization due to the expiration of
the CSF timer.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

112 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Appendix D: Status and Error Reporting
R

M_SYS_SRC_DSC_N

This signal is used to indicate to the MAP core that the current frame contains an error and
should be discontinued. The user can discontinue a frame at any time, and the MAP core

M_SYS_STATUS_N[1] Invalid K character received: This signal
is only valid when the MAP core is
transmitting transparent mode frames.
This signal provides the user with an
indication that a byte presented on
M_SYS_DATA (and indicated as a K
character with the assertion of
M_SYS_CHARISK_N) is not a valid K
character (Table D-2) For a list of valid K
characters, see Table 6-2, page 70.

M_SYS_STATUS_N[0] PLI length mismatch: This signal is only
valid when the MAP core has been
configured for either framed-mapped or
mixed mode operation. This signal
provides the user with an indication that
there is a mismatch between the specified
length and the actual length written
(caused by an early or late end of frame
indication, or a channel ID change not at a
frame boundary). The length of the frame
is specified by M_SYS_LENGTH or
CHANx_GFP_REGISTER_A[[15:0] (as
set by CHANx_GFP_REGISTER_A[24]). If
the user has discontinued the current
frame by asserting M_SYS_SRC_DSC_N
and M_SYS_EOF_N, this signal will not be
flagged. See Table D-3 for details.

Table D-2: M_SYS_STATUS_N[1] Behavior

Input conditions Response

DATA M_SYS_CHARISK_N M_SYS_10BERR_N M_SYS_STATUS_N[1]

Valid K-Char Asserted Asserted No Error

Valid K-Char Asserted De-asserted No Error

Valid K-Char De-asserted Asserted No Error

Valid K-Char De-asserted De-asserted No Error

Invalid K-Char Asserted Asserted No Error

Invalid K-Char Asserted De-asserted Error

Invalid K-Char De-asserted Asserted No Error

Invalid K-Char De-asserted De-asserted No Error

Table D-1: M_SYS_STATUS_N Description (Continued)

Name Description

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 113
UG152 April 25, 2008

R

will ensure that a properly formed GFP frame is transmitted on the line interface.
Asserting M_SYS_SRC_DSC_N to discontinue a frame will result in the discontinue
indication M_LINE_SRC_DSC_N also being asserted at the end of the frame.

The user specifies the length of the frame to be transmitted on either M_SYS_LENGTH or
CHANx_GFP_REGISTER_A. When the frame is terminated before the specified length, the
frame will be padded by the MAP core. When the frame is terminated after the expected
length, the frame will be truncated to the specified length and the remaining data will be
discarded. When FCS insertion is built into hardware, the FCS will be inverted to further
indicate that the frame has been discontinued by M_SYS_SRC_DSC_N. See Table 3 for
addition conditions and responses.

M_LINE_SRC_DSC_N

This signal indicates that the encapsulated GFP frame contains an error. This signal is only
asserted with M_LINE_EOF_N. M_LINE_SRC_DSC_N may be asserted under the
following conditions (see Table 3 for details):

• M_SYS_SRC_DSC_N is asserted: If the user requests a discontinue on
M_SYS_SRC_DSC_N, M_LINE_SRC_DSC_N will be asserted at the end of the frame.

• Incorrect length frame: If a frame is transmitted to the system interface that is not of
the specified length (as set by M_SYS_LENGTH or CHANx_GFP_REGISTER_A), then
the MAP core will pad or truncate the frame to the specified length. In this case,
M_LINE_SRC_DSC_N will be asserted, and the FCS will be inverted (if it exists).

Table D-3: MAP Core Response to Varying Frame Sizes and M_SYS_SRC_DSC_N

Input Conditions Response

Frame Demarcation M_SYS_SRC_
DSC_N

MAP Core Behavior M_SYS_STAT
US_N[0]

M_LINE_SRC
_DSC_N

Correct size frame De-asserted Frame passes through De-asserted De-asserted

Correct size frame Asserted FCS inverted Asserted Asserted

Shorter than expected
frame

Asserted Frame padded to
specified length, FCS
inverted

De-asserted Asserted

Shorter than expected
frame

De-asserted Frame padded to
specified length, FCS
inverted

Asserted Asserted

Longer than expected
frame

Asserted Frame truncated to
specified length, FCS
inverted

Asserted Asserted

Longer than expected
frame

De-asserted Frame truncated to
specified length, FCS
inverted

Asserted Asserted

CID Change before
expected length

De-asserted Frame padded to
specified length, FCS
inverted

De-asserted Asserted

CID Change after
expected length

De-asserted Frame truncated to
specified length, FCS
inverted

Asserted Asserted

Missing EOF, correct
size frame

De-asserted FCS inverted Asserted Asserted

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

114 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Appendix D: Status and Error Reporting
R

M_SYS_FORCE_ERR_N

This signal is used in conjunction with the MAP GFP_ERR register to insert errors into the
GFP frame. The M_SYS_FORCE_ERR_N signal should be asserted for the entire frame that
is to have errors introduced. When M_SYS_FORCE_ERR_N is asserted, the MAP core will
insert errors as specified in the GFP_ERR register. When this signal is not asserted, no
errors will be introduced into the output GFP frame. See MAP GFP_ERR and Table D-4 for
details.

MAP GFP_INT

The MAP host interface interrupt signal, M_HOST_INT, indicates that the MAP core
detected an interrupt. When M_HOST_INT is asserted, the user can poll the MAP GFP_INT
register for the interrupts that were detected. These conditions can be selectively masked
out by clearing the mask bit in GFP_INTMASK for the corresponding interrupt error
condition. The user can clear the interrupts by writing to this register. See Table D-4 for
details.

MAP GFP_ERR

This register is used with M_SYS_FORCE_ERR_N to selectively insert errors into the GFP
frame. The user sets the corresponding bit in the register to control the type of error to
introduce, and then asserts M_SYS_FORCE_ERR_N for the duration of the frame. Errors
that can be inserted are listed in Table D-4.

Missing EOF, longer
than expected frame

De-asserted Frame truncated to
specified length, FCS
inverted

Asserted Asserted

Missing EOF, shorter
than expected frame

De-asserted Frame padded to
specified length, FCS
inverted

De-asserted Asserted

Table D-3: MAP Core Response to Varying Frame Sizes and M_SYS_SRC_DSC_N

Input Conditions Response

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 115
UG152 April 25, 2008

R

Table D-4: MAP GFP_INT Description

Name Description

GFP_INT[1] Invalid K character received: This
interrupt is only valid when the MAP core
is transmitting transparent mode frames. It
provides the user with an indication that a
byte presented on M_SYS_DATA (and
indicated as a K character with the
assertion of M_SYS_CHARISK_N) is not a
valid K character (see Table 2 for details).
For a list of valid K characters, see
Table 6-2, page 70.

GFP_INT[0] PLI length mismatch: This interrupt is
only valid when the MAP core has been
configured for either framed-mapped or
mixed mode operation. It provides the
user with an indication that there is a
mismatch between the specified length
and the actual length written (caused by an
early or late end of frame indication, or a
channel ID change not at a frame
boundary). The length of the frame is
specified by M_SYS_LENGTH or
CHANx_GFP_REGISTER_A[[15:0] (as
set by CHANx_GFP_REGISTER_A[24]). If
the user has discontinued the current
frame by asserting M_SYS_SRC_DSC_N
and M_SYS_EOF_N, this interrupt will not
be flagged.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

116 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Appendix D: Status and Error Reporting
R

Table D-5: : MAP GFP_ERR Description

Name Description

GFP_ERR[7] Payload scrambling error insertion: To create a
payload scrambling error, payload scrambling must be
turned on and payload scrambling built in hardware.
Depending on the data bus width, error insertion will
invert the most significant bit (31 or 63) for every word
inside the payload.

GFP_ERR[6] Location of superblock CRC error:

(1) Corrupt all superblocks: When corruption of all
superblock CRCs is enabled, this will invert the CRC
for every superblock in a transparent frame. The only
exception to this is when a transparent frame has been
padded to the specified frame length (with 65B_PAD
words); superblocks that do not contain data will not
have the CRC inverted.

(0) Corrupt only the first superblock: When
corruption of the first superblock CRC is enabled, this
will invert the CRC for the first superblock in every
frame.

GFP_ERR[5] Superblock CRC error: To enable insertion of errors
into the superblock CRC this register bit must be
enabled. The error to be inserted is determined by the
value of GFP_ERR[6]. Superblock CRC errors can only
be inserted into transparent frames.

GFP_ERR[4] FCS error: To create a FCS error, the FCS must be
enabled and FCS generation must be built in hardware.
In order to create an error, the MAP core initializes the
FCS generator with 0x7FFFFFFF instead of
0xFFFFFFFF.

GFP_ERR[3] Core header scrambling error: To create a core header
scrambling error, header scrambling must be turned on
and the header scrambler must be built in hardware. In
order to create an error, the MAP core inverts the least
significant bit of the PLI.

GFP_ERR[2] cHEC error: To create a cHEC error, cHEC generation
must be turned on and the cHEC generator must be
built in hardware. In order to create an error, the MAP
core inverts the least significant bit of the cHEC.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 117
UG152 April 25, 2008

R

UNMAP Core
The UNMAP core provides status and error reporting using both real-time signals and the
host interface. These signals and behaviors are detailed below.

U_SYS_STATUS_N

The U_SYS_STATUS_N bus provides real-time status information for the UNMAP core. It
reports the FIFO fill level, as well as the synchronization status of the core (synchronization
is only valid when the UNMAP core is configured in either idle-only hunting or parallel
hunting, see “Customizing Core Features,” page 46 for details.

GFP_ERR[1] tHEC error: To create a tHEC error, tHEC generation
must be turned on and the tHEC generator must be
built in hardware. In order to create an error, the MAP
core inverts the least significant bit of the tHEC.

GFP_ERR[0] eHEC error: To create a eHEC error, eHEC generation
must be turned on and the eHEC generator must be
built in hardware. In order to create an error, the MAP
core inverts the least significant bit of the eHEC.

Table D-5: : MAP GFP_ERR Description (Continued)

Name Description

Table D-6: U_SYS_STATUS_N Description

Name Description

U_SYS_STATUS_N[4] System FIFO Almost Full: Indicates that the
FIFO in the system interface is almost full, and
will cause the line interface to back-pressure if
data is not read from the system interface.

U_SYS_STATUS_N[2] SYNC: Indicates that the hardware is in a state
where it has matched the specified number of
cHEC matches as given in the GFP_CTRL
register. Valid frames will appear on the system
interface when in SYNC.

U_SYS_STATUS_N[1] PRESYNC: Indicates that the hardware has
found a cHEC that has matched core header and
is accumulating matches until it meets the
number of matches given in the GFP_CTRL
register. When in PRESYNC, frames will not
appear on the system interface.

U_SYS_STATUS_N[0] HUNT: The UNMAP core has lost
synchronization (or has come out of reset) and is
currently searching for a matching cHEC. When
in HUNT, frames will not appear on the system
interface.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

118 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Appendix D: Status and Error Reporting
R

U_SYS_SRC_DSC_N

This signal is used to indicate that the current frame contains an error. When asserted, the
U_SYS_ERRBUS_N signal will indicate the type of error that was detected. This signal is
only valid with U_SYS_EOF_N.

U_LINE_SRC_DSC_N

When the UNMAP core is configured to be of synchronization type no hunting, this signal
is used to indicate to the UNMAP core that the current frame contains an error. This signal
is only valid with U_LINE_EOF_N.

U_SYS_ERRBUS_N

This signal provides real-time status and error reporting on the system interface. The
following errors are reported (bits 6, 2:0) if they are enabled in the host interface (UNMAP
GFP_CTRL[3:0]). The remaining bits (7, 5:3) are always reported.

Table D-7: U_SYS_ERRBUS_N Description

Name Description

U_SYS_ERRBUS_N[7] Transparent frame did not end on a superblock boundary:
This signal indicates that the current transparent frame was
not terminated on a superblock boundary. In this case, the
UNMAP core will discontinue the current frame by asserting
U_SYS_SRC_DSC_N and U_SYS_EOF_N.

U_SYS_ERRBUS_N[6] FCS error: This signal indicates that the current frame
contained an FCS error. In this case, the UNMAP core will
discontinue the current frame by asserting
U_SYS_SRC_DSC_N and U_SYS_EOF_N.

U_SYS_ERRBUS_N[5] cHEC corrected: This signal will be asserted for one clock
cycle each time a cHEC error is corrected. This signal is
asserted with U_SYS_EOF_N.

U_SYS_ERRBUS_N[4] tHEC corrected: This signal will be asserted for one clock
cycle each time a tHEC error is corrected. This signal is
asserted with U_SYS_EOF_N.

U_SYS_ERRBUS_N[3] eHEC corrected: This signal will be asserted for one clock
cycle each time a eHEC error is corrected. This signal is
asserted with U_SYS_EOF_N.

U_SYS_ERRBUS_N[2] cHEC error: This signal indicates that the current frame
contained an uncorrectable cHEC error. In this case, the
UNMAP core will discontinue the current frame by asserting
U_SYS_SRC_DSC_N and U_SYS_EOF_N.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 119
UG152 April 25, 2008

R

U_SYS_CHARISK_N

This signal indicates the status of each byte of data on U_SYS_DATA. If
U_SYS_CHARISK_N is asserted, then the corresponding byte on U_SYS_DATA is a 8b/10b
K character. If U_SYS_CHARISK_N is not asserted, then the corresponding byte on
U_SYS_DATA is not a K character. This signal is only valid if the byte(s) in question is valid
as indicated by U_SYS_REM.

U_SYS_10BERR_N

This signal indicates the status of each byte of data on U_SYS_DATA. If U_SYS_10BERR_N
is asserted, then the corresponding byte on U_SYS_DATA is an illegal 8b/10b K character
(10B_ERR). If U_SYS_10BERR_N is not asserted, then the corresponding byte on
U_SYS_DATA is not an illegal K character. This signal is only valid if the byte(s) in question
is valid as indicated by U_SYS_REM.

U_SYS_SUPERERR_N

This signal indicates that a CRC-16 error has occurred in the current superblock. The
U_SYS_SUPERERR_N signal is asserted at the end of the superblock, to enable the user to
drop the errored superblock if desired.

UNMAP GFP_INT

The UNMAP host interface interrupt signal, U_HOST_INT, indicates that the UNMAP
core detected an interrupt. When U_HOST_INT is asserted, the user can poll the UNMAP
GFP_INT register for the interrupts that were detected. These conditions can be selectively
masked out by clearing the mask bit in GFP_INTMASK for the corresponding interrupt

U_SYS_ERRBUS_N[1] tHEC error: This signal indicates that the current frame
contained an uncorrectable tHEC error. In this case, the
UNMAP core will discontinue the current frame by asserting
U_SYS_SRC_DSC_N and U_SYS_EOF_N.

U_SYS_ERRBUS_N[0] eHEC error: This signal indicates that the current frame
contained an uncorrectable eHEC error. In this case, the
UNMAP core will discontinue the current frame by asserting
U_SYS_SRC_DSC_N and U_SYS_EOF_N.

Table D-7: U_SYS_ERRBUS_N Description

Name Description

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

120 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Appendix D: Status and Error Reporting
R

error condition. The user can clear the interrupts by writing to this register. See Table D-8
for details.

Table D-8: UNMAP GFP_INT Description

Name Description

GFP_INT[5] PLI Mismatch Error: This bit indicates that
there was a mismatch in the indicated length
of the frame given by the PLI and the
demarcation of the frame with
U_SYS_SOF_N and U_SYS_EOF_N.

GFP_INT[4] Superblock CRC Error: This bit is only valid
when the UNMAP core is configured in either
transparent or mixed mode. This bit indicates
that an error was detected in the CRC check
over the current superblock. When
superblock CRC error reporting is disabled in
the UNMAP GFP_CTRL register, this bit does
not flag an error.

GFP_INT[3] FCS Error: When FCS detection is built in
hardware, this bit is used to indicate that a
FCS error was detected over the payload.
When FCS error reporting is disabled in the
UNMAP GFP_CTRL register, this bit does not
flag an error.

GFP_INT[2] cHEC Error: When cHEC detection is built in
hardware, this bit is used to indicate that an
error was detected in the core header. When
cHEC detection is disabled in the UNMAP
GFP_CTRL register, this bit does not flag an
error. A bit error will not be reported if the
cHEC bit error was corrected.

GFP_INT[1] THEC Error: When tHEC detection is built in
hardware, this bit is used to indicate that an
error was detected in the type or tHEC fields.
When tHEC detection is disabled in the
UNMAP GFP_CTRL register, this bit does not
flag an error. A bit error will not be reported
if the tHEC bit error was corrected.

GFP_INT[0] eHEC Error: When eHEC detection is built in
hardware, this bit is used to indicate that an
error was detected in the extension header or
eHEC fields. When eHEC detection is
disabled in the UNMAP GFP_CTRL register,
this bit does not flag an error. A bit error will
not be reported if the eHEC bit error was
corrected.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 121
UG152 April 25, 2008

R

UNMAP GFP_FIXERR

The UNMAP GFP_FIXERR register indicates that a detected error was corrected by the
core, and also indicates the channel ID of the corrected error. This register holds the first
value detected for each field until cleared by the user.

Table D-9: UNMAP GFP_FIXERR Description

Name Description

GFP_FIXERR[26] cHEC error corrected: When cHEC correction is built in
hardware, and enabled in the UNMAP GFP_CTRL register, this
bit indicates that a bit error over the core header was corrected.
The corrected frame channel ID appears in
GFP_FIXERR[23:16].

GFP_FIXERR[25] tHEC error corrected: When tHEC correction is built in
hardware, and enabled in the UNMAP GFP_CTRL register, this
bit indicates that a bit error over the type or tHEC field was
corrected. The corrected frame channel ID appears in
GFP_FIXERR[15:8].

GFP_FIXERR[24] eHEC error corrected: When eHEC correction is built in
hardware, and enabled in the UNMAP GFP_CTRL register, this
bit indicates that a bit error over the extension or eHEC fields
was corrected. The corrected frame channel ID appears in
GFP_FIXERR[7:0].

GFP_FIXERR[23:16] CID of corrected cHEC: The channel ID of the first detected
cHEC frame corrected.

GFP_FIXERR[15:8] CID of corrected tHEC: The channel ID of the first detected
tHEC frame corrected.

GFP_FIXERR[7:0] CID of corrected eHEC: The channel ID of the first detected
eHEC frame corrected.

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

122 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Appendix D: Status and Error Reporting
R - DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

GFP v2.1 User Guide www.xilinx.com 123
UG152 April 25, 2008

R

Appendix E

Sample GFP Frames

The following table illustrates a sample data frame and the resulting GFP encapsulation
for various core configurations. The sample data frame is:

0001 0203 0405 0607 0809 0A0B 0C0D 0E0F

As seen below, the resulting frame depends on the configuration options selected. In the
following examples, frame-mapped frames were generated for Ethernet, and transparent
mode frames were generated for Fibre Channel.

Table E-1: First Constructed GFP Frame for Various Core Configurations

Data Type Ethernet Ethernet Ethernet Ethernet Ethernet Ethernet
Fibre

Channel
Fibre

Channel
Fibre

Channel
Fibre

Channel

Extension
Header1 Linear Linear Linear Null Null Null Linear Linear Null Null

Payload FCS
Generation

Yes Yes No Yes Yes No Yes Yes No No

Header
Scrambling

No Yes Yes No Yes Yes No Yes No Yes

Payload
Scrambling

No Yes Yes No Yes Yes No Yes No Yes

Output data
stream (in hex)

001C
D3BD
1101
2063
1234
13C6
0001
0203
0405
0607
0809
0A0B
0C0D
0E0F
5685
00B2

B6B7
E25D
1101
2603
1236
33E2
0C63
44C5
7844
8A6F
90A6
029A
41FF
1ACF
05CD
3F51

B6B3
A2D9
0101
2310
1234
33E2
6203
4485
7849
466F
98A6
0323
C1FE
1ACF

0018
9339
1001
1352
0001
0203
0405
0607
0809
0A0B
0C0D
0E0F
5685
00B2

B6B3
A2D9
1001
1352
0003
0221
6E45
0667
4C24
C2AB
C0E4
8A97
03FD
1C23

B6BF
6355
0001
1021
0001
0221
0025
0627
4C29
0EAB
C8E4
8B2E

004F_B92B

1103_0021

1234_13C6

0001_0203

0405_0607

0809_0A0B

0C0D_0E0F

8D9D_ADBD

CDDD_ED7D

8D9D_ADBD

CDDD_ED7D

8D9D_ADBD

CDDD_ED7D

8D9D_ADBD

CDDD_ED7D

8D9D_ADBD

CDDD_ED7D

8D9D_ADBD

CDDD_ED7D

3FD2_5B50

B2D6_B8--

B6E4_88CB

1103_0021

1236_33A6

0423_44C5

70C5_826F

90A7_12BB

41FF_1AED

DAF5_925E

9066_B3CF

C64F_A16B

B425_2489

A0EB_2919

5CE9_F018

AEB6_3083

CEC8_3BBB

9DE4_74BA

BAAE_51F3

1ACA_F877

F3BE_B422

312C_2C86

3690_9D--

0047_3823

0003_3063

0001_0203

0405_0607

0809_0A0B

0C0D_0E0F

8D9D_ADBD

CDDD_ED7D

8D9D_ADBD

CDDD_ED7D

8D9D_ADBD

CDDD_ED7D

8D9D_ADBD

CDDD_ED7D

8D9D_ADBD

CDDD_ED7D

8D9D_ADBD

CDDD_ED7D

3FD2_5B--

B6EC_09C3

0003_3063

0001_0265

0865_0627

44A8_06AB

C8E5_9B0F

58E4_B10E

AC36_F1EB

AC48_2B63

F0A8_6478

E1E3_B8B1

42C1_D10A

9BB5_F587

EC8E_9BC3

3D60_3C6E

B5BA_417A

004B_1AF5

E29D_E41E

616E_08--

1. All extension headers have CID = 0x12, and Spare = 0x34

- DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

124 www.xilinx.com GFP v2.1 User Guide
UG152 April 25, 2008

Appendix E: Sample GFP Frames
R - DISCONTINUED PRODUCT - - DISCONTINUED PRODUCT -

http://www.xilinx.com

